summaryrefslogtreecommitdiffstats
path: root/include/linux/mempolicy.h
AgeCommit message (Collapse)Author
2012-06-20slab/mempolicy: always use local policy from interrupt contextAndi Kleen
slab_node() could access current->mempolicy from interrupt context. However there's a race condition during exit where the mempolicy is first freed and then the pointer zeroed. Using this from interrupts seems bogus anyways. The interrupt will interrupt a random process and therefore get a random mempolicy. Many times, this will be idle's, which noone can change. Just disable this here and always use local for slab from interrupts. I also cleaned up the callers of slab_node a bit which always passed the same argument. I believe the original mempolicy code did that in fact, so it's likely a regression. v2: send version with correct logic v3: simplify. fix typo. Reported-by: Arun Sharma <asharma@fb.com> Cc: penberg@kernel.org Cc: cl@linux.com Signed-off-by: Andi Kleen <ak@linux.intel.com> [tdmackey@twitter.com: Rework control flow based on feedback from cl@linux.com, fix logic, and cleanup current task_struct reference] Acked-by: David Rientjes <rientjes@google.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: David Mackey <tdmackey@twitter.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-05-29mm: do_migrate_pages(): rename argumentsAndrew Morton
s/from_nodes/from and s/to_nodes/to/. The "_nodes" is redundant - it duplicates the argument's type. Done in a fit of irritation over 80-col issues :( Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <mkosaki@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10mm/mempolicy.c: mpol_equal(): use boolKOSAKI Motohiro
mpol_equal() logically returns a boolean. Use a bool type to slightly improve readability. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Stephen Wilson <wilsons@start.ca> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25mm: declare mpol_to_str() when CONFIG_TMPFS=nStephen Wilson
When CONFIG_TMPFS=n mpol_to_str() is not declared in mempolicy.h. However, in the NUMA case, the definition is always compiled. Since it is not strictly true that tmpfs is the only client, and since the symbol was always lurking around anyways, export mpol_to_str() unconditionally. Furthermore, this will allow us to move show_numa_map() out of mempolicy.c and into the procfs subsystem. Signed-off-by: Stephen Wilson <wilsons@start.ca> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25mm: export get_vma_policy()Stephen Wilson
In commit 48fce3429d ("mempolicies: unexport get_vma_policy()") get_vma_policy() was marked static as all clients were local to mempolicy.c. However, the decision to generate /proc/pid/numa_maps in the numa memory policy code and outside the procfs subsystem introduces an artificial interdependency between the two systems. Exporting get_vma_policy() once again is the first step to clean up this interdependency. Signed-off-by: Stephen Wilson <wilsons@start.ca> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09oom: select task from tasklist for mempolicy oomsDavid Rientjes
The oom killer presently kills current whenever there is no more memory free or reclaimable on its mempolicy's nodes. There is no guarantee that current is a memory-hogging task or that killing it will free any substantial amount of memory, however. In such situations, it is better to scan the tasklist for nodes that are allowed to allocate on current's set of nodes and kill the task with the highest badness() score. This ensures that the most memory-hogging task, or the one configured by the user with /proc/pid/oom_adj, is always selected in such scenarios. Signed-off-by: David Rientjes <rientjes@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25mempolicy: restructure rebinding-mempolicy functionsMiao Xie
Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15hugetlb: derive huge pages nodes allowed from task mempolicyLee Schermerhorn
This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24mm: make CONFIG_MIGRATION available w/o CONFIG_NUMAGerald Schaefer
We'd like to support CONFIG_MEMORY_HOTREMOVE on s390, which depends on CONFIG_MIGRATION. So far, CONFIG_MIGRATION is only available with NUMA support. This patch makes CONFIG_MIGRATION selectable for architectures that define ARCH_ENABLE_MEMORY_HOTREMOVE. When MIGRATION is enabled w/o NUMA, the kernel won't compile because migrate_vmas() does not know about vm_ops->migrate() and vma_migratable() does not know about policy_zone. To fix this, those two functions can be restricted to '#ifdef CONFIG_NUMA' because they are not being used w/o NUMA. vma_migratable() is moved over from migrate.h to mempolicy.h. [kosaki.motohiro@jp.fujitsu.com: build fix] Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: KOSAKI Motorhiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: use struct mempolicy pointer in shmem_sb_infoLee Schermerhorn
This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: rework shmem mpol parsing and displayLee Schermerhorn
mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: use MPOL_F_LOCAL to Indicate Preferred Local PolicyLee Schermerhorn
