summaryrefslogtreecommitdiffstats
path: root/drivers/usb/host/xhci.h
AgeCommit message (Collapse)Author
2010-11-19xhci: Setup array of USB 2.0 and USB 3.0 ports.Sarah Sharp
An xHCI host controller contains USB 2.0 and USB 3.0 ports, which can occur in any order in the PORTSC registers. We cannot read the port speed bits in the PORTSC registers at init time to determine the port speed, since those bits are only valid when a USB device is plugged into the port. Instead, we read the "Supported Protocol Capability" registers in the xHC Extended Capabilities space. Those describe the protocol, port offset in the PORTSC registers, and port count. We use those registers to create two arrays of pointers to the PORTSC registers, one for USB 3.0 ports, and another for USB 2.0 ports. A third array keeps track of the port protocol major revision, and is indexed with the internal xHCI port number. This commit is a bit big, but it should be queued for stable because the "Don't let the USB core disable SuperSpeed ports" patch depends on it. There is no other way to determine which ports are SuperSpeed ports without this patch. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Tested-by: Don Zickus <dzickus@redhat.com> Cc: stable@kernel.org
2010-11-11xHCI: fix wMaxPacketSize maskAndiry Xu
USB2.0 spec 9.6.6 says: For all endpoints, bit 10..0 specify the maximum packet size(in bytes). So the wMaxPacketSize mask should be 0x7ff rather than 0x3ff. This patch should be queued for the stable tree. The bug in xhci_endpoint_init() was present as far back as 2.6.31, and the bug in xhci_get_max_esit_payload() was present when the function was introduced in 2.6.34. Reported-by: Sander Eikelenboom <linux@eikelenboom.it> Signed-off-by: Andiry Xu <andiry.xu@amd.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable@kernel.org
2010-10-22usb: Fix linker errors with CONFIG_PM=nSarah Sharp
Fix these linker errors when CONFIG_PM=n: ERROR: "xhci_bus_resume" [drivers/usb/host/xhci-hcd.ko] undefined! ERROR: "xhci_bus_suspend" [drivers/usb/host/xhci-hcd.ko] undefined! Reported-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Acked-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-10-22USB: xHCI: PCI power management implementationAndiry Xu
This patch implements the PCI suspend/resume. Please refer to xHCI spec for doing the suspend/resume operation. For S3, CSS/SRS in USBCMD is used to save/restore the internal state. However, an error maybe occurs while restoring the internal state. In this case, it means that HC internal state is wrong and HC will be re-initialized. Signed-off-by: Libin Yang <libin.yang@amd.com> Signed-off-by: Dong Nguyen <dong.nguyen@amd.com> Signed-off-by: Andiry Xu <andiry.xu@amd.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-10-22USB: xHCI: bus power management implementationAndiry Xu
This patch implements xHCI bus suspend/resume function hook. In the patch it goes through all the ports and suspend/resume the ports if needed. If any port is in remote wakeup, abort bus suspend as what ehci/ohci do. Signed-off-by: Libin Yang <libin.yang@amd.com> Signed-off-by: Crane Cai <crane.cai@amd.com> Signed-off-by: Andiry Xu <andiry.xu@amd.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-10-22USB: xHCI: port remote wakeup implementationAndiry Xu
This commit implements port remote wakeup. When a port is in U3 state and resume signaling is detected from a device, the port transitions to the Resume state, and the xHC generates a Port Status Change Event. For USB3 port, software write a '0' to the PLS field to complete the resume signaling. For USB2 port, the resume should be signaling for at least 20ms, irq handler set a timer for port remote wakeup, and then finishes process in hub_control GetPortStatus. Some codes are borrowed from EHCI code. Signed-off-by: Andiry Xu <andiry.xu@amd.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-10-22USB: xHCI: port power management implementationAndiry Xu
Add software trigger USB device suspend resume function hook. Do port suspend & resume in terms of xHCI spec. Port Suspend: Stop all endpoints via Stop Endpoint Command with Suspend (SP) flag set. Place individual ports into suspend mode by writing '3' for Port Link State (PLS) field into PORTSC register. This can only be done when the port is in Enabled state. When writing, the Port Link State Write Strobe (LWS) bit shall be set to '1'. Allocate an xhci_command and stash it in xhci_virt_device to wait completion for the last Stop Endpoint Command. Use the Suspend bit in TRB to indicate the Stop Endpoint Command is for port suspend. Based on Sarah's suggestion. Port Resume: Write '0' in PLS field, device will transition to running state. Ring an endpoints' doorbell to restart it. Ref: USB device remote wake need another patch to implement. For details of how USB subsystem do power management, please see: Documentation/usb/power-management.txt Signed-off-by: Crane Cai <crane.cai@amd.com> Signed-off-by: Libin Yang <libin.yang@amd.com> Signed-off-by: Andiry Xu <andiry.xu@amd.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-10-22USB: core: use kernel assigned address for devices under xHCIAndiry Xu
xHCI driver uses hardware assigned device address. This may cause device address conflict in certain cases. Use kernel assigned address for devices under xHCI. Store the xHC assigned address locally in xHCI driver. Signed-off-by: Andiry Xu <andiry.xu@amd.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2010-10-22USB: xHCI: change xhci_reset_device() to allocate new deviceAndiry Xu
