Age | Commit message (Collapse) | Author |
|
Every transaction in btrfs creates a new snapshot, and then schedules the
snapshot from the last transaction for deletion. Snapshot deletion
works by walking down the btree and dropping the reference counts
on each btree block during the walk.
If if a given leaf or node has a reference count greater than one,
the reference count is decremented and the subtree pointed to by that
node is ignored.
If the reference count is one, walking continues down into that node
or leaf, and the references of everything it points to are decremented.
The old code would try to work in small pieces, walking down the tree
until it found the lowest leaf or node to free and then returning. This
was very friendly to the rest of the FS because it didn't have a huge
impact on other operations.
But it wouldn't always keep up with the rate that new commits added new
snapshots for deletion, and it wasn't very optimal for the extent
allocation tree because it wasn't finding leaves that were close together
on disk and processing them at the same time.
This changes things to walk down to a level 1 node and then process it
in bulk. All the leaf pointers are sorted and the leaves are dropped
in order based on their extent number.
The extent allocation tree and commit code are now fast enough for
this kind of bulk processing to work without slowing the rest of the FS
down. Overall it does less IO and is better able to keep up with
snapshot deletions under high load.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Most of the btrfs metadata operations can be protected by a spinlock,
but some operations still need to schedule.
So far, btrfs has been using a mutex along with a trylock loop,
most of the time it is able to avoid going for the full mutex, so
the trylock loop is a big performance gain.
This commit is step one for getting rid of the blocking locks entirely.
btrfs_tree_lock takes a spinlock, and the code explicitly switches
to a blocking lock when it starts an operation that can schedule.
We'll be able get rid of the blocking locks in smaller pieces over time.
Tracing allows us to find the most common cause of blocking, so we
can start with the hot spots first.
The basic idea is:
btrfs_tree_lock() returns with the spin lock held
btrfs_set_lock_blocking() sets the EXTENT_BUFFER_BLOCKING bit in
the extent buffer flags, and then drops the spin lock. The buffer is
still considered locked by all of the btrfs code.
If btrfs_tree_lock gets the spinlock but finds the blocking bit set, it drops
the spin lock and waits on a wait queue for the blocking bit to go away.
Much of the code that needs to set the blocking bit finishes without actually
blocking a good percentage of the time. So, an adaptive spin is still
used against the blocking bit to avoid very high context switch rates.
btrfs_clear_lock_blocking() clears the blocking bit and returns
with the spinlock held again.
btrfs_tree_unlock() can be called on either blocking or spinning locks,
it does the right thing based on the blocking bit.
ctree.c has a helper function to set/clear all the locked buffers in a
path as blocking.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
When a block goes through cow, we update the reference counts of
everything that block points to. The internal pointers of the block
can be in just about any order, and it is likely to have clusters of
things that are close together and clusters of things that are not.
To help reduce the seeks that come with updating all of these reference
counts, sort them by byte number before actual updates are done.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
To improve performance, btrfs_sync_log merges tree log sync
requests. But it wrongly merges sync requests for different
tree logs. If multiple tree logs are synced at the same time,
only one of them actually gets synced.
This patch has following changes to fix the bug:
Move most tree log related fields in btrfs_fs_info to
btrfs_root. This allows merging sync requests separately
for each tree log.
Don't insert root item into the log root tree immediately
after log tree is allocated. Root item for log tree is
inserted when log tree get synced for the first time. This
allows syncing the log root tree without first syncing all
log trees.
At tree-log sync, btrfs_sync_log first sync the log tree;
then updates corresponding root item in the log root tree;
sync the log root tree; then update the super block.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
replace_one_extent searches tree leaves for references to a given extent. It
stops searching if it goes beyond the last possible position.
The last possible position is computed by adding the starting offset of a found
file extent to the full size of the extent. The code uses physical size of the
extent as the full size. This is incorrect when compression is used.
The fix is get the full size from ram_bytes field of file extent item.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
Removed duplicated #include "compat.h"in
fs/btrfs/extent-tree.c
Signed-off-by: Huang Weiyi <weiyi.huang@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
btrfs_extent_post_op calls finish_current_insert and del_pending_extents. They
both may enter infinite loops.
finish_current_insert enters infinite loop if it only finds some backrefs to
update. The fix is to check for pending backref updates before restarting the
loop.