Now that we're using "preferred local" policy for system default, we need to make this as fast as possible. Because of the variable size of the mempolicy structure [based on size of nodemasks], the preferred_node may be in a different cacheline from the mode. This can result in accessing an extra cacheline in the normal case of system default policy. Suspect this is the cause of an observed 2-3% slowdown in page fault testing relative to kernel without this patch series. To alleviate this, use an internal mode flag, MPOL_F_LOCAL in the mempolicy flags member which is guaranteed [?] to be in the same cacheline as the mode itself. Verified that reworked mempolicy now performs slightly better on 25-rc8-mm1 for both anon and shmem segments with system default and vma [preferred local] policy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: rework mempolicy Reference Counting [yet again]Lee Schermerhorn
After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: mark shared policies for unrefLee Schermerhorn
As part of yet another rework of mempolicy reference counting, we want to be able to identify shared policies efficiently, because they have an extra ref taken on lookup that needs to be removed when we're finished using the policy. Note: the extra ref is required because the policies are shared between tasks/processes and can be changed/freed by one task while another task is using them--e.g., for page allocation. Building on David Rientjes mempolicy "mode flags" enhancement, this patch indicates a "shared" policy by setting a new MPOL_F_SHARED flag in the flags member of the struct mempolicy added by David. MPOL_F_SHARED, and any future "internal mode flags" are reserved from bit zero up, as they will never be passed in the upper bits of the mode argument of a mempolicy API. I set the MPOL_F_SHARED flag when the policy is installed in the shared policy rb-tree. Don't need/want to clear the flag when removing from the tree as the mempolicy is freed [unref'd] internally to the sp_delete() function. However, a task could hold another reference on this mempolicy from a prior lookup. We need the MPOL_F_SHARED flag to stay put so that any tasks holding a ref will unref, eventually freeing, the mempolicy. A later patch in this series will introduce a function to conditionally unref [mpol_free] a policy. The MPOL_F_SHARED flag is one reason [currently the only reason] to unref/free a policy via the conditional free. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: rename struct mempolicy 'policy' member to 'mode'Lee Schermerhorn
The terms 'policy' and 'mode' are both used in various places to describe the semantics of the value stored in the 'policy' member of struct mempolicy. Furthermore, the term 'policy' is used to refer to that member, to the entire struct mempolicy and to the more abstract concept of the tuple consisting of a "mode" and an optional node or set of nodes. Recently, we have added "mode flags" that are passed in the upper bits of the 'mode' [or sometimes, 'policy'] member of the numa APIs. I'd like to resolve this confusion, which perhaps only exists in my mind, by renaming the 'policy' member to 'mode' throughout, and fixing up the Documentation. Man pages will be updated separately. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: rename mpol_copy to mpol_dupLee Schermerhorn
This patch renames mpol_copy() to mpol_dup() because, well, that's what it does. Like, e.g., strdup() for strings, mpol_dup() takes a pointer to an existing mempolicy, allocates a new one and copies the contents. In a later patch, I want to use the name mpol_copy() to copy the contents from one mempolicy to another like, e.g., strcpy() does for strings. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: rename mpol_free to mpol_putLee Schermerhorn
This is a change that was requested some time ago by Mel Gorman. Makes sense to me, so here it is. Note: I retain the name "mpol_free_shared_policy()" because it actually does free the shared_policy, which is NOT a reference counted object. However, ... The mempolicy object[s] referenced by the shared_policy are reference counted, so mpol_put() is used to release the reference held by the shared_policy. The mempolicy might not be freed at this time, because some task attached to the shared object associated with the shared policy may be in the process of allocating a page based on the mempolicy. In that case, the task performing the allocation will hold a reference on the mempolicy, obtained via mpol_shared_policy_lookup(). The mempolicy will be freed when all tasks holding such a reference have called mpol_put() for the mempolicy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: small header file cleanupDavid Rientjes
Removes forward definition of vm_area_struct in linux/mempolicy.h. We already get it from the linux/slab.h -> linux/gfp.h include. Removes the unused mpol_set_vma_default() macro from linux/mempolicy.h. Removes the extern definition of default_policy since it is only referenced, as it should be, in mm/mempolicy.c. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: add MPOL_F_RELATIVE_NODES flagDavid Rientjes