Rename xhci_reset_device() to xhci_discover_or_reset_device(). If xhci_discover_or_reset_device() is called to reset a device which does not exist or does not match the udev, it calls xhci_alloc_dev() to re-allocate the device. This would prevent the reset device failure, possibly due to the xHC restore error during S3/S4 resume. Signed-off-by: Andiry Xu <andiry.xu@amd.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-10-22USB: xHCI: Add pointer to udev in struct xhci_virt_deviceAndiry Xu
Add a pointer to udev in struct xhci_virt_device. When allocate a new virt_device, make the pointer point to the corresponding udev. Modify xhci_check_args(), check if virt_dev->udev matches the target udev, to make sure command is issued to the right device. Signed-off-by: Andiry Xu <andiry.xu@amd.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-08-10USB: xhci: Make xhci_set_hc_event_deq() static.Sarah Sharp
Now that the event handler functions no longer use xhci_set_hc_event_deq() to update the event ring dequeue pointer, that function is not used by anything in xhci-ring.c. Move that function into xhci-mem.c and make it static. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-08-10USB: xhci: Make xhci_handle_event() static.Sarah Sharp
xhci_handle_event() is now only called from within xhci-ring.c, so make it static. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-08-10USB: xhci: Performance - move interrupt handlers into xhci-ring.cSarah Sharp
Most of the work for interrupt handling is done in xhci-ring.c, so it makes sense to move the functions that are first called when an interrupt happens (xhci_irq() or xhci_msi_irq()) into xhci-ring.c, so that the compiler can better optimize them. Shorten some lines to make it pass checkpatch. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-08-10USB: xhci: Performance - move functions that find ep ring.Sarah Sharp
I've been using perf to measure the top symbols while transferring 1GB of data on a USB 3.0 drive with dd. This is using the raw disk with /dev/sdb, with a block size of 1K. During performance testing, the top symbol was xhci_triad_to_transfer_ring(), a function that should return immediately if streams are not enabled for an endpoint. It turned out that the functions to find the endpoint ring was defined in xhci-mem.c and used in xhci-ring.c and xhci-hcd.c. I moved a copy of xhci_triad_to_transfer_ring() and xhci_urb_to_transfer_ring() into xhci-ring.c and declared them static. I also made a static version of xhci_urb_to_transfer_ring() in xhci.c. This improved throughput on a 1GB read of the raw disk with dd from 186MB/s to 195MB/s, and perf reported sampling the xhci_triad_to_transfer_ring() 0.06% of the time, rather than 9.26% of the time. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-08-10USB: xHCI: Isochronous transfer implementationAndiry Xu
This patch implements isochronous urb enqueue and interrupt handler part. When an isochronous urb is passed to xHCI driver, first check the transfer ring to guarantee there is enough room for the whole urb. Then update the start_frame and interval field of the urb. Always assume URB_ISO_ASAP is set, and never use urb->start_frame as input. The number of isoc TDs is equal to urb->number_of_packets. One isoc TD is consumed every Interval. Each isoc TD consists of an Isoch TRB chained to zero or more Normal TRBs. Call prepare_transfer for each TD to do initialization; then calculate the number of TRBs needed for each TD. If the data required by an isoc TD is physically contiguous (not crosses a page boundary), then only one isoc TRB is needed; otherwise one or more additional normal TRB shall be chained to the isoc TRB by the host. Set TRB_IOC to the last TRB of each isoc TD. Do not ring endpoint doorbell to start xHC procession until all the TDs are inserted to the endpoint transer ring. In irq handler, update urb status and actual_length, increase urb_priv->td_cnt. When all the TDs are completed(td_cnt is equal to urb_priv->length), giveback the urb to usbcore. Signed-off-by: Andiry Xu <andiry.xu@amd.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-08-10USB: xHCI: Introduce urb_priv structureAndiry Xu
Add urb_priv data structure to xHCI driver. This structure allows multiple xhci TDs to be linked to one urb, which is essential for isochronous transfer. For non-isochronous urb, only one TD is needed for one urb; for isochronous urb, the TD number for the urb is equal to urb->number_of_packets. The length field of urb_priv indicates the number of TDs in the urb. The td_cnt field indicates the number of TDs already processed by xHC. When td_cnt matches length, the urb can be given back to usbcore. When an urb is dequeued or cancelled, add all the unprocessed TDs to the endpoint's cancelled_td_list. When process a cancelled TD, increase td_cnt field. When td_cnt equals urb_priv->length, giveback the cancelled urb. Signed-off-by: Andiry Xu <andiry.xu@amd.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-08-10USB: xHCI: Missed Service Error Event processAndiry Xu
This patch adds mechanism to process Missed Service Error Event. Sometimes the xHC is unable to process the isoc TDs in time, it will generate Missed Service Error Event. In this case some TDs on the ring are not processed and missed. When encounter a Missed Servce Error Event, set the skip flag of the ep, and process the missed TDs until reach the next processed TD, then clear the skip flag. Signed-off-by: Andiry Xu <andiry.xu@amd.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-08-10USB: xHCI: Supporting MSI/MSI-XDong Nguyen