The infinite loop in del_pending_extents is due to a the skipped variable
not being properly reset before looping around.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
We should hold the block_group_cache_lock while modifying the
block groups red-black tree. Thank you,
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
Merge list_for_each* and list_entry to list_for_each_entry*
Signed-off-by: Qinghuang Feng <qhfeng.kernel@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Removed unused #include <version.h>'s in btrfs
Signed-off-by: Huang Weiyi <weiyi.huang@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This patch contains following things.
1) Limit the max size of btrfs_ordered_sum structure to PAGE_SIZE. This
struct is kmalloced so we want to keep it reasonable.
2) Replace copy_extent_csums by btrfs_lookup_csums_range. This was
duplicated code in tree-log.c
3) Remove replay_one_csum. csum items are replayed at the same time as
replaying file extents. This guarantees we only replay useful csums.
4) nbytes accounting fix.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
There were many, most are fixed now. struct-funcs.c generates some warnings
but these are bogus.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This is a patch to fix discard semantic to make Btrfs work with FTL and SSD.
We can improve FTL's performance by telling it which sectors are freed by file
system. But if we don't tell FTL the information of free sectors in proper
time, the transaction mechanism of Btrfs will be destroyed and Btrfs could not
roll back the previous transaction under the power loss condition.
There are some problems in the old implementation:
1, In __free_extent(), the pinned down extents should not be discarded.
2, In free_extents(), the free extents are all pinned, so they need to
be discarded in transaction committing time instead of free_extents().
3, The reserved extent used by log tree should be discard too.
This patch change discard behavior as follows:
1, For the extents which need to be free at once,
we discard them in update_block_group().
2, Delay discarding the pinned extent in btrfs_finish_extent_commit()
when committing transaction.
3, Remove discarding from free_extents() and __free_extent()
4, Add discard interface into btrfs_free_reserved_extent()
5, Discard sectors before updating the free space cache, otherwise,
FTL will destroy file system data.
|
|
There is a race in relocate_inode_pages, it happens when
find_delalloc_range finds the delalloc extent before the
boundary bit is set. Thank you,
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
This adds the missing block accounting code to finish_current_insert and makes
block accounting for root item properly protected by the delalloc spin lock.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
Btrfs maintains a cache of blocks available for allocation in ram. The
code that frees extents was marking the extents free and then deleting
the checksum items.
This meant it was possible the extent would be reallocated before the
checksum item was actually deleted, leading to races and other
problems as the checksums were updated for the newly allocated extent.
The fix is to delete the checksum before marking the extent free.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The delalloc lock doesn't need to have irqs disabled, nobody that
changes the number of delalloc bytes in the FS is running with irqs off.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Checksums on data can be disabled by mount option, so it's
possible some data extents don't have checksums or have
invalid checksums. This causes trouble for data relocation.
This patch contains following things to make data relocation
work.
1) make nodatasum/nodatacow mount option only affects new
files. Checksums and COW on data are only controlled by the
inode flags.
2) check the existence of checksum in the nodatacow checker.
If checksums exist, force COW the data extent. This ensure that
checksum for a given block is either valid or does not exist.
3) update data relocation code to properly handle the case
of checksum missing.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
This patch makes seed device possible to be shared by
multiple mounted file systems. The sharing is achieved
by cloning seed device's btrfs_fs_devices structure.
Thanks you,
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
The block group structs are referenced in many different
places, and it's not safe to free while balancing. So, those block
group structs were simply leaked instead.
This patch replaces the block group pointer in the inode with the starting byte
offset of the block group and adds reference counting to the block group
struct.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
This updates the space balancing code for the
new checksum format.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
This finishes off the new checksumming code by removing csum items
for extents that are no longer in use.
The trick is doing it without racing because a single csum item may
hold csums for more than one extent. Extra checks are added to
btrfs_csum_file_blocks to make sure that we are using the correct
csum item after dropping locks.