Adds another optional mode flag, MPOL_F_RELATIVE_NODES, that specifies nodemasks passed via set_mempolicy() or mbind() should be considered relative to the current task's mems_allowed. When the mempolicy is created, the passed nodemask is folded and mapped onto the current task's mems_allowed. For example, consider a task using set_mempolicy() to pass MPOL_INTERLEAVE | MPOL_F_RELATIVE_NODES with a nodemask of 1-3. If current's mems_allowed is 4-7, the effected nodemask is 5-7 (the second, third, and fourth node of mems_allowed). If the same task is attached to a cpuset, the mempolicy nodemask is rebound each time the mems are changed. Some possible rebinds and results are: mems result 1-3 1-3 1-7 2-4 1,5-6 1,5-6 1,5-7 5-7 Likewise, the zonelist built for MPOL_BIND acts on the set of zones assigned to the resultant nodemask from the relative remap. In the MPOL_PREFERRED case, the preferred node is remapped from the currently effected nodemask to the relative nodemask. This mempolicy mode flag was conceived of by Paul Jackson <pj@sgi.com>. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: add MPOL_F_STATIC_NODES flagDavid Rientjes
Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the node remap when the policy is rebound. Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of a union with cpuset_mems_allowed: struct mempolicy { ... union { nodemask_t cpuset_mems_allowed; nodemask_t user_nodemask; } w; } that stores the the nodemask that the user passed when he or she created the mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES, which is passed with any mempolicy mode, the user's passed nodemask intersected with the VMA or task's allowed nodes is always used when determining the preferred node, setting the MPOL_BIND zonelist, or creating the interleave nodemask. This happens whenever the policy is rebound, including when a task's cpuset assignment changes or the cpuset's mems are changed. This creates an interesting side-effect in that it allows the mempolicy "intent" to lie dormant and uneffected until it has access to the node(s) that it desires. For example, if you currently ask for an interleaved policy over a set of nodes that you do not have access to, the mempolicy is not created and the task continues to use the previous policy. With this change, however, it is possible to create the same mempolicy; it is only effected when access to nodes in the nodemask is acquired. It is also possible to mount tmpfs with the static nodemask behavior when specifying a node or nodemask. To do this, simply add "=static" immediately following the mempolicy mode at mount time: mount -o remount mpol=interleave=static:1-3 Also removes mpol_check_policy() and folds its logic into mpol_new() since it is now obsoleted. The unused vma_mpol_equal() is also removed. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: support optional mode flagsDavid Rientjes
With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: convert MPOL constants to enumDavid Rientjes
The mempolicy mode constants, MPOL_DEFAULT, MPOL_PREFERRED, MPOL_BIND, and MPOL_INTERLEAVE, are better declared as part of an enum since they are sequentially numbered and cannot be combined. The policy member of struct mempolicy is also converted from type short to type unsigned short. A negative policy does not have any legitimate meaning, so it is possible to change its type in preparation for adding optional mode flags later. The equivalent member of struct shmem_sb_info is also changed from int to unsigned short. For compatibility, the policy formal to get_mempolicy() remains as a pointer to an int: int get_mempolicy(int *policy, unsigned long *nmask, unsigned long maxnode, unsigned long addr, unsigned long flags); although the only possible values is the range of type unsigned short. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mm: filter based on a nodemask as well as a gfp_maskMel Gorman
The MPOL_BIND policy creates a zonelist that is used for allocations controlled by that mempolicy. As the per-node zonelist is already being filtered based on a zone id, this patch adds a version of __alloc_pages() that takes a nodemask for further filtering. This eliminates the need for MPOL_BIND to create a custom zonelist. A positive benefit of this is that allocations using MPOL_BIND now use the local node's distance-ordered zonelist instead of a custom node-id-ordered zonelist. I.e., pages will be allocated from the closest allowed node with available memory. [Lee.Schermerhorn@hp.com: Mempolicy: update stale documentation and comments] [Lee.Schermerhorn@hp.com: Mempolicy: make dequeue_huge_page_vma() obey MPOL_BIND nodemask] [Lee.Schermerhorn@hp.com: Mempolicy: make dequeue_huge_page_vma() obey MPOL_BIND nodemask rework] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mm: introduce node_zonelist() for accessing the zonelist for a GFP maskMel Gorman
Introduce a node_zonelist() helper function. It is used to lookup the appropriate zonelist given a node and a GFP mask. The patch on its own is a cleanup but it helps clarify parts of the two-zonelist-per-node patchset. If necessary, it can be merged with the next patch in this set without problems. Reviewed-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19Task Control Groups: make cpusets a client of cgroupsPaul Menage
Remove the filesystem support logic from the cpusets system and makes cpusets a cgroup subsystem The "cpuset" filesystem becomes a dummy filesystem; attempts to mount it get passed through to the cgroup filesystem with the appropriate options to emulate the old cpuset filesystem behaviour. Signed-off-by: Paul Menage <menage@google.com> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Jackson <pj@sgi.com> Cc: Kirill Korotaev <dev@openvz.org> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16mm/mempolicy.c: cleanupsAdrian Bunk