Enable MSI/MSI-X supporting in xhci driver. Provide the mechanism to fall back using MSI and Legacy IRQs if MSI-X IRQs register failed. Signed-off-by: Dong Nguyen <Dong.Nguyen@amd.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>, Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-07-26USB: xhci: Set EP0 dequeue ptr after reset of configured device.Sarah Sharp
When a configured device is reset, the control endpoint's ring is reused. If control transfers to the device were issued before the device is reset, the dequeue pointer will be somewhere in the middle of the ring. If the device is then issued an address with the set address command, the xHCI driver must provide a valid input context for control endpoint zero. The original code would give the hardware the original input context, which had a dequeue pointer set to the top of the ring. This would cause the host to re-execute any control transfers until it reached the ring's enqueue pointer. When issuing a set address command for a device that has just been configured and then reset, use the control endpoint's enqueue pointer as the hardware's dequeue pointer. Assumption: All control transfers will be completed or cancelled before the set address command is issued to the device. If there are any outstanding control transfers, this code will not work. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-06-04USB: xhci: Print NEC firmware version.Sarah Sharp
The NEC xHCI host controller firmware version can be found by putting a vendor-specific command on the command ring and extracting the BCD encoded-version out of the vendor-specific event TRB. The firmware version debug line in dmesg will look like: xhci_hcd 0000:05:00.0: NEC firmware version 30.21 (NEC merged with Renesas Technologies and became Renesas Electronics on April 1, 2010. I have their OK to merge this vendor-specific code.) Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: Satoshi Otani <satoshi.otani.xm@renesas.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-05-20USB: xhci: Correct assumptions about number of rings per endpoint.Sarah Sharp
Much of the xHCI driver code assumes that endpoints only have one ring. Now an endpoint can have one ring per enabled stream ID, so correct that assumption. Use functions that translate the stream_id field in the URB or the DMA address of a TRB into the correct stream ring. Correct the polling loop to print out all enabled stream rings. Make the URB cancellation routine find the correct stream ring if the URB has stream_id set. Make sure the URB enqueueing routine does the same. Also correct the code that handles stalled/halted endpoints. Check that commands and registers that can take stream IDs handle them properly. That includes ringing an endpoint doorbell, resetting a stalled/halted endpoint, and setting a transfer ring dequeue pointer (since that command can set the dequeue pointer in a stream context or an endpoint context). Correct the transfer event handler to translate a TRB DMA address into the stream ring it was enqueued to. Make the code to allocate and prepare TD structures adds the TD to the right td_list for the stream ring. Make sure the code to give the first TRB in a TD to the hardware manipulates the correct stream ring. When an endpoint stalls, store the stream ID of the stream ring that stalled in the xhci_virt_ep structure. Use that instead of the stream ID in the URB, since an URB may be re-used after it is given back after a non-control endpoint stall. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-05-20USB: xhci: Add memory allocation for USB3 bulk streams.Sarah Sharp
Add support for allocating streams for USB 3.0 bulk endpoints. See Documentation/usb/bulk-streams.txt for more information about how and why you would use streams. When an endpoint has streams enabled, instead of having one ring where all transfers are enqueued to the hardware, it has several rings. The ring dequeue pointer in the endpoint context is changed to point to a "Stream Context Array". This is basically an array of pointers to transfer rings, one for each stream ID that the driver wants to use. The Stream Context Array size must be a power of two, and host controllers can place a limit on the size of the array (4 to 2^16 entries). These two facts make calculating the size of the Stream Context Array and the number of entries actually used by the driver a bit tricky. Besides the Stream Context Array and rings for all the stream IDs, we need one more data structure. The xHCI hardware will not tell us which stream ID a transfer event was for, but it will give us the slot ID, endpoint index, and physical address for the TRB that caused the event. For every endpoint on a device, add a radix tree to map physical TRB addresses to virtual segments within a stream ring. Keep track of whether an endpoint is transitioning to using streams, and don't enqueue any URBs while that's taking place. Refuse to transition an endpoint to streams if there are already URBs enqueued for that endpoint. We need to make sure that freeing streams does not fail, since a driver's disconnect() function may attempt to do this, and it cannot fail. Pre-allocate the command structure used to issue the Configure Endpoint command, and reserve space on the command ring for each