summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_iomap.c
AgeCommit message (Collapse)Author
2013-06-27xfs: don't use speculative prealloc for small filesDave Chinner
Dedicated small file workloads have been seeing significant free space fragmentation causing premature inode allocation failure when large inode sizes are in use. A particular test case showed that a workload that runs to a real ENOSPC on 256 byte inodes would fail inode allocation with ENOSPC about about 80% full with 512 byte inodes, and at about 50% full with 1024 byte inodes. The same workload, when run with -o allocsize=4096 on 1024 byte inodes would run to being 100% full before giving ENOSPC. That is, no freespace fragmentation at all. The issue was caused by the specific IO pattern the application had - the framework it was using did not support direct IO, and so it was emulating it by using fadvise(DONT_NEED). The result was that the data was getting written back before the speculative prealloc had been trimmed from memory by the close(), and so small single block files were being allocated with 2 blocks, and then having one truncated away. The result was lots of small 4k free space extents, and hence each new 8k allocation would take another 8k from contiguous free space and turn it into 4k of allocated space and 4k of free space. Hence inode allocation, which requires contiguous, aligned allocation of 16k (256 byte inodes), 32k (512 byte inodes) or 64k (1024 byte inodes) can fail to find sufficiently large freespace and hence fail while there is still lots of free space available. There's a simple fix for this, and one that has precendence in the allocator code already - don't do speculative allocation unless the size of the file is larger than a certain size. In this case, that size is the minimum default preallocation size: mp->m_writeio_blocks. And to keep with the concept of being nice to people when the files are still relatively small, cap the prealloc to mp->m_writeio_blocks until the file goes over a stripe unit is size, at which point we'll fall back to the current behaviour based on the last extent size. This will effectively turn off speculative prealloc for very small files, keep preallocation low for small files, and behave as it currently does for any file larger than a stripe unit. This completely avoids the freespace fragmentation problem this particular IO pattern was causing. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-03-22xfs: xfs_iomap_prealloc_size() tracepointBrian Foster
Add a tracepoint to provide some feedback on preallocation size calculation. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-03-22xfs: add quota-driven speculative preallocation throttlingBrian Foster
Introduce the need_throttle() and calc_throttle() functions to independently check whether throttling is required for a particular dquot and if so, calculate the associated throttling metrics based on the state of the quota. We use the same general algorithm to calculate the throttle shift as for global free space with the exception of using three stages rather than five. Update xfs_iomap_prealloc_size() to use the smallest available prealloc size based on each of the constraints and apply the maximum shift to obtain the throttled preallocation size. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-03-22xfs: push rounddown_pow_of_two() to after prealloc throttleBrian Foster
The round down occurs towards the beginning of the function. Push it down after throttling has occurred. This is to support adding further transformations to 'alloc_blocks' that might not preserve power-of-two alignment (and thus could lead to rounding down multiple times). Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-03-22xfs: reorganize xfs_iomap_prealloc_size to remove indentationBrian Foster
The majority of xfs_iomap_prealloc_size() executes within the check for lack of default I/O size. Reverse the logic to remove the extra indentation. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-03-07xfs: fix xfs_iomap_eof_prealloc_initial_size typeMark Tinguely
Fix the return type of xfs_iomap_eof_prealloc_initial_size() to xfs_fsblock_t to reflect the fact that the return value may be an unsigned 64 bits if XFS_BIG_BLKNOS is defined. Signed-off-by: Mark Tinguely <tinguely@sgi.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-03-07xfs: increase prealloc size to double that of the previous extentBrian Foster