This patch contains the following cleanups: - every file should include the headers containing the prototypes for its global functions - make the follosing needlessly global functions static: - migrate_to_node() - do_mbind() - sp_alloc() - mpol_rebind_policy() [akpm@linux-foundation.org: fix uninitialised var warning] Signed-off-by: Adrian Bunk <bunk@stusta.de> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16Mem Policy: add MPOL_F_MEMS_ALLOWED get_mempolicy() flagLee Schermerhorn
Allow an application to query the memories allowed by its context. Updated numa_memory_policy.txt to mention that applications can use this to obtain allowed memories for constructing valid policies. TODO: update out-of-tree libnuma wrapper[s], or maybe add a new wrapper--e.g., numa_get_mems_allowed() ? Also, update numa syscall man pages. Tested with memtoy V>=0.13. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19Fix NUMA Memory Policy Reference CountingLee Schermerhorn
This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-22Apply memory policies to top two highest zones when highest zone is ZONE_MOVABLEMel Gorman
The NUMA layer only supports NUMA policies for the highest zone. When ZONE_MOVABLE is configured with kernelcore=, the the highest zone becomes ZONE_MOVABLE. The result is that policies are only applied to allocations like anonymous pages and page cache allocated from ZONE_MOVABLE when the zone is used. This patch applies policies to the two highest zones when the highest zone is ZONE_MOVABLE. As ZONE_MOVABLE consists of pages from the highest "real" zone, it's always functionally equivalent. The patch has been tested on a variety of machines both NUMA and non-NUMA covering x86, x86_64 and ppc64. No abnormal results were seen in kernbench, tbench, dbench or hackbench. It passes regression tests from the numactl package with and without kernelcore= once numactl tests are patched to wait for vmstat counters to update. akpm: this is the nasty hack to fix NUMA mempolicies in the presence of ZONE_MOVABLE and kernelcore= in 2.6.23. Christoph says "For .24 either merge the mobility or get the other solution that Mel is working on. That solution would only use a single zonelist per node and filter on the fly. That may help performance and also help to make memory policies work better." Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Tested-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@suse.de> Cc: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17Allow huge page allocations to use GFP_HIGH_MOVABLEMel Gorman
Huge pages are not movable so are not allocated from ZONE_MOVABLE. However, as ZONE_MOVABLE will always have pages that can be migrated or reclaimed, it can be used to satisfy hugepage allocations even when the system has been running a long time. This allows an administrator to resize the hugepage pool at runtime depending on the size of ZONE_MOVABLE. This patch adds a new sysctl called hugepages_treat_as_movable. When a non-zero value is written to it, future allocations for the huge page pool will use ZONE_MOVABLE. Despite huge pages being non-movable, we do not introduce additional external fragmentation of note as huge pages are always the largest contiguous block we care about. [akpm@linux-foundation.org: various fixes] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2006-10-21[PATCH] cpuset: mempolicy migration typo fixPaul Jackson
Mistyped an ifdef CONFIG_CPUSETS - fixed. I doubt that anyone ever noticed. The impact of this typo was that if someone: 1) was using MPOL_BIND to force off node allocations 2) while using cpusets to constrain memory placement 3) when that cpuset was migrating that jobs memory 4) while the tasks in that job were actively forking then there was a rare chance that future allocations using that MPOL_BIND policy would be node local, not off node. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26[PATCH] Apply type enum zone_typeChristoph Lameter
After we have done this we can now do some typing cleanup. The memory policy layer keeps a policy_zone that specifies the zone that gets memory policies applied. This variable can now be of type enum zone_type. The check_highest_zone function and the build_zonelists funnctionm must then also take a enum zone_type parameter. Plus there are a number of loops over zones that also should use zone_type. We run into some troubles at some points with functions that need a zone_type variable to become -1. Fix that up. [pj@sgi.com: fix set_mempolicy() crash] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-20Merge git://git.infradead.org/hdrcleanup-2.6Linus Torvalds
* git://git.infradead.org/hdrcleanup-2.6: (63 commits) [S390] __FD_foo definitions. Switch to __s32 types in joystick.h instead of C99 types for consistency. Add <sys/types.h> to headers included for userspace in <linux/input.h> Move inclusion of <linux/compat.h> out of user scope in asm-x86_64/mtrr.h Remove struct fddi_statistics from user view in <linux/if_fddi.h> Move user-visible parts of drivers/s390/crypto/z90crypt.h to include/asm-s390 Revert include/media changes: Mauro says those ioctls are only used in-kernel(!) Include <linux/types.h> and use __uXX types in <linux/cramfs_fs.h> Use __uXX types in <linux/i2o_dev.h>, include <linux/ioctl.h> too Remove private struct dx_hash_info from public view in <linux/ext3_fs.h> Include <linux/types.h> and use __uXX types in <linux/affs_hardblocks.h> Use __uXX types in <linux/divert.h> for struct divert_blk et al. Use __u32 for elf_addr_t in <asm-powerpc/elf.h>, not u32. It's user-visible. Remove PPP_FCS from user view in <linux/ppp_defs.h>, remove __P mess entirely Use __uXX types in user-visible structures in <linux/nbd.h> Don't use 'u32' in user-visible struct ip_conntrack_old_tuple. Use __uXX types for S390 DASD volume label definitions which are user-visible S390 BIODASDREADCMB ioctl should use __u64 not u64 type. Remove unneeded inclusion of <linux/time.h> from <linux/ufs_fs.h> Fix private integer types used in V4L2 ioctls. ... Manually resolve conflict in include/linux/mtd/physmap.h