stream endpoint. This may be a bit overkill, but it is permissible for the driver to allocate all streams in one call and free them in multiple calls. (It is not advised, however, since it is a waste of resources and time.) Even with the memory and ring room pre-allocated, freeing streams can still fail because the xHC rejects the configure endpoint command. It is valid (by the xHCI 0.96 spec) to return a "Bandwidth Error" or a "Resource Error" for a configure endpoint command. We should never see a Bandwidth Error, since bulk endpoints do not effect the reserved bandwidth. The host controller can still return a Resource Error, but it's improbable since the xHC would be going from a more resource-intensive configuration (streams) to a less resource-intensive configuration (no streams). If the xHC returns a Resource Error, the endpoint will be stuck with streams and will be unusable for drivers. It's an unavoidable consequence of broken host controller hardware. Includes bug fixes from the original patch, contributed by John Youn <John.Youn@synopsys.com> and Andy Green <AGreen@PLXTech.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-05-20USB: make hcd.h public (drivers dependency)Eric Lescouet
The usbcore headers: hcd.h and hub.h are shared between usbcore, HCDs and a couple of other drivers (e.g. USBIP modules). So, it makes sense to move them into a more public location and to cleanup dependency of those modules on kernel internal headers. This patch moves hcd.h from drivers/usb/core into include/linux/usb/ Signed-of-by: Eric Lescouet <eric@lescouet.org> Cc: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-04-30USB: xhci: properly set endpoint context fields for periodic eps.Sarah Sharp
For periodic endpoints, we must let the xHCI hardware know the maximum payload an endpoint can transfer in one service interval. The xHCI specification refers to this as the Maximum Endpoint Service Interval Time Payload (Max ESIT Payload). This is used by the hardware for bandwidth management and scheduling of packets. For SuperSpeed endpoints, the maximum is calculated by multiplying the max packet size by the number of bursts and the number of opportunities to transfer within a service interval (the Mult field of the SuperSpeed Endpoint companion descriptor). Devices advertise this in the wBytesPerInterval field of their SuperSpeed Endpoint Companion Descriptor. For high speed devices, this is taken by multiplying the max packet size by the "number of additional transaction opportunities per microframe" (the high bits of the wMaxPacketSize field in the endpoint descriptor). For FS/LS devices, this is just the max packet size. The other thing we must set in the endpoint context is the Average TRB Length. This is supposed to be the average of the total bytes in the transfer descriptor (TD), divided by the number of transfer request blocks (TRBs) it takes to describe the TD. This gives the host controller an indication of whether the driver will be enqueuing a scatter gather list with many entries comprised of small buffers, or one contiguous buffer. It also takes into account the number of extra TRBs you need for every TD. This includes No-op TRBs and Link TRBs used to link ring segments together. Some drivers may choose to chain an Event Data TRB on the end of every TD, thus increasing the average number of TRBs per TD. The Linux xHCI driver does not use Event Data TRBs. In theory, if there was an API to allow drivers to state what their bandwidth requirements are, we could set this field accurately. For now, we set it to the same number as the Max ESIT payload. The Average TRB Length should also be set for bulk and control endpoints, but I have no idea how to guess what it should be. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable <stable@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-03-02USB: xhci: Fix compile issues with xhci_get_slot_state()Sarah Sharp
Randy Dunlap reported this error when compiling the xHCI driver: linux-next-20100104/drivers/usb/host/xhci.h:1214: sorry, unimplemented: inlining failed in call to 'xhci_get_slot_state': function body not available The xhci_get_slot_state() function belongs in xhci-dbg.c, since it involves debugging internal xHCI structures. However, it is only used in xhci-hcd.c. Some toolchains may have issues since the inlined function body is not in the xhci.h header file. Remove the inline keyword to avoid this. Reported-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Acked-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-03-02USB: Add call to notify xHC of a device reset.Sarah Sharp
Add a new host controller driver method, reset_device(), that the USB core will use to notify the host of a successful device reset. The call may fail due to out-of-memory errors; attempt the port reset sequence again if that happens. Update hub_port_init() to allow resetting a configured device. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-03-02USB: xhci: Notify the xHC when a device is reset.Sarah Sharp