A new btrfs_split_item is added to split a single csum item so it
can be split without dropping the leaf lock. This is used to
remove csum bytes from the middle of an item.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This patch implements superblock duplication. Superblocks
are stored at offset 16K, 64M and 256G on every devices.
Spaces used by superblocks are preserved by the allocator,
which uses a reverse mapping function to find the logical
addresses that correspond to superblocks. Thank you,
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
Shut up various sparse warnings about symbols that should be either
static or have their declarations in scope.
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
This the lockdep complaint by having a different mutex to gaurd caching the
block group, so you don't end up with this backwards dependancy. Thank you,
Signed-off-by: Josef Bacik <jbacik@redhat.com>
|
|
The btrfs git kernel trees is used to build a standalone tree for
compiling against older kernels. This commit makes the standalone tree
work with 2.6.27
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
* open/close_bdev_excl -> open/close_bdev_exclusive
* blkdev_issue_discard takes a GFP mask now
* Fix blkdev_issue_discard usage now that it is enabled
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This patch fixes what I hope is the last early ENOSPC bug left. I did not know
that pinned extents would merge into one big extent when inserted on to the
pinned extent tree, so I was adding free space to a block group that could
possibly span multiple block groups.
This is a big issue because first that space doesn't exist in that block group,
and second we won't actually use that space because there are a bunch of other
checks to make sure we're allocating within the constraints of the block group.
This patch fixes the problem by adding the btrfs_add_free_space to
btrfs_update_pinned_extents which makes sure we are adding the appropriate
amount of free space to the appropriate block group. Thanks much to Lee Trager
for running my myriad of debug patches to help me track this problem down.
Thank you,
Signed-off-by: Josef Bacik <jbacik@redhat.com>
|
|
In insert_extents(), when ret==1 and last is not zero, it should
check if the current inserted item is the last item in this batching
inserts. If so, it should just break from loop. If not, 'cur =
insert_list->next' will make no sense because the list is empty now,
and 'op' will point to an unexpectable place.
There are also some trivial fixs in this patch including one comment
typo error and deleting two redundant lines.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Some people are still reporting problems with early enospc. This
will help narrown down the cause.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
In my batch delete/update/insert patch I introduced a free space leak. The
extent that we do the original search on in free_extents is never pinned, so we
always update the block saying that it has free space, but the free space never
actually gets added to the free space tree, since op->del will always be 0 and
it's never actually added to the pinned extents tree.
This patch fixes this problem by making sure we call pin_down_bytes on the
pending extent op and set op->del to the return value of pin_down_bytes so
update_block_group is called with the right value. This seems to fix the case
where we were getting ENOSPC when there was plenty of space available.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
|
|
Seed device is a special btrfs with SEEDING super flag
set and can only be mounted in read-only mode. Seed
devices allow people to create new btrfs on top of it.
The new FS contains the same contents as the seed device,
but it can be mounted in read-write mode.
This patch does the following:
1) split code in btrfs_alloc_chunk into two parts. The first part does makes
the newly allocated chunk usable, but does not do any operation that modifies
the chunk tree. The second part does the the chunk tree modifications. This
division is for the bootstrap step of adding storage to the seed device.
2) Update device management code to handle seed device.
The basic idea is: For an FS grown from seed devices, its
seed devices are put into a list. Seed devices are
opened on demand at mounting time. If any seed device is
missing or has been changed, btrfs kernel module will
refuse to mount the FS.
3) make btrfs_find_block_group not return NULL when all
block groups are read-only.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
This patch adds mount ro and remount support. The main
changes in patch are: adding btrfs_remount and related
helper function; splitting the transaction related code
out of close_ctree into btrfs_commit_super; updating
allocator to properly handle read only block group.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
While profiling the allocator I noticed a good amount of time was being spent in
finish_current_insert and del_pending_extents, and as the filesystem filled up
more and more time was being spent in those functions. This patch aims to try
and reduce that problem. This happens two ways
1) track if we tried to delete an extent that we are going to update or insert.
