Age | Commit message (Collapse) | Author |
|
If eh->eh_entries is smaller than eh->eh_max, the routine will
go to the "repeat" and then go to "has_space" directlly ,
since argument "depth" and "eh" are not even changed.
Therefore, goto "has_space" directly and remove redundant "repeat" tag.
Signed-off-by: Robin Dong <sanbai@taobao.com>
|
|
This reverts commit 7a249cf83da1813cfa71cfe1e265b40045eceb47.
That commit created a situation that could lead to a filesystem
hang. As Dave Chinner pointed out, xfs_trans_alloc() could hold a
reference to m_active_trans (i.e., keep it non-zero) and then wait
for SB_FREEZE_TRANS to complete. Meanwhile a filesystem freeze
request could set SB_FREEZE_TRANS and then wait for m_active_trans
to drop to zero. Nobody benefits from this sequence of events...
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
First, we can sometimes free the state we're merging, which means anybody who
calls merge_state() may have the state it passed in free'ed. This is
problematic because we could end up caching the state, which makes caching
useless as the state will no longer be part of the tree. So instead of free'ing
the state we passed into merge_state(), set it's end to the other->end and free
the other state. This way we are sure to cache the correct state. Also because
we can merge states together, instead of only using the cache'd state if it's
start == the start we are looking for, go ahead and use it if the start we are
looking for is within the range of the cached state. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
|
|
We used to store the checksums of the space cache directly in the space cache,
however that doesn't work out too well if we have more space than we can fit the
checksums into the first page. So instead use the normal checksumming
infrastructure. There were problems with doing this originally but those
problems don't exist now so this works out fine. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
|
|
We keep having problems with early enospc, and that's because our method of
making space is inherently racy. The problem is we can have one guy trying to
make space for himself, and in the meantime people come in and steal his
reservation. In order to stop this we make a waitqueue and put anybody who
comes into reserve_metadata_bytes on that waitqueue if somebody is trying to
make more space. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
|
|
We have to do weird things when handling enospc in the transaction joining code.
Because we've already joined the transaction we cannot commit the transaction
within the reservation code since it will deadlock, so we have to return EAGAIN
and then make sure we don't retry too many times. Instead of doing this, just
do the reservation the normal way before we join the transaction, that way we
can do whatever we want to try and reclaim space, and then if it fails we know
for sure we are out of space and we can return ENOSPC. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
|
|
I've been watching how many btrfs_search_slot()'s we do and I noticed that when
we create a file with selinux enabled we were doing 2 each time we initialize
the security context. That's because we lookup the xattr first so we can delete
it if we're setting a new value to an existing xattr. But in the create case we
don't have any xattrs, so it is completely useless to have the extra lookup. So
re-arrange things so that we only lookup first if we specifically have
XATTR_REPLACE. That way in the basic case we only do 1 search, and in the more
complicated case we do the normal 2 lookups. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
|
|
This is simpler and quicker than the hash table, and
avoids needing to search the hash list for every new
lkid to check if it's used.
Signed-off-by: David Teigland <teigland@redhat.com>
|
|
The gfp and size args were switched.
Signed-off-by: David Teigland <teigland@redhat.com>
|
|
In fs/dlm/lock.c in the dlm_scan_waiters() function there are 3 small
issues:
1) There's no need to test the return value of the allocation and do a
memset if is succeedes. Just use kzalloc() to obtain zeroed memory.
2) Since kfree() handles NULL pointers gracefully, the test of
'warned' against NULL before the kfree() after the loop is completely
pointless. Remove it.
3) The arguments to kmalloc() (now kzalloc()) were swapped. Thanks to
Dr. David Alan Gilbert for pointing this out.
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: David Teigland <teigland@redhat.com>
|
|
Sync with Linus' tree to be able to apply pending patches that
are based on newer code already present upstream.
|
|
at ext4_trim_all_free() comment, there is no longer an @e4b parameter,
instead it is @group.
Reported-by: Andreas Dilger <adilger@dilger.ca>
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
In ext4, when FITRIM is called every time, we iterate all the
groups and do trim one by one. It is a bit time wasting if the
group has been trimmed and there is no change since the last
trim.