2006-06-08[PATCH] Fix mempolicy.h build errorRalf Baechle
From: Ralf Baechle <ralf@linux-mips.org> <linux/mempolicy.h> uses struct mm_struct and relies on a definition or declaration somehow magically being dragged in which may result in a build: [...] CC mm/mempolicy.o In file included from mm/mempolicy.c:69: include/linux/mempolicy.h:150: warning: ‘struct mm_struct’ declared inside parameter list include/linux/mempolicy.h:150: warning: its scope is only this definition or declaration, which is probably not what you want include/linux/mempolicy.h:175: warning: ‘struct mm_struct’ declared inside parameter list mm/mempolicy.c:622: error: conflicting types for ‘do_migrate_pages’ include/linux/mempolicy.h:175: error: previous declaration of ‘do_migrate_pages’ was here mm/mempolicy.c:1661: error: conflicting types for ‘mpol_rebind_mm’ include/linux/mempolicy.h:150: error: previous declaration of ‘mpol_rebind_mm’ was here make[1]: *** [mm/mempolicy.o] Error 1 make: *** [mm] Error 2 [ralf@denk linux-ip35]$ Including <linux/sched.h> is a step into direction of include hell so fixed by adding a forward declaration of struct mm_struct instead. Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-26Don't include linux/config.h from anywhere else in include/David Woodhouse
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2006-03-24[PATCH] cpuset memory spread slab cache optimizationsPaul Jackson
The hooks in the slab cache allocator code path for support of NUMA mempolicies and cpuset memory spreading are in an important code path. Many systems will use neither feature. This patch optimizes those hooks down to a single check of some bits in the current tasks task_struct flags. For non NUMA systems, this hook and related code is already ifdef'd out. The optimization is done by using another task flag, set if the task is using a non-default NUMA mempolicy. Taking this flag bit along with the PF_SPREAD_PAGE and PF_SPREAD_SLAB flag bits added earlier in this 'cpuset memory spreading' patch set, one can check for the combination of any of these special case memory placement mechanisms with a single test of the current tasks task_struct flags. This patch also tightens up the code, to save a few bytes of kernel text space, and moves some of it out of line. Due to the nested inlines called from multiple places, we were ending up with three copies of this code, which once we get off the main code path (for local node allocation) seems a bit wasteful of instruction memory. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-18[PATCH] NUMA policies in the slab allocator V2Christoph Lameter
This patch fixes a regression in 2.6.14 against 2.6.13 that causes an imbalance in memory allocation during bootup. The slab allocator in 2.6.13 is not numa aware and simply calls alloc_pages(). This means that memory policies may control the behavior of alloc_pages(). During bootup the memory policy is set to MPOL_INTERLEAVE resulting in the spreading out of allocations during bootup over all available nodes. The slab allocator in 2.6.13 has only a single list of slab pages. As a result the per cpu slab cache and the spinlock controlled page lists may contain slab entries from off node memory. The slab allocator in 2.6.13 makes no effort to discern the locality of an entry on its lists. The NUMA aware slab allocator in 2.6.14 controls locality of the slab pages explicitly by calling alloc_pages_node(). The NUMA slab allocator manages slab entries by having lists of available slab pages for each node. The per cpu slab cache can only contain slab entries associated with the node local to the processor. This guarantees that the default allocation mode of the slab allocator always assigns local memory if available. Setting MPOL_INTERLEAVE as a default policy during bootup has no effect anymore. In 2.6.14 all node unspecific slab allocations are performed on the boot processor. This means that most of key data structures are allocated on one node. Most processors will have to refer to these structures making the boot node a potential bottleneck. This may reduce performance and cause unnecessary memory pressure on the boot node. This patch implements NUMA policies in the slab layer. There is the need of explicit application of NUMA memory policies by the slab allcator itself since the NUMA slab allocator does no longer let the page_allocator control locality. The check for policies is made directly at the beginning of __cache_alloc using current->mempolicy. The memory policy is already frequently checked by the page allocator (alloc_page_vma() and alloc_page_current()). So it is highly likely that the cacheline is present. For MPOL_INTERLEAVE kmalloc() will spread out each