summaryrefslogtreecommitdiffstats
path: root/include/asm-sparc64/ttable.h
AgeCommit message (Collapse)Author
2008-07-17sparc: copy sparc64 specific files to asm-sparcSam Ravnborg
Used the following script to copy the files: cd include set -e SPARC64=`ls asm-sparc64` for FILE in ${SPARC64}; do if [ -f asm-sparc/$FILE ]; then echo $FILE exist in asm-sparc else git mv asm-sparc64/$FILE asm-sparc/$FILE printf "#include <asm-sparc/$FILE>\n" > asm-sparc64/$FILE git add asm-sparc64/$FILE fi done Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
2008-05-20sparc64: remove CVS keywordsAdrian Bunk
This patch removes the CVS keywords that weren't updated for a long time from comments. Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-05-11sparc: Fix debugger syscall restart interactions.David S. Miller
So, forever, we've had this ptrace_signal_deliver implementation which tries to handle all of the nasties that can occur when the debugger looks at a process about to take a signal. It's meant to address all of these issues inside of the kernel so that the debugger need not be mindful of such things. Problem is, this doesn't work. The idea was that we should do the syscall restart business first, so that the debugger captures that state. Otherwise, if the debugger for example saves the child's state, makes the child execute something else, then restores the saved state, we won't handle the syscall restart properly because we lose the "we're in a syscall" state. The code here worked for most cases, but if the debugger actually passes the signal through to the child unaltered, it's possible that we would do a syscall restart when we shouldn't have. In particular this breaks the case of debugging a process under a gdb which is being debugged by yet another gdb. gdb uses sigsuspend to wait for SIGCHLD of the inferior, but if gdb itself is being debugged by a top-level gdb we get a ptrace_stop(). The top-level gdb does a PTRACE_CONT with SIGCHLD to let the inferior gdb see the signal. But ptrace_signal_deliver() assumed the debugger would cancel out the signal and therefore did a syscall restart, because the return error was ERESTARTNOHAND. Fix this by simply making ptrace_signal_deliver() a nop, and providing a way for the debugger to control system call restarting properly: 1) Report a "in syscall" software bit in regs->{tstate,psr}. It is set early on in trap entry to a system call and is fully visible to the debugger via ptrace() and regsets. 2) Test this bit right before doing a syscall restart. We have to do a final recheck right after get_signal_to_deliver() in case the debugger cleared the bit during ptrace_stop(). 3) Clear the bit in trap return so we don't accidently try to set that bit in the real register. As a result we also get a ptrace_{is,clear}_syscall() for sparc32 just like sparc64 has. M68K has this same exact bug, and is now the only other user of the ptrace_signal_deliver hook. It needs to be fixed in the same exact way as sparc. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-04-29sparc: Add kgdb support.David S. Miller
Current limitations: 1) On SMP single stepping has some fundamental issues, shared with other sw single-step architectures such as mips and arm. 2) On 32-bit sparc we don't support SMP kgdb yet. That requires some reworking of the IPI mechanisms and infrastructure on that platform. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-04-24[SPARC64]: %l6 trap return handling no longer necessary.David S. Miller
Now that we indicate the "restart system call" in the trap type field of pt_regs->magic, we don't need to set the %l6 boolean in all of the trap return paths. And we therefore don't need to pass it to do_notify_resume(). Signed-off-by: David S. Miller <davem@davemloft.net>
2008-04-21[SPARC]: Remove SunOS and Solaris binary support.David S. Miller
As per Documentation/feature-removal-schedule.txt Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-26[SPARC64]: Unify timer interrupt handler.David S. Miller
Things were scattered all over the place, split between SMP and non-SMP. Unify it all so that dyntick support is easier to add. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-12-10[SPARC64]: Add irqtrace/stacktrace/lockdep support.David S. Miller
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-04-26Don't include linux/config.h from anywhere else in include/David Woodhouse
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2006-03-20[SPARC64]: More TLB/TSB handling fixes.David S. Miller
The SUN4V convention with non-shared TSBs is that the context bit of the TAG is clear. So we have to choose an "invalid" bit and initialize new TSBs appropriately. Otherwise a zero TAG looks "valid". Make sure, for the window fixup cases, that we use the right global registers and that we don't potentially trample on the live global registers in etrap/rtrap handling (%g2 and %g6) and that we put the missing virtual address properly in %g5. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[SPARC64]: Fix some SUN4V TLB miss bugs.David S. Miller
Code patching did not sign extend negative branch offsets correctly. Kernel TLB miss path needs patching and %g4 register preservation in order to handle SUN4V correctly. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[SPARC64]: Use ASI_SCRATCHPAD address 0x0 properly.David S. Miller
This is where the virtual address of the fault status area belongs. To set it up we don't make a hypervisor call, instead we call OBP's SUNW,set-trap-table with the real address of the fault status area as the second argument. And right before that call we write the virtual address into ASI_SCRATCHPAD vaddr 0x0. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[SPARC64]: Implement sun4v TSB miss handlers.David S. Miller
When we register a TSB with the hypervisor, so that it or hardware can handle TLB misses and do the TSB walk for us, the hypervisor traps down to these trap when it incurs a TSB miss. Processing is simple, we load the missing virtual address and context, and do a full page table walk. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[SPARC64]: Refine register window trap handling.David S. Miller
When saving and restoing trap state, do the window spill/fill handling inline so that we never trap deeper than 2 trap levels. This is important for chips like Niagara. The window fixup code is massively simplified, and many more improvements are now possible. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[SPARC64]: Elminate all usage of hard-coded trap globals.David S. Miller
UltraSPARC has special sets of global registers which are switched to for certain trap types. There is one set for MMU related traps, one set of Interrupt Vector processing, and another set (called the Alternate globals) for all other trap types. For what seems like forever we've hard coded the values in some of these trap registers. Some examples include: 1) Interrupt Vector global %g6 holds current processors interrupt work struct where received interrupts are managed for IRQ handler dispatch. 2) MMU global %g7 holds the base of the page tables of the currently active address space. 3) Alternate global %g6 held the current_thread_info() value. Such hardcoding has resulted in some serious issues in many areas. There are some code sequences where having another register available would help clean up the implementation. Taking traps such as cross-calls from the OBP firmware requires some trick code sequences wherein we have to save away and restore all of the special sets of global registers when we enter/exit OBP. We were also using the IMMU TSB register on SMP to hold the per-cpu area base address, which doesn't work any longer now that we actually use the TSB facility of the cpu. The implementation is pretty straight forward. One tricky bit is getting the current processor ID as that is different on different cpu variants. We use a stub with a fancy calling convention which we patch at boot time. The calling convention is that the stub is branched to and the (PC - 4) to return to is in register %g1. The cpu number is left in %g6. This stub can be invoked by using the __GET_CPUID macro. We use an array of per-cpu trap state to store the current thread and physical address of the current address space's page tables. The TRAP_LOAD_THREAD_REG loads %g6 with the current thread from this table, it uses __GET_CPUID and also clobbers %g1. TRAP_LOAD_IRQ_WORK is used by the interrupt vector processing to load the current processor's IRQ software state into %g6. It also uses __GET_CPUID and clobbers %g1. Finally, TRAP_LOAD_PGD_PHYS loads the physical address base of the current address space's page tables into %g7, it clobbers %g1 and uses __GET_CPUID. Many refinements are possible, as well as some tuning, with this stuff in place. Signed-off-by: David S. Miller <davem@davemloft.net>
2005-04-16Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!