When a USB device is reset, the xHCI hardware must know, in order to match the device state and disable all endpoints except control endpoint 0. Issue a Reset Device command after a USB device is successfully reset. Wait on the command to finish, and then cache or free the disabled endpoint rings. There are four different USB device states that the xHCI hardware tracks: - disabled/enabled - device connection has just been detected, - default - the device has been reset and has an address of 0, - addressed - the device has a non-zero address but no configuration has been set, - configured - a set configuration succeeded. The USB core may issue a port reset when a device is in any state, but the Reset Device command will fail for a 0.96 xHC if the device is not in the addressed or configured state. Don't consider this failure as an error, but don't free any endpoint rings if this command fails. A storage driver may request that the USB device be reset during error handling, so use GPF_NOIO instead of GPF_KERNEL while allocating memory for the Reset Device command. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-03-02USB: xhci: Refactor test for vendor-specific completion codes.Sarah Sharp
All commands that can be issued to the xHCI hardware can come back with vendor-specific "informational" completion codes. These are to be treated like a successful completion code. Refactor out the code to test for the range of these codes and print debugging messages. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-03-02USB: xhci: Allow allocation of commands without input contexts.Sarah Sharp
The xhci_command structure is the basic structure for issuing commands to the xHCI hardware. It contains a struct completion (so that the issuing function can wait on the command), command status, and a input context that is used to pass information to the hardware. Not all commands need the input context, so make it optional to allocate. Allow xhci_free_container_ctx() to be passed a NULL input context, to make freeing the xhci_command structure simple. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-03-02USB: xhci: Refactor code to free or cache endpoint rings.Sarah Sharp
Refactor out the code to cache or free endpoint rings from recently dropped or disabled endpoints. This code will be used by a new function to reset a device and disable all endpoints except control endpoint 0. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-12-11USB: xhci: Make reverting an alt setting "unfailable".Sarah Sharp
When a driver wants to switch to a different alternate setting for an interface, the USB core will (soon) check whether there is enough bandwidth. Once the new alternate setting is installed in the xHCI hardware, the USB core will send a USB_REQ_SET_INTERFACE control message. That can fail in various ways, and the USB core needs to be able to reinstate the old alternate setting. With the old code, reinstating the old alt setting could fail if the there's not enough memory to allocate new endpoint rings. Keep around a cache of (at most 31) endpoint rings for this case. When we successfully switch the xHCI hardware to the new alt setting, the old alt setting's rings will be stored in the cache. Therefore we'll always have enough rings to satisfy a conversion back to a previous device setting. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-12-11USB: xhci: Set transfer descriptor size field correctly.Sarah Sharp
The transfer descriptor (TD) is a series of transfer request buffers (TRBs) that describe the buffer pointer, length, and other characteristics. The xHCI controllers want to know an estimate of how long the TD is, for caching reasons. In each TRB, there is a "TD size" field that provides a rough estimate of the remaining buffers to be transmitted, including the buffer pointed to by that TRB. The TD size is 5 bits long, and contains the remaining size in bytes, right shifted by 10 bits. So a remaining TD size less than 1024 would get a zero in the TD size field, and a remaining size greater than 32767 would get 31 in the field. This patches fixes a bug in the TD_REMAINDER macro that is triggered when the URB has a scatter gather list with a size bigger than 32767 bytes. Not all host controllers pay attention to the TD size field, so the bug will not appear on all USB 3.0 hosts. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-12-11USB: xhci: Add tests for TRB address translation.Sarah Sharp
It's not surprising that the transfer request buffer (TRB) physical to virtual address translation function has bugs in it, since I wrote most of it at 4am last October. Add a test suite to check the TRB math. This runs at memory initialization time, and causes the driver to fail to load if the TRB math fails. Please excuse the excessively long lines in the test vectors; they can't really be made shorter and still be readable. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-12-11USB: xhci: Add watchdog timer for URB cancellation.Sarah Sharp
In order to giveback a canceled URB, we must ensure that the xHCI hardware will not access the buffer in an URB. We can't modify the buffer pointers on endpoint rings without issuing and waiting for a stop endpoint command. Since URBs can be canceled in interrupt context, we can't wait on that command. The old code trusted that the host controller would respond to the command, and would giveback the URBs in the event handler. If the hardware never responds to the stop endpoint command, the URBs will never be completed, and we might hang the USB subsystem. Implement a watchdog timer that is spawned whenever a stop endpoint command is queued. If a stop endpoint command event is found on the event ring during an interrupt, we need to stop the watchdog timer with del_timer(). Since del_timer() can fail if the timer is running and waiting on the xHCI lock, we need a way to signal to the timer that everything is fine