request to one node after another so that an equal distribution of allocations can be obtained during bootup. It is not possible to push the policy check to lower layers of the NUMA slab allocator since the per cpu caches are now only containing slab entries from the current node. If the policy says that the local node is not to be preferred or forbidden then there is no point in checking the slab cache or local list of slab pages. The allocation better be directed immediately to the lists containing slab entries for the allowed set of nodes. This way of applying policy also fixes another strange behavior in 2.6.13. alloc_pages() is controlled by the memory allocation policy of the current process. It could therefore be that one process is running with MPOL_INTERLEAVE and would f.e. obtain a new page following that policy since no slab entries are in the lists anymore. A page can typically be used for multiple slab entries but lets say that the current process is only using one. The other entries are then added to the slab lists. These are now non local entries in the slab lists despite of the possible availability of local pages that would provide faster access and increase the performance of the application. Another process without MPOL_INTERLEAVE may now run and expect a local slab entry from kmalloc(). However, there are still these free slab entries from the off node page obtained from the other process via MPOL_INTERLEAVE in the cache. The process will then get an off node slab entry although other slab entries may be available that are local to that process. This means that the policy if one process may contaminate the locality of the slab caches for other processes. This patch in effect insures that a per process policy is followed for the allocation of slab entries and that there cannot be a memory policy influence from one process to another. A process with default policy will always get a local slab entry if one is available. And the process using memory policies will get its memory arranged as requested. Off-node slab allocation will require the use of spinlocks and will make the use of per cpu caches not possible. A process using memory policies to redirect allocations offnode will have to cope with additional lock overhead in addition to the latency added by the need to access a remote slab entry. Changes V1->V2 - Remove #ifdef CONFIG_NUMA by moving forward declaration into prior #ifdef CONFIG_NUMA section. - Give the function determining the node number to use a saner name. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-14[PATCH] Add tmpfs options for memory placement policiesRobin Holt
Anything that writes into a tmpfs filesystem is liable to disproportionately decrease the available memory on a particular node. Since there's no telling what sort of application (e.g. dd/cp/cat) might be dropping large files there, this lets the admin choose the appropriate default behavior for their site's situation. Introduce a tmpfs mount option which allows specifying a memory policy and a second option to specify the nodelist for that policy. With the default policy, tmpfs will behave as it does today. This patch adds support for preferred, bind, and interleave policies. The default policy will cause pages to be added to tmpfs files on the node which is doing the writing. Some jobs expect a single process to create and manage the tmpfs files. This results in a node which has a significantly reduced number of free pages. With this patch, the administrator can specify the policy and nodes for that policy where they would prefer allocations. This patch was originally written by Brent Casavant and Hugh Dickins. I added support for the bind and preferred policies and the mpol_nodelist mount option. Signed-off-by: Brent Casavant <bcasavan@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Robin Holt <holt@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08[PATCH] cpuset: rebind vma mempolicies fixPaul Jackson
Fix more of longstanding bug in cpuset/mempolicy interaction. NUMA mempolicies (mm/mempolicy.c) are constrained by the current tasks cpuset to just the Memory Nodes allowed by that cpuset. The kernel maintains internal state for each mempolicy, tracking what nodes are used for the MPOL_INTERLEAVE, MPOL_BIND or MPOL_PREFERRED policies. When a tasks cpuset memory placement changes, whether because the cpuset changed, or because the task was attached to a different cpuset, then the tasks mempolicies have to be rebound to the new cpuset placement, so as to preserve the cpuset-relative numbering of the nodes in that policy. An earlier fix handled such mempolicy rebinding for mempolicies attached to a task. This fix rebinds mempolicies attached to vma's (address ranges in a tasks address space.) Due to the need to hold the task->mm->mmap_sem semaphore while updating vma's, the rebinding of vma mempolicies has to be done when the cpuset memory placement is changed, at which time mmap_sem can be safely acquired. The tasks mempolicy is rebound later, when the task next attempts to allocate memory and notices that its task->cpuset_mems_generation is out-of-date with its cpusets mems_generation. Because walking the tasklist to find all tasks attached to a changing cpuset requires holding tasklist_lock, a spinlock, one cannot update the vma's of the affected tasks while doing the tasklist scan. In