The updated speculative preallocation algorithm for handling sparse files can becomes less effective in situations with a high number of concurrent, sequential writers. The number of writers and amount of available RAM affect the writeback bandwidth slicing algorithm, which in turn affects the block allocation pattern of XFS. For example, running 32 sequential writers on a system with 32GB RAM, preallocs become fixed at a value of around 128MB (instead of steadily increasing to the 8GB maximum as sequential writes proceed). Update the speculative prealloc heuristic to base the size of the next prealloc on double the size of the preceding extent. This preserves the original aggressive speculative preallocation behavior and continues to accomodate sparse files at a slight cost of increasing the size of preallocated data regions following holes of sparse files. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-03-07xfs: fix potential infinite loop in xfs_iomap_prealloc_size()Brian Foster
If freesp == 0, we could end up in an infinite loop while squashing the preallocation. Break the loop when we've killed the prealloc entirely. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-02-14xfs: limit speculative prealloc size on sparse filesDave Chinner
Speculative preallocation based on the current file size works well for contiguous files, but is sub-optimal for sparse files where the EOF preallocation can fill holes and result in large amounts of zeros being written when it is not necessary. The algorithm is modified to prevent EOF speculative preallocation from triggering larger allocations on IO patterns of truncate--to-zero-seek-write-seek-write-.... which results in non-sparse files for large files. This, unfortunately, is the way cp now behaves when copying sparse files and so needs to be fixed. What this code does is that it looks at the existing extent adjacent to the current EOF and if it determines that it is a hole we disable speculative preallocation altogether. To avoid the next write from doing a large prealloc, it takes the size of subsequent preallocations from the current size of the existing EOF extent. IOWs, if you leave a hole in the file, it resets preallocation behaviour to the same as if it was a zero size file. Example new behaviour: $ xfs_io -f -c "pwrite 0 31m" \ -c "pwrite 33m 1m" \ -c "pwrite 128m 1m" \ -c "fiemap -v" /mnt/scratch/blah wrote 32505856/32505856 bytes at offset 0 31 MiB, 7936 ops; 0.0000 sec (1.608 GiB/sec and 421432.7439 ops/sec) wrote 1048576/1048576 bytes at offset 34603008 1 MiB, 256 ops; 0.0000 sec (1.462 GiB/sec and 383233.5329 ops/sec) wrote 1048576/1048576 bytes at offset 134217728 1 MiB, 256 ops; 0.0000 sec (1.719 GiB/sec and 450704.2254 ops/sec) /mnt/scratch/blah: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..65535]: 96..65631 65536 0x0 1: [65536..67583]: hole 2048 2: [67584..69631]: 67680..69727 2048 0x0 3: [69632..262143]: hole 192512 4: [262144..264191]: 262240..264287 2048 0x1 Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-01-24xfs: limit speculative prealloc near ENOSPC thresholdsDave Chinner
There is a window on small filesytsems where specualtive preallocation can be larger than that ENOSPC throttling thresholds, resulting in specualtive preallocation trying to reserve more space than there is space available. This causes immediate ENOSPC to be triggered, prealloc to be turned off and flushing to occur. One the next write (i.e. next 4k page), we do exactly the same thing, and so effective drive into synchronous 4k writes by triggering ENOSPC flushing on every page while in the window between the prealloc size and the ENOSPC prealloc throttle threshold. Fix this by checking to see if the prealloc size would consume all free space, and throttle it appropriately to avoid premature ENOSPC... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-08xfs: add EOFBLOCKS inode tagging/untaggingBrian Foster
Add the XFS_ICI_EOFBLOCKS_TAG inode tag to identify inodes with speculatively preallocated blocks beyond EOF. An inode is tagged when speculative preallocation occurs and untagged either via truncate down or when post-EOF blocks are freed via release or reclaim. The tag management is intentionally not aggressive to prefer simplicity over the complexity of handling all the corner cases under which post-EOF blocks could be freed (i.e., forward truncation, fallocate, write error conditions, etc.). This means that a tagged inode may or may not have post-EOF blocks after a period of time. The tag is eventually cleared when the inode is released or reclaimed. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-10-18xfs: introduce XFS_BMAPI_STACK_SWITCHDave Chinner