and it should exit. If we simply clear EP_HALT_PENDING, a new stop endpoint command could sneak in and set it before the watchdog timer can grab the lock. Instead we use a combination of the EP_HALT_PENDING flag and a counter for the number of pending stop endpoint commands (xhci_virt_ep->stop_cmds_pending). If we need to cancel the watchdog timer and del_timer() succeeds, we decrement the number of pending stop endpoint commands. If del_timer() fails, we leave the number of pending stop endpoint commands alone. In either case, we clear the EP_HALT_PENDING flag. The timer will decrement the number of pending stop endpoint commands once it obtains the lock. If the timer is the tail end of the last stop endpoint command (xhci_virt_ep->stop_cmds_pending == 0), and the endpoint's command is still pending (EP_HALT_PENDING is set), we assume the host is dying. The watchdog timer will set XHCI_STATE_DYING, try to halt the xHCI host, and give back all pending URBs. Various other places in the driver need to check whether the xHCI host is dying. If the interrupt handler ever notices, it should immediately stop processing events. The URB enqueue function should also return -ESHUTDOWN. The URB dequeue function should simply return the value of usb_hcd_check_unlink_urb() and the watchdog timer will take care of giving the URB back. When a device is disconnected, the xHCI hardware structures should be freed without issuing a disable slot command (since the hardware probably won't respond to it anyway). The debugging polling loop should stop polling if the host is dying. When a device is disconnected, any pending watchdog timers are killed with del_timer_sync(). It must be synchronous so that the watchdog timer doesn't attempt to access the freed endpoint structures. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-12-11USB: xhci: Re-purpose xhci_quiesce().Sarah Sharp
xhci_quiesce() is basically a no-op right now. It's only called if HC_IS_RUNNING() is true, and the body of the function consists of a BUG_ON if HC_IS_RUNNING() is false. For the new xHCI watchdog timer, we need a new function that clears the xHCI running bit in the command register, but doesn't wait for the halt status to show up in the status register. Re-purpose xhci_quiesce() to do that. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-12-11USB: xhci: Handle URB cancel, complete and resubmit race.Sarah Sharp
In the old code, there was a race condition between the stop endpoint command and the URB submission process. When the stop endpoint command is handled by the event handler, the endpoint ring is assumed to be stopped. When a stop endpoint command is queued, URB submissions are to not ring the doorbell. The old code would check the number of pending URBs to be canceled, and would not ring the doorbell if it was non-zero. However, the following race condition could occur with the old code: 1. Cancel an URB, add it to the list of URBs to be canceled, queue the stop endpoint command, and increment ep->cancels_pending to 1. 2. The URB finishes on the HW, and an event is enqueued to the event ring (at the same time as 1). 3. The stop endpoint command finishes, and the endpoint is halted. An event is queued to the event ring. 4. The event handler sees the finished URB, notices it was to be canceled, decrements ep->cancels_pending to 0, and removes it from the to be canceled list. 5. The event handler drops the lock and gives back the URB. The completion handler requeues the URB (or a different driver enqueues a new URB). This causes the endpoint's doorbell to be rung, since ep->cancels_pending == 0. The endpoint is now running. 6. A second URB is canceled, and it's added to the canceled list. Since ep->cancels_pending == 0, a new stop endpoint command is queued, and ep->cancels_pending is incremented to 1. 7. The event handler then sees the completed stop endpoint command. The handler assumes the endpoint is stopped, but it isn't. It attempts to move the dequeue pointer or change TDs to cancel the second URB, while the hardware is actively accessing the endpoint ring. To eliminate this race condition, a new endpoint state bit is introduced, EP_HALT_PENDING. When this bit is set, a stop endpoint command has been queued, and the command handler has not begun to process the URB cancellation list yet. The endpoint doorbell should not be rung when this is set. Set this when a stop endpoint command is queued, clear it when the handler for that command runs, and check if it's set before ringing a doorbell. ep->cancels_pending is eliminated, because it is no longer used. Make sure to ring the doorbell for an endpoint when the stop endpoint command handler runs, even if the canceled URB list is empty. All canceled URBs could have completed and new URBs could have been enqueued without the doorbell being rung before the command was handled. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-23USB: xhci: Support USB hubs.Sarah Sharp