general, one cannot acquire a semaphore (which can sleep) while already holding a spinlock (such as tasklist_lock). So a list of mm references has to be built up during the tasklist scan, then the tasklist lock dropped, then for each mm, its mmap_sem acquired, and the vma's in that mm rebound. Once the tasklist lock is dropped, affected tasks may fork new tasks, before their mm's are rebound. A kernel global 'cpuset_being_rebound' is set to point to the cpuset being rebound (there can only be one; cpuset modifications are done under a global 'manage_sem' semaphore), and the mpol_copy code that is used to copy a tasks mempolicies during fork catches such forking tasks, and ensures their children are also rebound. When a task is moved to a different cpuset, it is easier, as there is only one task involved. It's mm->vma's are scanned, using the same mpol_rebind_policy() as used above. It may happen that both the mpol_copy hook and the update done via the tasklist scan update the same mm twice. This is ok, as the mempolicies of each vma in an mm keep track of what mems_allowed they are relative to, and safely no-op a second request to rebind to the same nodes. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08[PATCH] cpuset: numa_policy_rebind cleanupPaul Jackson
Cleanup, reorganize and make more robust the mempolicy.c code to rebind mempolicies relative to the containing cpuset after a tasks memory placement changes. The real motivator for this cleanup patch is to lay more groundwork for the upcoming patch to correctly rebind NUMA mempolicies that are attached to vma's after the containing cpuset memory placement changes. NUMA mempolicies are constrained by the cpuset their task is a member of. When either (1) a task is moved to a different cpuset, or (2) the 'mems' mems_allowed of a cpuset is changed, then the NUMA mempolicies have embedded node numbers (for MPOL_BIND, MPOL_INTERLEAVE and MPOL_PREFERRED) that need to be recalculated, relative to their new cpuset placement. The old code used an unreliable method of determining what was the old mems_allowed constraining the mempolicy. It just looked at the tasks mems_allowed value. This sort of worked with the present code, that just rebinds the -task- mempolicy, and leaves any -vma- mempolicies broken, referring to the old nodes. But in an upcoming patch, the vma mempolicies will be rebound as well. Then the order in which the various task and vma mempolicies are updated will no longer be deterministic, and one can no longer count on the task->mems_allowed holding the old value for as long as needed. It's not even clear if the current code was guaranteed to work reliably for task mempolicies. So I added a mems_allowed field to each mempolicy, stating exactly what mems_allowed the policy is relative to, and updated synchronously and reliably anytime that the mempolicy is rebound. Also removed a useless wrapper routine, numa_policy_rebind(), and had its caller, cpuset_update_task_memory_state(), call directly to the rewritten policy_rebind() routine, and made that rebind routine extern instead of static, and added a "mpol_" prefix to its name, making it mpol_rebind_policy(). Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08[PATCH] mempolicies: unexport get_vma_policy()Christoph Lameter
Since the numa_maps functionality is now in mempolicy.c we no longer need to export get_vma_policy(). Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08[PATCH] cpusets: swap migration interfacePaul Jackson
Add a boolean "memory_migrate" to each cpuset, represented by a file containing "0" or "1" in each directory below /dev/cpuset. It defaults to false (file contains "0"). It can be set true by writing "1" to the file. If true, then anytime that a task is attached to the cpuset so marked, the pages of that task will be moved to that cpuset, preserving, to the extent practical, the cpuset-relative placement of the pages. Also anytime that a cpuset so marked has its memory placement changed (by writing to its "mems" file), the tasks in that cpuset will have their pages moved to the cpusets new nodes, preserving, to the extent practical, the cpuset-relative placement of the moved pages. Signed-off-by: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <christoph@lameter.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08[PATCH] Swap Migration V5: sys_migrate_pages interfaceChristoph Lameter
sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08[PATCH] Swap Migration V5: MPOL_MF_MOVE interfaceChristoph Lameter
Add page migration support via swap to the NUMA policy layer This patch adds page migration support to the NUMA policy layer. An additional flag MPOL_MF_MOVE is introduced for mbind. If MPOL_MF_MOVE is specified then pages that do not conform to the memory policy will be evicted from memory. When they get pages back in new pages will be allocated following the numa policy. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06[PATCH] mm: move determination of policy_zone into page allocatorChristoph Lameter
Currently the function to build a zonelist for a BIND policy has the side effect to set the policy_zone. This seems to be a bit strange. policy zone seems to not be initialized elsewhere and therefore 0. Do we police ZONE_DMA if no bind policy has been used yet? This patch moves the determination of the zone to apply policies to into the page allocator. We determine the zone while building the zonelist for nodes. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06[PATCH] Remove old node based policy interface from mempolicy.cChristoph Lameter