So this patch adds a new flag in ext4_group_info->bb_state to
indicate that the group has been trimmed, and it will be cleared
if some blocks is freed(in release_blocks_on_commit). Another
trim_minlen is added in ext4_sb_info to record the last minlen
we use to trim the volume, so that if the caller provide a small
one, we will go on the trim regardless of the bb_state.
A simple test with my intel x25m ssd:
df -h shows:
/dev/sdb1 40G 21G 17G 56% /mnt/ext4
Block size: 4096
run the FITRIM with the following parameter:
range.start = 0;
range.len = UINT64_MAX;
range.minlen = 1048576;
without the patch:
[root@boyu-tm linux-2.6]# time ./ftrim /mnt/ext4/a
real 0m5.505s
user 0m0.000s
sys 0m1.224s
[root@boyu-tm linux-2.6]# time ./ftrim /mnt/ext4/a
real 0m5.359s
user 0m0.000s
sys 0m1.178s
[root@boyu-tm linux-2.6]# time ./ftrim /mnt/ext4/a
real 0m5.228s
user 0m0.000s
sys 0m1.151s
with the patch:
[root@boyu-tm linux-2.6]# time ./ftrim /mnt/ext4/a
real 0m5.625s
user 0m0.000s
sys 0m1.269s
[root@boyu-tm linux-2.6]# time ./ftrim /mnt/ext4/a
real 0m0.002s
user 0m0.000s
sys 0m0.001s
[root@boyu-tm linux-2.6]# time ./ftrim /mnt/ext4/a
real 0m0.002s
user 0m0.000s
sys 0m0.001s
A big improvement for the 2nd and 3rd run.
Even after I delete some big image files, it is still much
faster than iterating the whole disk.
[root@boyu-tm test]# time ./ftrim /mnt/ext4/a
real 0m1.217s
user 0m0.000s
sys 0m0.196s
Cc: Lukas Czerner <lczerner@redhat.com>
Reviewed-by: Andreas Dilger <adilger.kernel@dilger.ca>
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
Add ext4_trim_extent and ext4_trim_all_free.
Reviewed-by: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
When we trim some free blocks in a group of ext4, we need to
calculate the free blocks properly and check whether there are
enough freed blocks left for us to trim. Current solution will
only calculate free spaces if they are large for a trim which
isn't appropriate.
Let us see a small example:
a group has 1.5M free which are 300k, 300k, 300k, 300k, 300k.
And minblocks is 1M. With current solution, we have to iterate
the whole group since these 300k will never be subtracted from
1.5M. But actually we should exit after we find the first 2
free spaces since the left 3 chunks only sum up to 900K if we
subtract the first 600K although they can't be trimed.
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
In 0f0a25b, we adjust 'len' with s_first_data_block - start, but
it could underflow in case blocksize=1K, fstrim_range.len=512 and
fstrim_range.start = 0. In this case, when we run the code:
len -= first_data_blk - start; len will be underflow to -1ULL.
In the end, although we are safe that last_group check later will limit
the trim to the whole volume, but that isn't what the user really want.
So this patch fix it. It also adds the check for 'start' like ext3 so that
we can break immediately if the start is invalid.
Cc: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
This will help debug who is responsible for starting a jbd2 transaction.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
Using function calls in TP_printk causes perf heartburn, so print the
MAJOR/MINOR device numbers instead.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
Upon corrupted inode or disk failures, we may fail after we already
allocate some blocks from the inode or take some blocks from the
inode's preallocation list, but before we successfully insert the
corresponding extent to the extent tree. In this case, we should free
any allocated blocks and discard the inode's preallocated blocks
because the entries in the inode's preallocation list may be in an
inconsistent state.
Signed-off-by: Jiaying Zhang <jiayingz@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
|
|
The current implementation of ext4_free_blocks() always calls
dquot_free_block This looks quite sensible in the most cases: blocks
to be freed are associated with inode and were accounted in quota and
i_blocks some time ago.