Certain allocation paths through xfs_bmapi_write() are in situations where we have limited stack available. These are almost always in the buffered IO writeback path when convertion delayed allocation extents to real extents. The current stack switch occurs for userdata allocations, which means we also do stack switches for preallocation, direct IO and unwritten extent conversion, even those these call chains have never been implicated in a stack overrun. Hence, let's target just the single stack overun offended for stack switches. To do that, introduce a XFS_BMAPI_STACK_SWITCH flag that the caller can pass xfs_bmapi_write() to indicate it should switch stacks if it needs to do allocation. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-10-17xfs: xfs_sync_data is redundant.Dave Chinner
We don't do any data writeback from XFS any more - the VFS is completely responsible for that, including for freeze. We can replace the remaining caller with a VFS level function that achieves the same thing, but without conflicting with current writeback work. This means we can remove the flush_work and xfs_flush_inodes() - the VFS functionality completely replaces the internal flush queue for doing this writeback work in a separate context to avoid stack overruns. This does have one complication - it cannot be called with page locks held. Hence move the flushing of delalloc space when ENOSPC occurs back up into xfs_file_aio_buffered_write when we don't hold any locks that will stall writeback. Unfortunately, writeback_inodes_sb_if_idle() is not sufficient to trigger delalloc conversion fast enough to prevent spurious ENOSPC whent here are hundreds of writers, thousands of small files and GBs of free RAM. Hence we need to use sync_sb_inodes() to block callers while we wait for writeback like the previous xfs_flush_inodes implementation did. That means we have to hold the s_umount lock here, but because this call can nest inside i_mutex (the parent directory in the create case, held by the VFS), we have to use down_read_trylock() to avoid potential deadlocks. In practice, this trylock will succeed on almost every attempt as unmount/remount type operations are exceedingly rare. Note: we always need to pass a count of zero to generic_file_buffered_write() as the previously written byte count. We only do this by accident before this patch by the virtue of ret always being zero when there are no errors. Make this explicit rather than needing to specifically zero ret in the ENOSPC retry case. Signed-off-by: Dave Chinner <dchinner@redhat.com> Tested-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-08-01Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull second vfs pile from Al Viro: "The stuff in there: fsfreeze deadlock fixes by Jan (essentially, the deadlock reproduced by xfstests 068), symlink and hardlink restriction patches, plus assorted cleanups and fixes. Note that another fsfreeze deadlock (emergency thaw one) is *not* dealt with - the series by Fernando conflicts a lot with Jan's, breaks userland ABI (FIFREEZE semantics gets changed) and trades the deadlock for massive vfsmount leak; this is going to be handled next cycle. There probably will be another pull request, but that stuff won't be in it." Fix up trivial conflicts due to unrelated changes next to each other in drivers/{staging/gdm72xx/usb_boot.c, usb/gadget/storage_common.c} * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits) delousing target_core_file a bit Documentation: Correct s_umount state for freeze_fs/unfreeze_fs fs: Remove old freezing mechanism ext2: Implement freezing btrfs: Convert to new freezing mechanism nilfs2: Convert to new freezing mechanism ntfs: Convert to new freezing mechanism fuse: Convert to new freezing mechanism gfs2: Convert to new freezing mechanism ocfs2: Convert to new freezing mechanism xfs: Convert to new freezing code ext4: Convert to new freezing mechanism fs: Protect write paths by sb_start_write - sb_end_write fs: Skip atime update on frozen filesystem fs: Add freezing handling to mnt_want_write() / mnt_drop_write() fs: Improve filesystem freezing handling switch the protection of percpu_counter list to spinlock nfsd: Push mnt_want_write() outside of i_mutex btrfs: Push mnt_want_write() outside of i_mutex fat: Push mnt_want_write() outside of i_mutex ...
