Age | Commit message (Collapse) | Author |
|
When xfs_readsb() does the very first read of the superblock,
it makes a guess at the length of the buffer, based on the
sector size of the underlying storage. This may or may
not match the filesystem sector size in sb_sectsize, so
we can't i.e. do a CRC check on it; it might be too short.
In fact, mounting a filesystem with sb_sectsize larger
than the device sector size will cause a mount failure
if CRCs are enabled, because we are checksumming a length
which exceeds the buffer passed to it.
So always read twice; the first time we read with NULL
buffer ops to skip verification; then set the proper
read length, hook up the proper verifier, and give it
another go.
Once we are sure that we've got the right buffer length,
we can also use bp->b_length in the xfs_sb_read_verify,
rather than the less-trusted on-disk sectorsize for
secondary superblocks. Before this we ran the risk of
passing junk to the crc32c routines, which didn't always
handle extreme values.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
v5 filesystems use 512 byte inodes as a minimum, so read inodes in
clusters that are effectively half the size of a v4 filesystem with
256 byte inodes. For v5 fielsystems, scale the inode cluster size
with the size of the inode so that we keep a constant 32 inodes per
cluster ratio for all inode IO.
This only works if mkfs.xfs sets the inode alignment appropriately
for larger inode clusters, so this functionality is made conditional
on mkfs doing the right thing. xfs_repair needs to know about
the inode alignment changes, too.
Wall time:
create bulkstat find+stat ls -R unlink
v4 237s 161s 173s 201s 299s
v5 235s 163s 205s 31s 356s
patched 234s 160s 182s 29s 317s
System time:
create bulkstat find+stat ls -R unlink
v4 2601s 2490s 1653s 1656s 2960s
v5 2637s 2497s 1681s 20s 3216s
patched 2613s 2451s 1658s 20s 3007s
So, wall time same or down across the board, system time same or
down across the board, and cache hit rates all improve except for
the ls -R case which is a pure cold cache directory read workload
on v5 filesystems...
So, this patch removes most of the performance and CPU usage
differential between v4 and v5 filesystems on traversal related
workloads.
Note: while this patch is currently for v5 filesystems only, there
is no reason it can't be ported back to v4 filesystems. This hasn't
been done here because bringing the code back to v4 requires
forwards and backwards kernel compatibility testing. i.e. to
deterine if older kernels(*) do the right thing with larger inode
alignments but still only using 8k inode cluster sizes. None of this
testing and validation on v4 filesystems has been done, so for the
moment larger inode clusters is limited to v5 superblocks.
(*) a current default config v4 filesystem should mount just fine on
2.6.23 (when lazy-count support was introduced), and so if we change
the alignment emitted by mkfs without a feature bit then we have to
make sure it works properly on all kernels since 2.6.23. And if we
allow it to be changed when the lazy-count bit is not set, then it's
all kernels since v2 logs were introduced that need to be tested for
compatibility...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Currently the xfs_inode.h header has a dependency on the definition
of the BMAP btree records as the inode fork includes an array of
xfs_bmbt_rec_host_t objects in it's definition.
Move all the btree format definitions from xfs_btree.h,
xfs_bmap_btree.h, xfs_alloc_btree.h and xfs_ialloc_btree.h to
xfs_format.h to continue the process of centralising the on-disk
format definitions. With this done, the xfs inode definitions are no
longer dependent on btree header files.
The enables a massive culling of unnecessary includes, with close to
200 #include directives removed from the XFS kernel code base.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
xfs_trans.h has a dependency on xfs_log.h for a couple of
structures. Most code that does transactions doesn't need to know
anything about the log, but this dependency means that they have to
include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header
files and clean up the includes to be in dependency order.
In doing this, remove the direct include of xfs_trans_reserve.h from
xfs_trans.h so that we remove the dependency between xfs_trans.h and
xfs_mount.h. Hence the xfs_trans.h include can be moved to the
indicate the actual dependencies other header files have on it.
Note that these are kernel only header files, so this does not
translate to any userspace changes at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
The on-disk format definitions for the directory and attribute
structures are spread across 3 header files right now, only one of
which is dedicated to defining on-disk structures and their
manipulation (xfs_dir2_format.h). Pull all the format definitions
into a single header file - xfs_da_format.h - and switch all the
code over to point at that.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
All of the buffer operations structures are needed to be exported
for xfs_db, so move them all to a common location rather than
spreading them all over the place. They are verifying the on-disk
format, so while xfs_format.h might be a good place, it is not part
of the on disk format.