For a USB hub to work under an xHCI host controller, the xHC's internal scheduler must be made aware of the hub's characteristics. Add an xHCI hook that the USB core will call after it fetches the hub descriptor. This hook will add hub information to the slot context for that device, including whether it has multiple TTs or a single TT, the number of ports on the hub, and TT think time. Setting up the slot context for the device is different for 0.95 and 0.96 xHCI host controllers. Some of the slot context reserved fields in the 0.95 specification were changed into hub fields in the 0.96 specification. Don't set the TT think time or number of ports for a hub if we're dealing with a 0.95-compliant xHCI host controller. The 0.95 xHCI specification says that to modify the hub flag, we need to issue an evaluate context command. The 0.96 specification says that flag can be set with a configure endpoint command. Issue the correct command based on the version reported by the hardware. This patch does not add support for multi-TT hubs. Multi-TT hubs expose a single TT on alt setting 0, and multi-TT on alt setting 1. The xHCI driver can't handle setting alternate interfaces yet. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-23USB: xhci: Change how xHCI commands are handled.Sarah Sharp
Some commands to the xHCI hardware cannot be allowed to fail due to out of memory issues or the command ring being full. Add a way to reserve a TRB on the command ring, and make all command queueing functions indicate whether they are using a reserved TRB. Add a way to pre-allocate all the memory a command might need. A command needs an input context, a variable to store the status, and (optionally) a completion for the caller to wait on. Change all code that assumes the input device context, status, and completion for a command is stored in the xhci virtual USB device structure (xhci_virt_device). Store pending completions in a FIFO in xhci_virt_device. Make the event handler for a configure endpoint command check to see whether a pending command in the list has completed. We need to use separate input device contexts for some configure endpoint commands, since multiple drivers can submit requests at the same time that require a configure endpoint command. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-23USB: xhci: Endpoint representation refactoring.Sarah Sharp
The xhci_ring structure contained information that is really related to an endpoint, not a ring. This will cause problems later when endpoint streams are supported and there are multiple rings per endpoint. Move the endpoint state and cancellation information into a new virtual endpoint structure, xhci_virt_ep. The list of TRBs to be cancelled should be per endpoint, not per ring, for easy access. There can be only one TRB that the endpoint stopped on after a stop endpoint command (even with streams enabled); move the stopped TRB information into the new virtual endpoint structure. Also move the 31 endpoint rings and temporary ring storage from the virtual device structure (xhci_virt_device) into the virtual endpoint structure (xhci_virt_ep). Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-23USB: xhci: Support interrupt transfers.Sarah Sharp
Interrupt transfers are submitted to the xHCI hardware using the same TRB type as bulk transfers. Re-use the bulk transfer enqueueing code to enqueue interrupt transfers. Interrupt transfers are a bit different than bulk transfers. When the interrupt endpoint is to be serviced, the xHC will consume (at most) one TD. A TD (comprised of sg list entries) can take several service intervals to transmit. The important thing for device drivers to note is that if they use the scatter gather interface to submit interrupt requests, they will not get data sent from two different scatter gather lists in the same service interval. For now, the xHCI driver will use the service interval from the endpoint's descriptor (bInterval). Drivers will need a hook to poll at a more frequent interval. Set urb->interval to the interval that the xHCI hardware will use. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable <stable@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-23USB: xhci: Add quirk for Fresco Logic xHCI hardware.Sarah Sharp
This Fresco Logic xHCI host controller chip revision puts bad data into the output endpoint context after a Reset Endpoint command. It needs a Configure Endpoint command (instead of a Set TR Dequeue Pointer command) after the reset endpoint command. Set up the input context before issuing the Reset Endpoint command so we don't copy bad data from the output endpoint context. The HW also can't handle two commands queued at once, so submit the TRB for the Configure Endpoint command in the event handler for the Reset Endpoint command. Devices that stall on control endpoints before a configuration is selected will not work under this Fresco Logic xHCI host controller revision. This patch is for prototype hardware that will be given to other companies for evaluation purposes only, and should not reach consumer hands. Fresco Logic's next chip rev should have this bug fixed. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable <stable@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-23USB: xhci: Handle stalled control endpoints.Sarah Sharp
When a control endpoint stalls, the next control transfer will clear the stall. The USB core doesn't call down to the host controller driver's endpoint_reset() method when control endpoints stall, so the xHCI driver has to do all its stall handling for internal state in its interrupt handler. When the host stalls on a control endpoint, it may stop on the data phase or status phase of the control transfer. Like other stalled endpoints, the xHCI driver needs to queue a Reset Endpoint command and move the hardware's control endpoint ring dequeue pointer past the failed control transfer (with a Set TR Dequeue Pointer or a Configure Endpoint command). Since the USB core doesn't call usb_hcd_reset_endpoint() for control endpoints, we need to do this in interrupt context when we get notified of the stalled transfer. URBs may be queued to the hardware before these two commands complete. The endpoint queue will be restarted once both commands complete. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable <stable@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-23USB: xhci: Support full speed devices.Sarah Sharp