2012-07-31xfs: Convert to new freezing codeJan Kara
Generic code now blocks all writers from standard write paths. So we add blocking of all writers coming from ioctl (we get a protection of ioctl against racing remount read-only as a bonus) and convert xfs_file_aio_write() to a non-racy freeze protection. We also keep freeze protection on transaction start to block internal filesystem writes such as removal of preallocated blocks. CC: Ben Myers <bpm@sgi.com> CC: Alex Elder <elder@kernel.org> CC: xfs@oss.sgi.com Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-06-14xfs: make largest supported offset less shoutyDave Chinner
XFS_MAXIOFFSET() is just a simple macro that resolves to mp->m_maxioffset. It doesn't need to exist, and it just makes the code unnecessarily loud and shouty. Make it quiet and easy to read. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-06-14xfs: m_maxioffset is redundantDave Chinner
The m_maxioffset field in the struct xfs_mount contains the same value as the superblock s_maxbytes field. There is no need to carry two copies of this limit around, so use the VFS superblock version. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-21xfs: fix delalloc quota accounting on failureDave Chinner
xfstest 270 was causing quota reservations way beyond what was sane (ten to hundreds of TB) for a 4GB filesystem. There's a sign problem in the error handling path of xfs_bmapi_reserve_delalloc() because xfs_trans_unreserve_quota_nblks() simple negates the value passed - which doesn't work for an unsigned variable. This causes reservations of close to 2^32 block instead of removing a reservation of a handful of blocks. Fix the same problem in the other xfs_trans_unreserve_quota_nblks() callers where unsigned integer variables are used, too. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14xfs: clean up xfs_bit.h includesDave Chinner
With the removal of xfs_rw.h and other changes over time, xfs_bit.h is being included in many files that don't actually need it. Clean up the includes as necessary. Also move the only-used-once xfs_ialloc_find_free() static inline function out of a header file that is widely included to reduce the number of needless dependencies on xfs_bit.h. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14xfs: move xfs_get_extsz_hint() and kill xfs_rw.hDave Chinner
The only thing left in xfs_rw.h is a function prototype for an inode function. Move that to xfs_inode.h, and kill xfs_rw.h. Also move the function implementing the prototype from xfs_rw.c to xfs_inode.c so we only have one function left in xfs_rw.c Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14xfs: move xfsagino_t to xfs_types.hDave Chinner
Untangle the header file includes a bit by moving the definition of xfs_agino_t to xfs_types.h. This removes the dependency that xfs_ag.h has on xfs_inum.h, meaning we don't need to include xfs_inum.h everywhere we include xfs_ag.h. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14xfs: limit specualtive delalloc to maxioffsetDave Chinner
Speculative delayed allocation beyond EOF near the maximum supported file offset can result in creating delalloc extents beyond mp->m_maxioffset (8EB). These can never be trimmed during xfs_free_eof_blocks() because they are beyond mp->m_maxioffset, and that results in assert failures in xfs_fs_destroy_inode() due to delalloc blocks still being present. xfstests 071 exposes this problem. Limit speculative delalloc to mp->m_maxioffset to avoid this problem. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14xfs: use shared ilock mode for direct IO writes by defaultDave Chinner
For the direct IO write path, we only really need the ilock to be taken in exclusive mode during IO submission if we need to do extent allocation instead of all the time. Change the block mapping code to take the ilock in shared mode for the initial block mapping, and only retake it exclusively when we actually have to perform extent allocations. We were already dropping the ilock for the transaction allocation, so this doesn't introduce new race windows. Based on an earlier patch from Dave Chinner. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-03-05xfs: log file size updates as part of unwritten extent conversionChristoph Hellwig
If we convert and unwritten extent past the current i_size log the size update as part of the extent manipulation transactions instead of doing an unlogged metadata update later. Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-01-17xfs: remove the i_size field in struct xfs_inodeChristoph Hellwig