However, there is a case when blocks to free were not accounted by the
time calling ext4_free_blocks() yet:
1. delalloc is on, write_begin pre-allocated some space in quota
2. write-back happens, ext4 allocates some blocks in ext4_ext_map_blocks()
3. then ext4_ext_map_blocks() gets an error (e.g. ENOSPC) from
ext4_ext_insert_extent() and calls ext4_free_blocks().
In this scenario, ext4_free_blocks() calls dquot_free_block() who, in
turn, decrements i_blocks for blocks which were not accounted yet (due
to delalloc) After clean umount, e2fsck reports something like:
> Inode 21, i_blocks is 5080, should be 5128. Fix<y>?
because i_blocks was erroneously decremented as explained above.
The patch fixes the problem by passing the new flag
EXT4_FREE_BLOCKS_NO_QUOT_UPDATE to ext4_free_blocks(), to request
that the dquot_free_block() call be skipped.
Signed-off-by: Maxim Patlasov <maxim.patlasov@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
|
|
Originally, MAX_WRITEBACK_PAGES was hard-coded to 1024 because of a
concern of not holding I_SYNC for too long. (At least, that was the
comment previously.) This doesn't make sense now because the only
time we wait for I_SYNC is if we are calling sync or fsync, and in
that case we need to write out all of the data anyway. Previously
there may have been other code paths that waited on I_SYNC, but not
any more. -- Theodore Ts'o
So remove the MAX_WRITEBACK_PAGES constraint. The writeback pages
will adapt to as large as the storage device can write within 500ms.
XFS is observed to do IO completions in a batch, and the batch size is
equal to the write chunk size. To avoid dirty pages to suddenly drop
out of balance_dirty_pages()'s dirty control scope and create large
fluctuations, the chunk size is also limited to half the control scope.
The balance_dirty_pages() control scrope is
[(background_thresh + dirty_thresh) / 2, dirty_thresh]
which is by default [15%, 20%] of global dirty pages, whose range size
is dirty_thresh / DIRTY_FULL_SCOPE.
The adpative write chunk size will be rounded to the nearest 4MB
boundary.
http://bugzilla.kernel.org/show_bug.cgi?id=13930
CC: Theodore Ts'o <tytso@mit.edu>
CC: Dave Chinner <david@fromorbit.com>
CC: Chris Mason <chris.mason@oracle.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
|
|
The start of a heavy weight application (ie. KVM) may instantly knock
down determine_dirtyable_memory() if the swap is not enabled or full.
global_dirty_limits() and bdi_dirty_limit() will in turn get global/bdi
dirty thresholds that are _much_ lower than the global/bdi dirty pages.
balance_dirty_pages() will then heavily throttle all dirtiers including
the light ones, until the dirty pages drop below the new dirty thresholds.
During this _deep_ dirty-exceeded state, the system may appear rather
unresponsive to the users.
About "deep" dirty-exceeded: task_dirty_limit() assigns 1/8 lower dirty
threshold to heavy dirtiers than light ones, and the dirty pages will
be throttled around the heavy dirtiers' dirty threshold and reasonably
below the light dirtiers' dirty threshold. In this state, only the heavy
dirtiers will be throttled and the dirty pages are carefully controlled
to not exceed the light dirtiers' dirty threshold. However if the
threshold itself suddenly drops below the number of dirty pages, the
light dirtiers will get heavily throttled.
So introduce global_dirty_limit for tracking the global dirty threshold
with policies
- follow downwards slowly
- follow up in one shot
global_dirty_limit can effectively mask out the impact of sudden drop of
dirtyable memory. It will be used in the next patch for two new type of
dirty limits. Note that the new dirty limits are not going to avoid
throttling the light dirtiers, but could limit their sleep time to 200ms.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
|
|
The estimation value will start from 100MB/s and adapt to the real
bandwidth in seconds.
It tries to update the bandwidth only when disk is fully utilized.
Any inactive period of more than one second will be skipped.
The estimated bandwidth will be reflecting how fast the device can
writeout when _fully utilized_, and won't drop to 0 when it goes idle.