mempolicy.c contains provisional interface for huge page allocation based on node numbers. This is in use in SLES9 but was never used (AFAIK) in upstream versions of Linux. Huge page allocations now use zonelists to figure out where to allocate pages. The use of zonelists allows us to find the closest hugepage which was the consideration of the NUMA distance for huge page allocations. Remove the obsolete functions. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Acked-by: William Lee Irwin III <wli@holomorphy.com> Cc: Adam Litke <agl@us.ibm.com> Acked-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06[PATCH] Add NUMA policy support for huge pages.Christoph Lameter
The huge_zonelist() function in the memory policy layer provides an list of zones ordered by NUMA distance. The hugetlb layer will walk that list looking for a zone that has available huge pages but is also in the nodeset of the current cpuset. This patch does not contain the folding of find_or_alloc_huge_page() that was controversial in the earlier discussion. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Acked-by: William Lee Irwin III <wli@holomorphy.com> Cc: Adam Litke <agl@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30[PATCH] cpusets: automatic numa mempolicy rebindingPaul Jackson
This patch automatically updates a tasks NUMA mempolicy when its cpuset memory placement changes. It does so within the context of the task, without any need to support low level external mempolicy manipulation. If a system is not using cpusets, or if running on a system with just the root (all-encompassing) cpuset, then this remap is a no-op. Only when a task is moved between cpusets, or a cpusets memory placement is changed does the following apply. Otherwise, the main routine below, rebind_policy() is not even called. When mixing cpusets, scheduler affinity, and NUMA mempolicies, the essential role of cpusets is to place jobs (several related tasks) on a set of CPUs and Memory Nodes, the essential role of sched_setaffinity is to manage a jobs processor placement within its allowed cpuset, and the essential role of NUMA mempolicy (mbind, set_mempolicy) is to manage a jobs memory placement within its allowed cpuset. However, CPU affinity and NUMA memory placement are managed within the kernel using absolute system wide numbering, not cpuset relative numbering. This is ok until a job is migrated to a different cpuset, or what's the same, a jobs cpuset is moved to different CPUs and Memory Nodes. Then the CPU affinity and NUMA memory placement of the tasks in the job need to be updated, to preserve their cpuset-relative position. This can be done for CPU affinity using sched_setaffinity() from user code, as one task can modify anothers CPU affinity. This cannot be done from an external task for NUMA memory placement, as that can only be modified in the context of the task using it. However, it easy enough to remap a tasks NUMA mempolicy automatically when a task is migrated, using the existing cpuset mechanism to trigger a refresh of a tasks memory placement after its cpuset has changed. All that is needed is the old and new nodemask, and notice to the task that it needs to rebind its mempolicy. The tasks mems_allowed has the old mask, the tasks cpuset has the new mask, and the existing cpuset_update_current_mems_allowed() mechanism provides the notice. The bitmap/cpumask/nodemask remap operators provide the cpuset relative calculations. This patch leaves open a couple of issues: 1) Updating vma and shmfs/tmpfs/hugetlbfs memory policies: These mempolicies may reference nodes outside of those allowed to the current task by its cpuset. Tasks are migrated as part of jobs, which reside on what might be several cpusets in a subtree. When such a job is migrated, all NUMA memory policy references to nodes within that cpuset subtree should be translated, and references to any nodes outside that subtree should be left untouched. A future patch will provide the cpuset mechanism needed to mark such subtrees. With that patch, we will be able to correctly migrate these other memory policies across a job migration. 2) Updating cpuset, affinity and memory policies in user space: This is harder. Any placement state stored in user space using system-wide numbering will be invalidated across a migration. More work will be required to provide user code with a migration-safe means to manage its cpuset relative placement, while preserving the current API's that pass system wide numbers, not cpuset relative numbers across the kernel-user boundary. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29[PATCH] mm: update comments to pte lockHugh Dickins
Updated several references to page_table_lock in common code comments. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29[PATCH] Convert mempolicies to nodemask_tAndi Kleen
The NUMA policy code predated nodemask_t so it used open coded bitmaps. Convert everything to nodemask_t. Big patch, but shouldn't have any actual behaviour changes (except I removed one unnecessary check against node_online_map and one unnecessary BUG_ON) Signed-off-by: "Andi Kleen" <ak@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>