There is no fundamental need to keep an in-memory inode size copy in the XFS inode. We already have the on-disk value in the dinode, and the separate in-memory copy that we need for regular files only in the XFS inode. Remove the xfs_inode i_size field and change the XFS_ISIZE macro to use the VFS inode i_size field for regular files. Switch code that was directly accessing the i_size field in the xfs_inode to XFS_ISIZE, or in cases where we are limited to regular files direct access of the VFS inode i_size field. This also allows dropping some fairly complicated code in the write path which dealt with keeping the xfs_inode i_size uptodate with the VFS i_size that is getting updated inside ->write_end. Note that we do not bother resetting the VFS i_size when truncating a file that gets freed to zero as there is no point in doing so because the VFS inode is no longer in use at this point. Just relax the assert in xfs_ifree to only check the on-disk size instead. Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-01-13xfs: cleanup xfs_iomap_eof_align_last_fsbChristoph Hellwig
Replace the nasty if, else if, elseif condition with more natural C flow that expressed the logic we want here better. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2011-10-11xfs: simplify xfs_trans_ijoin* againChristoph Hellwig
There is no reason to keep a reference to the inode even if we unlock it during transaction commit because we never drop a reference between the ijoin and commit. Also use this fact to merge xfs_trans_ijoin_ref back into xfs_trans_ijoin - the third argument decides if an unlock is needed now. I'm actually starting to wonder if allowing inodes to be unlocked at transaction commit really is worth the effort. The only real benefit is that they can be unlocked earlier when commiting a synchronous transactions, but that could be solved by doing the log force manually after the unlock, too. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-10-11xfs: rename xfs_bmapi to xfs_bmapi_writeDave Chinner
Now that all the read-only users of xfs_bmapi have been converted to use xfs_bmapi_read(), we can remove all the read-only handling cases from xfs_bmapi(). Once this is done, rename xfs_bmapi to xfs_bmapi_write to reflect the fact it is for allocation only. This enables us to kill the XFS_BMAPI_WRITE flag as well. Also clean up xfs_bmapi_write to the style used in the newly added xfs_bmapi_read/delay functions. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-10-11xfs: introduce xfs_bmapi_delay()Christoph Hellwig
Delalloc reservations are much simpler than allocations, so give them a separate bmapi-level interface. Using the previously added xfs_bmapi_reserve_delalloc we get a function that is only minimally more complicated than xfs_bmapi_read, which is far from the complexity in xfs_bmapi. Also remove the XFS_BMAPI_DELAY code after switching over the only user to xfs_bmapi_delay. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-10-11xfs: introduce xfs_bmapi_read()Dave Chinner
xfs_bmapi() currently handles both extent map reading and allocation. As a result, the code is littered with "if (wr)" branches to conditionally do allocation operations if required. This makes the code much harder to follow and causes significant indent issues with the code. Given that read mapping is much simpler than allocation, we can split out read mapping from xfs_bmapi() and reuse the logic that we have already factored out do do all the hard work of handling the extent map manipulations. The results in a much simpler function for the common extent read operations, and will allow the allocation code to be simplified in another commit. Once xfs_bmapi_read() is implemented, convert all the callers of xfs_bmapi() that are only reading extents to use the new function. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-03-07xfs: rename xfs_cmn_err_fsblock_zero()Dave Chinner
The "cmn_err" part of the function name is no longer relevant. Rename the function to xfs_alert_fsblock_zero() to match the new logging API. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Alex Elder <aelder@sgi.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2011-03-07xfs: convert xfs_cmn_err to xfs_alert_tagDave Chinner
Continue the conversion of the old cmn_err interface be converting all the conditional panic tag errors to xfs_alert_tag() and then removing xfs_cmn_err(). Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Alex Elder <aelder@sgi.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2011-01-28xfs: speculative delayed allocation uses rounddown_power_of_2 badlyDave Chinner