The value will remain constant at disk idle time. At busy write time, if
not considering fluctuations, it will also remain high unless be knocked
down by possible concurrent reads that compete for the disk time and
bandwidth with async writes.
The estimation is not done purely in the flusher because there is no
guarantee for write_cache_pages() to return timely to update bandwidth.
The bdi->avg_write_bandwidth smoothing is very effective for filtering
out sudden spikes, however may be a little biased in long term.
The overheads are low because the bdi bandwidth update only occurs at
200ms intervals.
The 200ms update interval is suitable, because it's not possible to get
the real bandwidth for the instance at all, due to large fluctuations.
The NFS commits can be as large as seconds worth of data. One XFS
completion may be as large as half second worth of data if we are going
to increase the write chunk to half second worth of data. In ext4,
fluctuations with time period of around 5 seconds is observed. And there
is another pattern of irregular periods of up to 20 seconds on SSD tests.
That's why we are not only doing the estimation at 200ms intervals, but
also averaging them over a period of 3 seconds and then go further to do
another level of smoothing in avg_write_bandwidth.
CC: Li Shaohua <shaohua.li@intel.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
|
|
Pass struct wb_writeback_work all the way down to writeback_sb_inodes(),
and initialize the struct writeback_control there.
struct writeback_control is basically designed to control writeback of a
single file, but we keep abuse it for writing multiple files in
writeback_sb_inodes() and its callers.
It immediately clean things up, e.g. suddenly wbc.nr_to_write vs
work->nr_pages starts to make sense, and instead of saving and restoring
pages_skipped in writeback_sb_inodes it can always start with a clean
zero value.
It also makes a neat IO pattern change: large dirty files are now
written in the full 4MB writeback chunk size, rather than whatever
remained quota in wbc->nr_to_write.
Acked-by: Jan Kara <jack@suse.cz>
Proposed-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
|
|
Regression introduced in commit 724d9f1cfba.
Prior to that, expand_dfs_referral would regenerate the mount data string
and then call cifs_parse_mount_options to re-parse it (klunky, but it
worked). The above commit moved cifs_parse_mount_options out of cifs_mount,
so the re-parsing of the new mount options no longer occurred. Fix it by
making expand_dfs_referral re-parse the mount options.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
|
|
This needs to be done regardless of whether that KConfig option is set
or not.
Reported-by: Sven-Haegar Koch <haegar@sdinet.de>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
btrfs: fix oops when doing space balance
Btrfs: don't panic if we get an error while balancing V2
btrfs: add missing options displayed in mount output
|
|
Remove two variables that serve no purpose in
xfs_alloc_ag_vextent_exact().
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
Pavol pointed out that there is one silent error case in the mount
path, and that others are rather uninformative.
I've taken Pavol's suggested patch and extended it a bit to also:
* fix a message which says "turned off" but actually errors out
* consolidate the vaguely differentiated "SB sanity check [12]"
messages, and hexdump the superblock for analysis
Original-patch-by: Pavol Gono <Pavol.Gono@siemens.com>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
* 'for-linus' of git://oss.sgi.com/xfs/xfs:
xfs: unpin stale inodes directly in IOP_COMMITTED
|
|
There is no need for a pre-flush when doing writing the second part of a
split log buffer, and if we are using an external log there is no need
to do a full cache flush of the log device at all given that all writes
to it use the FUA flag.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Remove the unused and misnamed _XBF_RUN_QUEUES flag, rename XBF_LOG_BUFFER
to the more fitting XBF_SYNCIO, and split XBF_ORDERED into XBF_FUA and
XBF_FLUSH to allow more fine grained control over the bio flags. Also
cleanup processing of the flags in _xfs_buf_ioapply to make more sense,
and renumber the sparse flag number space to group flags by purpose.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
All other xfs_buf_get/read-like helpers return the buffer locked, make sure
xfs_buf_get_uncached isn't different for no reason. Half of the callers
already lock it directly after, and the others probably should also keep
it locked if only for consistency and beeing able to use xfs_buf_rele,
but I'll leave that for later.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Rename xfs_buf_cond_lock and reverse it's return value to fit most other
trylock operations in the Kernel and XFS (with the exception of down_trylock,
after which xfs_buf_cond_lock was modelled), and replace xfs_buf_lock_val
with an xfs_buf_islocked for use in asserts, or and opencoded variant in
tracing. remove the XFS_BUF_* wrappers for all the locking helpers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Micro-optimize various comparisms by always byteswapping the constant
instead of the variable, which allows to do the swap at compile instead
of runtime.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Switch the shortform directory code over to use the generic
get_unaligned_beXX helpers instead of reinventing them. As a result
kill off xfs_arch.h and move the setting of XFS_NATIVE_HOST into
xfs_linux.h.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Simplify the confusing xfs_dir2_leaf structure. It is supposed to describe
an XFS dir2 leaf format btree block, but due to the variable sized nature
of almost all elements in it it can't actuall do anything close to that
job. Remove the members that are after the first variable sized array,
given that they could only be used for sizeof expressions that can as well
just use the underlying types directly, and make the ents array a real
C99 variable sized array.