Hence we need to create a new header file that we centralise these
related definitions. Start by moving the bffer operations
structures, and then also move all the other definitions that have
crept into xfs_log_format.h and xfs_format.h as there was no other
shared header file to put them in.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Currently the code initializizes mp->m_icsb_mutex and other things
_after_ register_hotcpu_notifier().
As the notifier takes mp->m_icsb_mutex it can happen
that it takes the lock before it's initialization.
Signed-off-by: Richard Weinberger <richard@nod.at>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
With the new xfs_trans_res structure has been introduced, the log
reservation size, log count as well as log flags are pre-initialized
at mount time. So it's time to refine xfs_trans_reserve() interface
to be more neat.
Also, introduce a new helper M_RES() to return a pointer to the
mp->m_resv structure to simplify the input.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
There are a few small helper functions in xfs_util, all related to
xfs_inode modifications. Move them all to xfs_inode.c so all
xfs_inode operations are consiolidated in the one place.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
xfs_mount.c is shared with userspace, but the only functions that
are shared are to do with physical superblock manipulations. This
means that less than 25% of the xfs_mount.c code is actually shared
with userspace. Move all the superblock functions to xfs_sb.c and
share that instead with libxfs.
Note that this will leave all the in-core transaction related
superblock counter modifications in xfs_mount.c as none of that is
shared with userspace. With a few more small changes, xfs_mount.h
won't need to be shared with userspace anymore, either.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Many of the definitions within xfs_dir2_priv.h are needed in
userspace outside libxfs. Definitions within xfs_dir2_priv.h are
wholly contained within libxfs, so we need to shuffle some of the
definitions around to keep consistency across files shared between
user and kernel space.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
The on disk format definitions of the on-disk dquot, log formats and
quota off log formats are all intertwined with other definitions for
quotas. Separate them out into their own header file so they can
easily be shared with userspace.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Start using pquotino and define a macro to check if the
superblock has pquotino.
Keep backward compatibilty by alowing mount of older superblock
with no separate pquota inode.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
mkfs doesn't initialize the quota inodes to NULLFSINO as it does for the
other internal inodes. This leads to two in-core values (0 and NULLFSINO)
to be checked against, to make sure if a quota inode is valid.
Solve that problem by initializing the in-core values of all quotaino
values to NULLFSINO if they are 0 in the disk.
Note that these values are not written back to on-disk superblock unless
some quota is enabled on the filesystem. Even in that case sb_pquotino is
written to disk only if the on-disk superblock supports pquotino
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Remove all incore use of XFS_OQUOTA_ENFD and XFS_OQUOTA_CHKD. Instead,
start using XFS_GQUOTA_.* XFS_PQUOTA_.* counterparts for GQUOTA and
PQUOTA respectively.
On-disk copy still uses XFS_OQUOTA_ENFD and XFS_OQUOTA_CHKD.
Read and write of the superblock does the conversion from *OQUOTA*
to *[PG]QUOTA*.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
XFS_MOUNT_RETERR is going to be set at xfs_parseargs() if
mp->m_dalign is enabled, so any time we enter "if (mp->m_dalign)"
branch in xfs_update_alignment(), XFS_MOUNT_RETERR is set and so
we always be emitting a warning and returning an error.
Hence, we can remove it and get rid of a couple of redundant
check up against it at xfs_upate_alignment().
Thanks Dave Chinner for the suggestions of simplify the code
in xfs_parseargs().
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
As per the mount man page, sunit and swidth can be changed via
mount options. For XFS, on the face of it, those options seems
works if the specified alignments is properly, e.g.
# mount -o sunit=4096,swidth=8192 /dev/sdb1 /mnt
# mount | grep sdb1
/dev/sdb1 on /mnt type xfs (rw,sunit=4096,swidth=8192)
However, neither sunit nor swidth is shown from the xfs_info output.
# xfs_info /mnt
meta-data=/dev/sdb1 isize=256 agcount=4, agsize=262144 blks
= sectsz=512 attr=2
data = bsize=4096 blocks=1048576, imaxpct=25
= sunit=0 swidth=0 blks
^^^^^^^^^^^^^^^^^^^^^^^^^^
naming =version 2 bsize=4096 ascii-ci=0
log =internal bsize=4096 blocks=2560, version=2
= sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0
The reason is that the alignment can only be changed if the relevant
super block is already configured with alignments, otherwise, the
given value is silently ignored.