rounddown_power_of_2() returns an undefined result when passed a value of zero. The specualtive delayed allocation code is doing this when the inode is zero length. Hence occasionally the preallocation is much, much larger than is necessary (e.g. 8GB for a 270 _byte_ file). Ensure we don't even pass a zero value to this function so the result of preallocation is always the desired size. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Alex Elder <aelder@sgi.com>
2011-01-04xfs: dynamic speculative EOF preallocationDave Chinner
Currently the size of the speculative preallocation during delayed allocation is fixed by either the allocsize mount option of a default size. We are seeing a lot of cases where we need to recommend using the allocsize mount option to prevent fragmentation when buffered writes land in the same AG. Rather than using a fixed preallocation size by default (up to 64k), make it dynamic by basing it on the current inode size. That way the EOF preallocation will increase as the file size increases. Hence for streaming writes we are much more likely to get large preallocations exactly when we need it to reduce fragementation. For default settings, the size of the initial extents is determined by the number of parallel writers and the amount of memory in the machine. For 4GB RAM and 4 concurrent 32GB file writes: EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL 0: [0..1048575]: 1048672..2097247 0 (1048672..2097247) 1048576 1: [1048576..2097151]: 5242976..6291551 0 (5242976..6291551) 1048576 2: [2097152..4194303]: 12583008..14680159 0 (12583008..14680159) 2097152 3: [4194304..8388607]: 25165920..29360223 0 (25165920..29360223) 4194304 4: [8388608..16777215]: 58720352..67108959 0 (58720352..67108959) 8388608 5: [16777216..33554423]: 117440584..134217791 0 (117440584..134217791) 16777208 6: [33554424..50331511]: 184549056..201326143 0 (184549056..201326143) 16777088 7: [50331512..67108599]: 251657408..268434495 0 (251657408..268434495) 16777088 and for 16 concurrent 16GB file writes: EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL 0: [0..262143]: 2490472..2752615 0 (2490472..2752615) 262144 1: [262144..524287]: 6291560..6553703 0 (6291560..6553703) 262144 2: [524288..1048575]: 13631592..14155879 0 (13631592..14155879) 524288 3: [1048576..2097151]: 30408808..31457383 0 (30408808..31457383) 1048576 4: [2097152..4194303]: 52428904..54526055 0 (52428904..54526055) 2097152 5: [4194304..8388607]: 104857704..109052007 0 (104857704..109052007) 4194304 6: [8388608..16777215]: 209715304..218103911 0 (209715304..218103911) 8388608 7: [16777216..33554423]: 452984848..469762055 0 (452984848..469762055) 16777208 Because it is hard to take back specualtive preallocation, cases where there are large slow growing log files on a nearly full filesystem may cause premature ENOSPC. Hence as the filesystem nears full, the maximum dynamic prealloc size іs reduced according to this table (based on 4k block size): freespace max prealloc size >5% full extent (8GB) 4-5% 2GB (8GB >> 2) 3-4% 1GB (8GB >> 3) 2-3% 512MB (8GB >> 4) 1-2% 256MB (8GB >> 5) <1% 128MB (8GB >> 6) This should reduce the amount of space held in speculative preallocation for such cases. The allocsize mount option turns off the dynamic behaviour and fixes the prealloc size to whatever the mount option specifies. i.e. the behaviour is unchanged. Signed-off-by: Dave Chinner <dchinner@redhat.com>
2010-12-16xfs: kill xfs_iomapChristoph Hellwig
Opencode the xfs_iomap code in it's two callers. The overlap of passed flags already was minimal and will be further reduced in the next patch. As a side effect the BMAPI_* flags for xfs_bmapi and the IO_* flags for I/O end processing are merged into a single set of flags, which should be a bit more descriptive of the operation we perform. Also improve the tracing by giving each caller it's own type set of tracepoints. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-12-16xfs: cleanup the xfs_iomap_write_* helpersChristoph Hellwig
Remove passing the BMAPI_* flags to these helpers, in xfs_iomap_write_direct the check BMAPI_DIRECT was always true, and in the xfs_iomap_write_delay path is was never checked at all. Remove the nmap return value as we never make use of it. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-07-26xfs: small cleanups for xfs_iomap / __xfs_get_blocksChristoph Hellwig