Also factor out the xfs_dir2_leaf_size, to make the sizing of a leaf
entry which already was convoluted somewhat readable after using the
longer type names in the sizeof expressions.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Remove the tag member which is at a variable offset after the actual
name, and make name a real variable sized C99 array instead of the incorrect
one-sized array which confuses (not only) gcc.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Remove the confusing xfs_dir2_data structure. It is supposed to describe
an XFS dir2 data btree block, but due to the variable sized nature of
almost all elements in it it can't actuall do anything close to that
job. In addition to accessing the fixed offset header structure it was
only used to get a pointer to the first dir or unused entry after it,
which can be trivially replaced by pointer arithmetics on the header
pointer. For most users that is actually more natural anyway, as they
don't use a typed pointer but rather a character pointer for further
arithmetics.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
In most places we can simply pass around and use the struct xfs_dir2_data_hdr,
which is the first and most important member of struct xfs_dir2_data instead
of the full structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Remove the confusing xfs_dir2_block structure. It is supposed to describe
an XFS dir2 block format btree block, but due to the variable sized nature
of almost all elements in it it can't actuall do anything close to that
job. In addition to accessing the fixed offset header structure it was
only used to get a pointer to the first dir or unused entry after it,
which can be trivially replaced by pointer arithmetics on the header
pointer. For most users that is actually more natural anyway, as they
don't use a typed pointer but rather a character pointer for further
arithmetics.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
In most places we can simply pass around and use the struct xfs_dir2_data_hdr,
which is the first and most important member of struct xfs_dir2_block instead
of the full structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Remove the inumber member which is at a variable offset after the actual
name, and make name a real variable sized C99 array instead of the incorrect
one-sized array which confuses (not only) gcc. Based on this clean up
the helpers to calculate the entry size.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
The list field of it is never cactually used, so all uses can simply be
replaced with the xfs_dir2_sf_hdr_t type that it has as first member.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Refactor the shortform directory helpers that deal with the 32-bit vs
64-bit wide inode numbers into more sensible helpers, and kill the
xfs_intino_t typedef that is now superflous.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Add a new xfs_dir2_leaf_find_entry helper to factor out some duplicate code
from xfs_dir2_leaf_addname xfs_dir2_leafn_add. Found by Eric Sandeen using
an automated code duplication checker.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Remove the transaction pointer in the inode. It's only used to avoid
passing down an argument in the bmap code, and for a few asserts in
the transaction code right now.
Also use the local variable ip in a few more places in xfs_inode_item_unlock,
so that it isn't only used for debug builds after the above change.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
As pointed out by Jan xfs_trans_alloc can race with a concurrent filesystem
freeze when it sleeps during the memory allocation. Fix this by moving the
wait_for_freeze call after the memory allocation. This means moving the
freeze into the low-level _xfs_trans_alloc helper, which thus grows a new
argument. Also fix up some comments in that area while at it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <david@fromorbit.com>
|