Once we get into finish_current_insert we discard any of the extents that were
marked for deletion. This saves us from doing unnecessary work almost every
time finish_current_insert runs.
2) Batch insertion/updates/deletions. Instead of doing a btrfs_search_slot for
each individual extent and doing the needed operation, we instead keep the leaf
around and see if there is anything else we can do on that leaf. On the insert
case I introduced a btrfs_insert_some_items, which will take an array of keys
with an array of data_sizes and try and squeeze in as many of those keys as
possible, and then return how many keys it was able to insert. In the update
case we search for an extent ref, update the ref and then loop through the leaf
to see if any of the other refs we are looking to update are on that leaf, and
then once we are done we release the path and search for the next ref we need to
update. And finally for the deletion we try and delete the extent+ref in pairs,
so we will try to find extent+ref pairs next to the extent we are trying to free
and free them in bulk if possible.
This along with the other cluster fix that Chris pushed out a bit ago helps make
the allocator preform more uniformly as it fills up the disk. There is still a
slight drop as we fill up the disk since we start having to stick new blocks in
odd places which results in more COW's than on a empty fs, but the drop is not
nearly as severe as it was before.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
|
|
When we fail to allocate a new block group, we should still do the
checks to make sure allocations try again with the minimum requested
allocation size.
This also fixes a deadlock that come from a missed down_read in
the chunk allocation failure handling.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The allocator wasn't catching all of the cases where it needed to do
extra loops because the check to enforce them wasn't happening early
enough.
When the allocator decided to increase the size of the allocation
for metadata clustering, it wasn't always setting the empty_size to
include the extra (optional) bytes. This also fixes the empty_size field
to be correct.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The loop searching for free space would exit out too soon when
metadata clustering was trying to allocate a large extent. This makes
sure a full scan of the free space is done searching for only the
minimum extent size requested by the higher layers.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
When metadata allocation clustering has to fall back to unclustered
allocs because large free areas could not be found, it was sometimes
substracting too much from the total bytes to allocate. This would
make it wrap below zero.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
In comes cases the empty cluster was added twice to the total number of
bytes the allocator was trying to find.
With empty clustering on, the hint byte was sometimes outside of the
block group. Add an extra goto to find the correct block group.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This lowers the empty cluster target for metadata allocations. The lower
target makes it easier to do allocations and still seems to perform well.
It also fixes the allocator loop to drop the empty cluster when things
start getting difficult, avoiding false enospc warnings.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The allocator uses the last allocation as a starting point for metadata
allocations, and tries to allocate in clusters of at least 256k.
If the search for a free block fails to find the expected block, this patch
forces a new cluster to be found in the free list.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
When reading compressed extents, try to put pages into the page cache
for any pages covered by the compressed extent that readpages didn't already
preload.
Add an async work queue to handle transformations at delayed allocation processing
time. Right now this is just compression. The workflow is:
1) Find offsets in the file marked for delayed allocation
2) Lock the pages
3) Lock the state bits
4) Call the async delalloc code
The async delalloc code clears the state lock bits and delalloc bits. It is
important this happens before the range goes into the work queue because
otherwise it might deadlock with other work queue items that try to lock
those extent bits.
The file pages are compressed, and if the compression doesn't work the
pages are written back directly.
An ordered work queue is used to make sure the inodes are written in the same
order that pdflush or writepages sent them down.
This changes extent_write_cache_pages to let the writepage function
update the wbc nr_written count.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This patch updates btrfs-progs for fallocate support.
fallocate is a little different in Btrfs because we need to tell the
COW system that a given preallocated extent doesn't need to be
cow'd as long as there are no snapshots of it. This leverages the
-o nodatacow checks.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
This patch simplifies the nodatacow checker. If all references
were created after the latest snapshot, then we can avoid COW
safely. This patch also updates run_delalloc_nocow to do more
fine-grained checking.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
When dropping middle part of an extent, btrfs_drop_extents truncates
the extent at first, then inserts a bookend extent.
