summaryrefslogtreecommitdiffstats
path: root/fs/gfs2/lock_dlm.c
AgeCommit message (Collapse)Author
2010-09-20GFS2: Update handling of DLM return codes to match realitySteven Whitehouse
GFS2's idea of which return codes it needs to handle was based upon those listed in dlm.h. Those didn't cover all the possible codes and listed some which never happen. This updates GFS2 to handle all the codes which can actually be returned from the DLM under various circumstances. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2010-03-30include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo
implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-01GFS2: Metadata address space clean upSteven Whitehouse
Since the start of GFS2, an "extra" inode has been used to store the metadata belonging to each inode. The only reason for using this inode was to have an extra address space, the other fields were unused. This means that the memory usage was rather inefficient. The reason for keeping each inode's metadata in a separate address space is that when glocks are requested on remote nodes, we need to be able to efficiently locate the data and metadata which relating to that glock (inode) in order to sync or sync and invalidate it (depending on the remotely requested lock mode). This patch adds a new type of glock, which has in addition to its normal fields, has an address space. This applies to all inode and rgrp glocks (but to no other glock types which remain as before). As a result, we no longer need to have the second inode. This results in three major improvements: 1. A saving of approx 25% of memory used in caching inodes 2. A removal of the circular dependency between inodes and glocks 3. No confusion between "normal" and "metadata" inodes in super.c Although the first of these is the more immediately apparent, the second is just as important as it now enables a number of clean ups at umount time. Those will be the subject of future patches. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2010-02-03GFS2: Extend umount wait coverage to full glock lifetimeSteven Whitehouse
Although all glocks are, by the time of the umount glock wait, scheduled for demotion, some of them haven't made it far enough through the process for the original set of waiting code to wait for them. This extends the ref count to the whole glock lifetime in order to ensure that the waiting does catch all glocks. It does make it a bit more invasive, but it seems the only sensible solution at the moment. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2010-02-03GFS2: Wait for unlock completion on umountSteven Whitehouse
This patch adds a wait on umount between the point at which we dispose of all glocks and the point at which we unmount the lock protocol. This ensures that we've received all the replies to our unlock requests before we stop the locking. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com> Reported-by: Fabio M. Di Nitto <fdinitto@redhat.com>
2009-03-24GFS2: Fix locking bug in failed shared to exclusive conversionBenjamin Marzinski
After calling out to the dlm, GFS2 sets the new state of a glock to gl_target in gdlm_ast(). However, gl_target is not always the lock state that was requested. If a conversion from shared to exclusive fails, finish_xmote() will call do_xmote() with LM_ST_UNLOCKED, instead of gl->gl_target, so that it can reacquire the lock in exlusive the next time around. In this case, setting the lock to gl_target in gdlm_ast() will make GFS2 think that it has the glock in exclusive mode, when really, it doesn't have the glock locked at all. This patch adds a new field to the gfs2_glock structure, gl_req, to track the mode that was requested. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2009-03-24GFS2: Merge lock_dlm module into GFS2Steven Whitehouse
This is the big patch that I've been working on for some time now. There are many reasons for wanting to make this change such as: o Reducing overhead by eliminating duplicated fields between structures o Simplifcation of the code (reduces the code size by a fair bit) o The locking interface is now the DLM interface itself as proposed some time ago. o Fewer lookups of glocks when processing replies from the DLM o Fewer memory allocations/deallocations for each glock o Scope to do further optimisations in the future (but this patch is more than big enough for now!) Please note that (a) this patch relates to the lock_dlm module and not the DLM itself, that is still a separate module; and (b) that we retain the ability to build GFS2 as a standalone single node filesystem with out requiring the DLM. This patch needs a lot of testing, hence my keeping it I restarted my -git tree after the last merge window. That way, this has the maximum exposure before its merged. This is (modulo a few minor bug fixes) the same patch that I've been posting on and off the the last three months and its passed a number of different tests so far. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>