With this fix, the attempt to mount a storage without strip alignment
setup on a super block will get an error with a warning in syslog to
indicate the true cause, e.g.
# mount -o sunit=4096,swidth=8192 /dev/sdb1 /mnt
mount: wrong fs type, bad option, bad superblock on /dev/sdb1,
missing codepage or helper program, or other error
In some cases useful info is found in syslog - try
dmesg | tail or so
.......
XFS (sdb1): cannot change alignment: superblock does not support data
alignment
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Cc: Mark Tinguely <tinguely@sgi.com>
Cc: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
We write the superblock every 30s or so which results in the
verifier being called. Right now that results in this output
every 30s:
XFS (vda): Version 5 superblock detected. This kernel has EXPERIMENTAL support enabled!
Use of these features in this kernel is at your own risk!
And spamming the logs.
We don't need to check for whether we support v5 superblocks or
whether there are feature bits we don't support set as these are
only relevant when we first mount the filesytem. i.e. on superblock
read. Hence for the write verification we can just skip all the
checks (and hence verbose output) altogether.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
The version 5 superblock has extended feature masks for compatible,
incompatible and read-only compatible feature sets. Implement the
masking and mount-time checking for these feature masks.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
With the addition of CRCs, there is such a wide and varied change to
the on disk format that it makes sense to bump the superblock
version number rather than try to use feature bits for all the new
functionality.
This commit introduces all the new superblock fields needed for all
the new functionality: feature masks similar to ext4, separate
project quota inodes, a LSN field for recovery and the CRC field.
This commit does not bump the superblock version number, however.
That will be done as a separate commit at the end of the series
after all the new functionality is present so we switch it all on in
one commit. This means that we can slowly introduce the changes
without them being active and hence maintain bisectability of the
tree.
This patch is based on a patch originally written by myself back
from SGI days, which was subsequently modified by Christoph Hellwig.
There is relatively little of that patch remaining, but the history
of the patch still should be acknowledged here.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Make use of XFS_SB_LOG_RES() at xfs_mount_log_sb().
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Make use of XFS_SB_LOG_RES() at xfs_log_sbcount().
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
The transaction log space for clearing/reseting the quota flags
is calculated out at runtime, this patch can figure it out at
mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
9802182 changed the return value from EWRONGFS (aka EINVAL)
to EFSCORRUPTED which doesn't seem to be handled properly by
the root filesystem probe.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Tested-by: Sergei Trofimovich <slyfox@gentoo.org>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
To separate the verifiers from iodone functions and associate read
and write verifiers at the same time, introduce a buffer verifier
operations structure to the xfs_buf.
This avoids the need for assigning the write verifier, clearing the
iodone function and re-running ioend processing in the read
verifier, and gets rid of the nasty "b_pre_io" name for the write
verifier function pointer. If we ever need to, it will also be
easier to add further content specific callbacks to a buffer with an
ops structure in place.
We also avoid needing to export verifier functions, instead we
can simply export the ops structures for those that are needed
outside the function they are defined in.
This patch also fixes a directory block readahead verifier issue
it exposed.
This patch also adds ops callbacks to the inode/alloc btree blocks
initialised by growfs. These will need more work before they will
work with CRCs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Metadata buffers that are read from disk have write verifiers
already attached to them, but newly allocated buffers do not. Add
appropriate write verifiers to all new metadata buffers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
These verifiers are essentially the same code as the read verifiers,
but do not require ioend processing. Hence factor the read verifier
functions and add a new write verifier wrapper that is used as the
callback.
This is done as one large patch for all verifiers rather than one
patch per verifier as the change is largely mechanical. This
includes hooking up the write verifier via the read verifier
function.
Hooking up the write verifier for buffers obtained via
xfs_trans_get_buf() will be done in a separate patch as that touches
code in many different places rather than just the verifier
functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Add a superblock verify callback function and pass it into the
buffer read functions. Remove the now redundant verification code
that is currently in use.
Adding verification shows that secondary superblocks never have
their "sb_inprogress" flag cleared by mkfs.xfs, so when validating
the secondary superblocks during a grow operation we have to avoid
checking this field. Even if we fix mkfs, we will still have to
ignore this field for verification purposes unless a version of mkfs
that does not have this bug was used.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
With verification being done as an IO completion callback, different
errors can be returned from a read. Uncached reads only return a
buffer or NULL on failure, which means the verification error cannot
be returned to the caller.