Full speed devices have varying max packet sizes (8, 16, 32, or 64) for endpoint 0. The xHCI hardware needs to know the real max packet size that the USB core discovers after it fetches the first 8 bytes of the device descriptor. In order to fix this without adding a new hook to host controller drivers, the xHCI driver looks for an updated max packet size for control endpoints. If it finds an updated size, it issues an evaluate context command and waits for that command to finish. This should only happen in the initialization and device descriptor fetching steps in the khubd thread, so blocking should be fine. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable <stable@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-23USB: xhci: Configure endpoint code refactoring.Sarah Sharp
Refactor out the code issue, wait for, and parse the event completion code for a configure endpoint command. Modify it to support the evaluate context command, which has a very similar submission process. Add functions to copy parts of the output context into the input context (which will be used in the evaluate context command). Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable <stable@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-23USB: xhci: Work around for chain bit in link TRBs.Sarah Sharp
Different sections of the xHCI 0.95 specification had opposing requirements for the chain bit in a link transaction request buffer (TRB). The chain bit is used to designate that adjacent TRBs are all part of the same scatter gather list that should be sent to the device. Link TRBs can be in the middle, or at the beginning or end of these chained TRBs. Sections 4.11.5.1 and 6.4.4.1 both stated the link TRB "shall have the chain bit set to 1", meaning it is always chained to the next TRB. However, section 4.6.9 on the stop endpoint command has specific cases for what the hardware must do for a link TRB with the chain bit set to 0. The 0.96 specification errata later cleared up this issue by fixing the 4.11.5.1 and 6.4.4.1 sections to state that a link TRB can have the chain bit set to 1 or 0. The problem is that the xHCI cancellation code depends on the chain bit of the link TRB being cleared when it's at the end of a TD, and some 0.95 xHCI hardware simply stops processing the ring when it encounters a link TRB with the chain bit cleared. Allow users who are testing 0.95 xHCI prototypes to set a module parameter (link_quirk) to turn on this link TRB work around. Cancellation may not work if the ring is stopped exactly on a link TRB with chain bit set, but cancellation should be a relatively uncommon case. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable <stable@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-21trivial: fix typos "man[ae]g?ment" -> "management"Uwe Kleine-Koenig
Signed-off-by: Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2009-07-28USB: xhci: Stall handling bug fixes.Sarah Sharp
Correct the xHCI code to handle stalls on USB endpoints. We need to move the endpoint ring's dequeue pointer past the stalled transfer, or the HW will try to restart the transfer the next time the doorbell is rung. Don't attempt to clear a halt on an endpoint if we haven't seen a stalled transfer for it. The USB core will attempt to clear a halt on all endpoints when it selects a new configuration. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-07-28USB: xhci: Support for 64-byte contextsJohn Youn
Adds support for controllers that use 64-byte contexts. The following context data structures are affected by this: Device, Input, Input Control, Endpoint, and Slot. To accommodate the use of either 32 or 64-byte contexts, a Device or Input context can only be accessed through functions which look-up and return pointers to their contained contexts. Signed-off-by: John Youn <johnyoun@synopsys.com> Acked-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-07-28USB: xhci: Always align output device contexts to 64 bytes.Sarah Sharp
Make sure the xHCI output device context is 64-byte aligned. Previous code was using the same structure for both the output device context and the input control context. Since the structure had 32 bytes of flags before the device context, the output device context wouldn't be 64-byte aligned. Define a new structure to use for the output device context and clean up the debugging for these two structures. The copy of the device context in the input control context does *not* need to be 64-byte aligned. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-07-28USB: xhci: Scratchpad buffer allocationJohn Youn
Allocates and initializes the scratchpad buffer array (XHCI 4.20). This is an array of 64-bit DMA addresses to scratch pages that the controller may use during operation. The number of pages is specified in the "Max Scratchpad Buffers" field of HCSPARAMS2. The DMA address of this array is written into slot 0 of the DCBAA. Signed-off-by: John Youn <johnyoun@synopsys.com> Acked-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>