Remove the flags argument to __xfs_get_blocks as we can easily derive it from the direct argument, and remove the unused BMAPI_MMAP flag. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2010-07-26xfs: reduce stack usage in xfs_iomapChristoph Hellwig
xfs_iomap passes a xfs_bmbt_irec pointer to xfs_iomap_write_direct and xfs_iomap_write_allocate to give them the results of our read-only xfs_bmapi query. Instead of allocating a new xfs_bmbt_irec on stack for the next call to xfs_bmapi re use the one we got passed as it's not used after this point. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2010-07-26xfs: remove unused delta tracking code in xfs_bmapiChristoph Hellwig
This code was introduced four years ago in commit 3e57ecf640428c01ba1ed8c8fc538447ada1715b without any review and has been unused since. Remove it just as the rest of the code introduced in that commit to reduce that stack usage and complexity in this central piece of code. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2010-07-26xfs: simplify inode to transaction joiningChristoph Hellwig
Currently we need to either call IHOLD or xfs_trans_ihold on an inode when joining it to a transaction via xfs_trans_ijoin. This patches instead makes xfs_trans_ijoin usable on it's own by doing an implicity xfs_trans_ihold, which also allows us to drop the third argument. For the case where we want to hold a reference on the inode a xfs_trans_ijoin_ref wrapper is added which does the IHOLD and marks the inode for needing an xfs_iput. In addition to the cleaner interface to the caller this also simplifies the implementation. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2010-07-26xfs: remove unneeded #include statementsChristoph Hellwig
Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <david@fromorbit.com>
2010-07-26xfs: drop dmapi hooksChristoph Hellwig
Dmapi support was never merged upstream, but we still have a lot of hooks bloating XFS for it, all over the fast pathes of the filesystem. This patch drops over 700 lines of dmapi overhead. If we'll ever get HSM support in mainline at least the namespace events can be done much saner in the VFS instead of the individual filesystem, so it's not like this is much help for future work. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2010-05-19xfs: mark xfs_iomap_write_ helpers staticChristoph Hellwig
And also drop a useless argument to xfs_iomap_write_direct. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-19xfs: kill struct xfs_iomapChristoph Hellwig
Now that struct xfs_iomap contains exactly the same units as struct xfs_bmbt_irec we can just use the latter directly in the aops code. Replace the missing IOMAP_NEW flag with a new boolean output parameter to xfs_iomap. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-19xfs: report iomap_bn in block baseChristoph Hellwig
Report the iomap_bn field of struct xfs_iomap in terms of filesystem blocks instead of in terms of bytes. Shift the byte conversions into the caller, and replace the IOMAP_DELAY and IOMAP_HOLE flag checks with checks for HOLESTARTBLOCK and DELAYSTARTBLOCK. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-19xfs: report iomap_offset and iomap_bsize in block baseChristoph Hellwig
Report the iomap_offset and iomap_bsize fields of struct xfs_iomap in terms of fsblocks instead of in terms of disk blocks. Shift the byte conversions into the callers temporarily, but they will disappear or get cleaned up later. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-19xfs: remove iomap_deltaChristoph Hellwig
The iomap_delta field in struct xfs_iomap just contains the difference between the offset passed to xfs_iomap and the iomap_offset. Just calculate it in the only caller that cares. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-19xfs: remove iomap_targetChristoph Hellwig
Instead of using the iomap_target field in struct xfs_iomap and the IOMAP_REALTIME flag just use the already existing xfs_find_bdev_for_inode helper. There's some fallout as we need to pass the inode in a few more places, which we also use to sanitize some calling conventions. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-19xfs: limit xfs_imap_to_bmap to a single mappingChristoph Hellwig
We only call xfs_iomap for single mappings anyway, so remove all code dealing with multiple mappings from xfs_imap_to_bmap and add asserts that we never get results that we do not expect. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14xfs: event tracing supportChristoph Hellwig
Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>