Age | Commit message (Collapse) | Author |
|
Take udbg out of ppc_md. Allows us to not overwrite early udbg inits
when assigning ppc_md.
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This patch moves power4_enable_pmcs() to arch/ppc64/kernel/pmc.c.
I've tested it on P5 LPAR and P4. It does what it used to.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
The kexec boot is not successful on some power machines since all CPUs are
getting removed from global interrupt queue (GIQ) before kexec boot. Some
systems always expect at least one CPU in GIQ. Hence, this patch will make
sure that only secondary CPUs are removed from GIQ.
Signed-off-by: Haren Myneni <hbabu@us.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch removes the use of bitfield types from the ppc64 hash table
manipulation code.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Acked-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch adds an idle member to the ppc_md structure and calls it from
cpu_idle(). If a platform leaves ppc_md.idle as null it will get the default
idle loop default_idle().
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch implements the kexec support for ppc64 platforms.
A couple of notes:
1) We copy the pages in virtual mode, using the full base kernel
and a statically allocated stack. At kexec_prepare time we
scan the pages and if any overlap our (0, _end[]) range we
return -ETXTBSY.
On PowerPC 64 systems running in LPAR (logical partitioning)
mode, only a small region of memory, referred to as the RMO,
can be accessed in real mode. Since Linux runs with only one
zone of memory in the memory allocator, and it can be orders of
magnitude more memory than the RMO, looping until we allocate
pages in the source region is not feasible. Copying in virtual
means we don't have to write a hash table generation and call
hypervisor to insert translations, instead we rely on the pinned
kernel linear mapping. The kernel already has move to linked
location built in, so there is no requirement to load it at 0.
If we want to load something other than a kernel, then a stub
can be written to copy a linear chunk in real mode.
2) The start entry point gets passed parameters from the kernel.
Slaves are started at a fixed address after copying code from
the entry point.
All CPUs get passed their firmware assigned physical id in r3
(most calling conventions use this register for the first
argument).
This is used to distinguish each CPU from all other CPUs.
Since firmware is not around, there is no other way to obtain
this information other than to pass it somewhere.
A single CPU, referred to here as the master and the one executing
the kexec call, branches to start with the address of start in r4.
While this can be calculated, we have to load it through a gpr to
branch to this point so defining the register this is contained
in is free. A stack of unspecified size is available at r1
(also common calling convention).
All remaining running CPUs are sent to start at absolute address
0x60 after copying the first 0x100 bytes from start to address 0.
This convention was chosen because it matches what the kernel
has been doing itself. (only gpr3 is defined).
Note: This is not quite the convention of the kexec bootblock v2
in the kernel. A stub has been written to convert between them,
and we may adjust the kernel in the future to allow this directly
without any stub.
3) Destination pages can be placed anywhere, even where they
would not be accessible in real mode. This will allow us to
place ram disks above the RMO if we choose.
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: R Sharada <sharada@in.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
For I/O DLPAR to work properly, the kernel needs to allow for dynamic
assignment of the irq field of the pci_dev structure upon dynamic bus
addition. This patch moves the assignment of that field from
pSeries_final_fixup() to pcibios_fixup_bus(), which enables dynamic
assignment for the children of a newly added bus.
Currently, pci_devs receive their irq numbers in one of two ways. The
irq line is either read at boot for all pci_devs, or read by the rpaphp
module at slot enable time. The latter is no longer sufficient for
DLPAR addition of slots that don't qualify as PCI-hotplug capable.
This solution handles the cases of boot and dynamic add.
Signed-off-by: John Rose <johnrose@austin.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|