Split the error handling for these reads into two - a failure to get
a buffer will still return NULL, but a read error will return a
referenced buffer with b_error set rather than NULL. The caller is
responsible for checking the error state of the buffer returned.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Add a verifier function callback capability to the buffer read
interfaces. This will be used by the callers to supply a function
that verifies the contents of the buffer when it is read from disk.
This patch does not provide callback functions, but simply modifies
the interfaces to allow them to be called.
The reason for adding this to the read interfaces is that it is very
difficult to tell fom the outside is a buffer was just read from
disk or whether we just pulled it out of cache. Supplying a callbck
allows the buffer cache to use it's internal knowledge of the buffer
to execute it only when the buffer is read from disk.
It is intended that the verifier functions will mark the buffer with
an EFSCORRUPTED error when verification fails. This allows the
reading context to distinguish a verification error from an IO
error, and potentially take further actions on the buffer (e.g.
attempt repair) based on the error reported.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Create a new mount workqueue and delayed_work to enable background
scanning and freeing of eofblocks inodes. The scanner kicks in once
speculative preallocation occurs and stops requeueing itself when
no eofblocks inodes exist.
The scan interval is based on the new
'speculative_prealloc_lifetime' tunable (default to 5m). The
background scanner performs unfiltered, best effort scans (which
skips inodes under lock contention or with a dirty cache mapping).
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
xfs_sync.c now only contains inode reclaim functions and inode cache
iteration functions. It is not related to sync operations anymore.
Rename to xfs_icache.c to reflect it's contents and prepare for
consolidation with the other inode cache file that exists
(xfs_iget.c).
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
When unmounting the filesystem, there are lots of operations that
need to be done in a specific order, and they are spread across
across a couple of functions. We have to drain the AIL before we
write the unmount record, and we have to shut down the background
log work before we do either of them.
But this is all split haphazardly across xfs_unmountfs() and
xfs_log_unmount(). Move all the AIL flushing and log manipulations
to xfs_log_unmount() so that the responisbilities of each function
is clear and the operations they perform obvious.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Instead of starting and stopping background work on the xfs_mount_wq
all at the same time, separate them to where they really are needed
to start and stop.
The xfs_sync_worker, only needs to be started after all the mount
processing has completed successfully, while it needs to be stopped
before the log is unmounted.
The xfs_reclaim_worker is started on demand, and can be
stopped before the unmount process does it's own inode reclaim pass.
The xfs_flush_inodes work is run on demand, and so we really only
need to ensure that it has stopped running before we start
processing an unmount, freeze or remount,ro.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Add xfs_set_inode32() to be used to enable inode32 allocation mode. this
will reduce the amount of duplicated code needed to mount/remount a
filesystem with inode32 option. This patch also changes
xfs_set_inode64() to return the maximum AG number that inodes can be
allocated instead of set mp->m_maxagi by itself, so that the behaviour
is the same as xfs_set_inode32(). This simplifies code that calls these
functions and needs to know the maximum AG that inodes can be allocated
in.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull second vfs pile from Al Viro:
"The stuff in there: fsfreeze deadlock fixes by Jan (essentially, the
deadlock reproduced by xfstests 068), symlink and hardlink restriction
patches, plus assorted cleanups and fixes.
Note that another fsfreeze deadlock (emergency thaw one) is *not*
dealt with - the series by Fernando conflicts a lot with Jan's, breaks
userland ABI (FIFREEZE semantics gets changed) and trades the deadlock
for massive vfsmount leak; this is going to be handled next cycle.
There probably will be another pull request, but that stuff won't be
in it."
Fix up trivial conflicts due to unrelated changes next to each other in
drivers/{staging/gdm72xx/usb_boot.c, usb/gadget/storage_common.c}
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits)
delousing target_core_file a bit
Documentation: Correct s_umount state for freeze_fs/unfreeze_fs
fs: Remove old freezing mechanism
ext2: Implement freezing
btrfs: Convert to new freezing mechanism
nilfs2: Convert to new freezing mechanism
ntfs: Convert to new freezing mechanism
fuse: Convert to new freezing mechanism
gfs2: Convert to new freezing mechanism
ocfs2: Convert to new freezing mechanism
xfs: Convert to new freezing code
ext4: Convert to new freezing mechanism
fs: Protect write paths by sb_start_write - sb_end_write
fs: Skip atime update on frozen filesystem
fs: Add freezing handling to mnt_want_write() / mnt_drop_write()
fs: Improve filesystem freezing handling
switch the protection of percpu_counter list to spinlock
nfsd: Push mnt_want_write() outside of i_mutex
btrfs: Push mnt_want_write() outside of i_mutex
fat: Push mnt_want_write() outside of i_mutex
...