Since truncation and insertion can't be done atomically, there is a small
period that the bookend extent isn't in the tree. This causes problem for
functions that search the tree for file extent item. The way to fix this is
lock the range of the bookend extent before truncation.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
finish_current_insert and del_pending_extents process extent tree modifications
that build up while we are changing the extent tree. It is a confusing
bit of code that prevents recursion.
Both functions run through a list of pending operations and both funcs
add to the list of pending operations. If you have two procs in either
one of them, they can end up looping forever making more work for each other.
This patch makes them walk forward through the list of pending changes instead
of always trying to process the entire list. At transaction commit
time, we catch any changes that were left over.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This patch adds transaction IDs to root tree pointers.
Transaction IDs in tree pointers are compared with the
generation numbers in block headers when reading root
blocks of trees. This can detect some types of IO errors.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
This patch removes the giant fs_info->alloc_mutex and replaces it with a bunch
of little locks.
There is now a pinned_mutex, which is used when messing with the pinned_extents
extent io tree, and the extent_ins_mutex which is used with the pending_del and
extent_ins extent io trees.
The locking for the extent tree stuff was inspired by a patch that Yan Zheng
wrote to fix a race condition, I cleaned it up some and changed the locking
around a little bit, but the idea remains the same. Basically instead of
holding the extent_ins_mutex throughout the processing of an extent on the
extent_ins or pending_del trees, we just hold it while we're searching and when
we clear the bits on those trees, and lock the extent for the duration of the
operations on the extent.
Also to keep from getting hung up waiting to lock an extent, I've added a
try_lock_extent so if we cannot lock the extent, move on to the next one in the
tree and we'll come back to that one. I have tested this heavily and it does
not appear to break anything. This has to be applied on top of my
find_free_extent redo patch.
I tested this patch on top of Yan's space reblancing code and it worked fine.
The only thing that has changed since the last version is I pulled out all my
debugging stuff, apparently I forgot to run guilt refresh before I sent the
last patch out. Thank you,
Signed-off-by: Josef Bacik <jbacik@redhat.com>
|
|
So there is an odd case where we can possibly return -ENOSPC when there is in
fact space to be had. It only happens with Metadata writes, and happens _very_
infrequently. What has to happen is we have to allocate have allocated out of
the first logical byte on the disk, which would set last_alloc to
first_logical_byte(root, 0), so search_start == orig_search_start. We then
need to allocate for normal metadata, so BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DUP. We will do a block lookup for the given search_start,
block_group_bits() won't match and we'll go to choose another block group.
However because search_start matches orig_search_start we go to see if we can
allocate a chunk.
If we are in the situation that we cannot allocate a chunk, we fail and ENOSPC.
This is kind of a big flaw of the way find_free_extent works, as it along with
find_free_space loop through _all_ of the block groups, not just the ones that
we want to allocate out of. This patch completely kills find_free_space and
rolls it into find_free_extent. I've introduced a sort of state machine into
this, which will make it easier to get cache miss information out of the
allocator, and will work well with my locking changes.
The basic flow is this: We have the variable loop which is 0, meaning we are
in the hint phase. We lookup the block group for the hint, and lookup the
space_info for what we want to allocate out of. If the block group we were
pointed at by the hint either isn't of the correct type, or just doesn't have
the space we need, we set head to space_info->block_groups, so we start at the
beginning of the block groups for this particular space info, and loop through.
This is also where we add the empty_cluster to total_needed. At this point
loop is set to 1 and we just loop through all of the block groups for this
particular space_info looking for the space we need, just as find_free_space
would have done, except we only hit the block groups we want and not _all_ of
the block groups. If we come full circle we see if we can allocate a chunk.
If we cannot of course we exit with -ENOSPC and we are good. If not we start
over at space_info->block_groups and loop through again, with loop == 2. If we
come full circle and haven't found what we need then we exit with -ENOSPC.
I've been running this for a couple of days now and it seems stable, and I
haven't yet hit a -ENOSPC when there was plenty of space left.
Also I've made a groups_sem to handle the group list for the space_info. This
is part of my locking changes, but is relatively safe and seems better than
holding the space_info spinlock over that entire search time. Thanks,
Signed-off-by: Josef Bacik <jbacik@redhat.com>
|