|
|
Generic code now blocks all writers from standard write paths. So we add
blocking of all writers coming from ioctl (we get a protection of ioctl against
racing remount read-only as a bonus) and convert xfs_file_aio_write() to a
non-racy freeze protection. We also keep freeze protection on transaction
start to block internal filesystem writes such as removal of preallocated
blocks.
CC: Ben Myers <bpm@sgi.com>
CC: Alex Elder <elder@kernel.org>
CC: xfs@oss.sgi.com
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
v2: Add the xfs_buf_lock to xfs_quiesce_attr().
Add explaination why xfs_buf_lock() is used to wait for write.
xfs_wait_buftarg() does not wait for the completion of the write of the
uncached superblock. This write can race with the shutdown of the log
and causes a panic if the write does not win the race.
During the log write, xfsaild_push() will lock the buffer and set the
XBF_ASYNC flag. Because the XBF_FLAG is set, complete() is not performed
on the buffer's iowait entry, we cannot call xfs_buf_iowait() to wait
for the write to complete. The buffer's lock is held until the write is
complete, so we can block on a xfs_buf_lock() request to be notified
that the write is complete.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
The m_maxioffset field in the struct xfs_mount contains the same
value as the superblock s_maxbytes field. There is no need to carry
two copies of this limit around, so use the VFS superblock version.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
When we fail to mount the log in xfs_mountfs(), we tear down all the
infrastructure we have already allocated. However, the process of
mounting the log may have progressed to the point of reading,
caching and modifying buffers in memory. Hence before we can free
all the infrastructure, we have to flush and remove all the buffers
from memory.
Problem first reported by Eric Sandeen, later a different incarnation
was reported by Ben Myers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
The only thing left in xfs_rw.h is a function prototype for an inode
function. Move that to xfs_inode.h, and kill xfs_rw.h.
Also move the function implementing the prototype from xfs_rw.c to
xfs_inode.c so we only have one function left in xfs_rw.c
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
The xfs_buf_get/read API is not consistent in the units it uses, and
does not use appropriate or consistent units/types for the
variables.
Convert the API to use disk addresses and block counts for all
buffer get and read calls. Use consistent naming for all the
functions and their declarations, and convert the internal functions
to use disk addresses and block counts to avoid need to convert them
from one type to another and back again.
Fix all the callers to use disk addresses and block counts. In many
cases, this removes an additional conversion from the function call
as the callers already have a block count.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Now that we write back all metadata either synchronously or through
the AIL we can simply implement metadata freezing in terms of
emptying the AIL.
The implementation for this is fairly simply and straight-forward:
A new routine is added that asks the xfsaild to push the AIL to the
end and waits for it to complete and send a wakeup. The routine will
then loop if the AIL is not actually empty, and continue to do so
until the AIL is compeltely empty.
We keep an inode reclaim pass in the freeze process to avoid having
memory pressure have to reclaim inodes that require dirtying the
filesystem to be reclaimed after the freeze has completed. This
means we can also treat unmount in the exact same way as freeze.
As an upside we can now remove the radix tree based inode writeback
and xfs_unmountfs_writesb.
[ Dave Chinner:
- Cleaned up commit message.
- Added inode reclaim passes back into freeze.
- Cleaned up wakeup mechanism to avoid the use of a new
sleep counter variable. ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Change xfs_sb_from_disk() interface to take a mount pointer
instead of a superblock pointer.
This is to print mount point specific error messages in future
fixes.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
When a system tries to mount a filesystem (FS) using UUID, the xfs
returns -EINVAL and shows a message if a FS with the same UUID has
been already mounted. It is useful to output the duplicate UUID
with it.
Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Ben Myers <bpm@sgi.com>
Cc: Alex Elder <elder@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
Instead of passing the block number and mount structure explicitly
get them off the bp and fix make the argument order more natural.
Also move it to xfs_buf.c and stop printing the device name given
that we already get the fs name as part of xfs_alert, and we know
what device is operates on because of the caller that gets printed,
finally rename it to xfs_buf_ioerror_alert and pass __func__ as
argument where it makes sense.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|