Age | Commit message (Collapse) | Author |
|
add_timer_on() can add a timer on a CPU which is currently in a long
idle sleep, but the timer wheel is not reevaluated by the nohz code on
that CPU. So a timer can be delayed for quite a long time. This
triggered a false positive in the clocksource watchdog code.
To avoid this we need to wake up the idle CPU and enforce the
reevaluation of the timer wheel for the next timer event.
Add a function, which checks a given CPU for idle state, marks the
idle task with NEED_RESCHED and sends a reschedule IPI to notify the
other CPU of the change in the timer wheel.
Call this function from add_timer_on().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: stable@kernel.org
--
include/linux/sched.h | 6 ++++++
kernel/sched.c | 43 +++++++++++++++++++++++++++++++++++++++++++
kernel/timer.c | 10 +++++++++-
3 files changed, 58 insertions(+), 1 deletion(-)
|
|
Needed so it can be called from outside of sched.c.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
improve affine wakeups. Maintain the 'overlap' metric based on CFS's
sum_exec_runtime - which means the amount of time a task executes
after it wakes up some other task.
Use the 'overlap' for the wakeup decisions: if the 'overlap' is short,
it means there's strong workload coupling between this task and the
woken up task. If the 'overlap' is large then the workload is decoupled
and the scheduler will move them to separate CPUs more easily.
( Also slightly move the preempt_check within try_to_wake_up() - this has
no effect on functionality but allows 'early wakeups' (for still-on-rq
tasks) to be correctly accounted as well.)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Kei Tokunaga reported an interactivity problem when moving tasks
between control groups.
Tasks would retain their old vruntime when moved between groups, this
can cause funny lags. Re-set the vruntime on group move to fit within
the new tree.
Reported-by: Kei Tokunaga <tokunaga.keiich@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
The following commits cause a number of regressions:
commit 58e2d4ca581167c2a079f4ee02be2f0bc52e8729
Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Date: Fri Jan 25 21:08:00 2008 +0100
sched: group scheduling, change how cpu load is calculated
commit 6b2d7700266b9402e12824e11e0099ae6a4a6a79
Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Date: Fri Jan 25 21:08:00 2008 +0100
sched: group scheduler, fix fairness of cpu bandwidth allocation for task groups
Namely:
- very frequent wakeups on SMP, reported by PowerTop users.
- cacheline trashing on (large) SMP
- some latencies larger than 500ms
While there is a mergeable patch to fix the latter, the former issues
are not fixable in a manner suitable for .25 (we're at -rc3 now).
Hence we revert them and try again in v2.6.26.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Tested-by: Alexey Zaytsev <alexey.zaytsev@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/peterz/linux-2.6-lockdep
* 'v2.6.25-rc3-lockdep' of git://git.kernel.org/pub/scm/linux/kernel/git/peterz/linux-2.6-lockdep:
Subject: lockdep: include all lock classes in all_lock_classes
lockdep: increase MAX_LOCK_DEPTH
|
|
Some code paths exceed the current max lock depth (XFS), so increase
this limit a bit. I looked at making this a dynamic allocated array,
but we should not advocate insane lock depths, so stay with this as
long as it works...
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Avoids sparse warnings:
kernel/sched.c:2170:17: warning: symbol 'schedule_tail' was not declared. Should it be static?
Avoids the need for an external declaration in arch/um/process.c
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
FASTCALL() is always expanded to empty, remove it.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Make the rt group scheduler compile time configurable.
Keep it experimental for now.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Change the rt_ratio interface to rt_runtime_us, to match rt_period_us.
This avoids picking a granularity for the ratio.
Extend the /sys/kernel/uids/<uid>/ interface to allow setting
the group's rt_runtime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
There's only one caller left - the kill_pgrp one - so merge these two
functions and forget the kill_pgrp_info one.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Reviewed-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
signal_struct->tsk points to the ->group_leader and thus we have the nasty
code in de_thread() which has to change it and restart ->real_timer if the
leader is changed.
Use "struct pid *leader_pid" instead. This also allows us to kill now
unneeded send_group_sig_info().
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Acked-by: Roland McGrath <roland@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
pid_vnr returns the user space pid with respect to the pid namespace the
struct pid was allocated in. What we want before we return a pid to user
space is the user space pid with respect to the pid namespace of current.
pid_vnr is a very nice optimization but because it isn't quite what we want
it is easy to use pid_vnr at times when we aren't certain the struct pid
was allocated in our pid namespace.
Currently this describes at least tiocgpgrp and tiocgsid in ttyio.c the
parent process reported in the core dumps and the parent process in
get_signal_to_deliver.
So unless the performance impact is huge having an interface that does what
we want instead of always what we want should be much more reliable and
much less error prone.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Change set_special_pids() to work with struct pid, not pid_t from global name
space. This again speedups and imho cleanups the code, also a preparation for
the next patch.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Basic setup routines, the mm_struct has a pointer to the cgroup that
it belongs to and the the page has a page_cgroup associated with it.
Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
groups_sort() can be quite long if user loads a large gid table.
This is because GROUP_AT(group_info, some_integer) uses an integer divide.
So having to do XXX thousand divides during one syscall can lead to very
high latencies. (NGROUPS_MAX=65536)
In the past (25 Mar 2006), an analog problem was found in groups_search()
(commit d74beb9f33a5f16d2965f11b275e401f225c949d ) and at that time I
changed some variables to unsigned int.
I believe that a more generic fix is to make sure NGROUPS_PER_BLOCK is
unsigned.
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The capability bounding set is a set beyond which capabilities cannot grow.
Currently cap_bset is per-system. It can be manipulated through sysctl,
but only init can add capabilities. Root can remove capabilities. By
default it includes all caps except CAP_SETPCAP.
This patch makes the bounding set per-process when file capabilities are
enabled. It is inherited at fork from parent. Noone can add elements,
CAP_SETPCAP is required to remove them.
One example use of this is to start a safer container. For instance, until
device namespaces or per-container device whitelists are introduced, it is
best to take CAP_MKNOD away from a container.
The bounding set will not affect pP and pE immediately. It will only
affect pP' and pE' after subsequent exec()s. It also does not affect pI,
and exec() does not constrain pI'. So to really start a shell with no way
of regain CAP_MKNOD, you would do
prctl(PR_CAPBSET_DROP, CAP_MKNOD);
cap_t cap = cap_get_proc();
cap_value_t caparray[1];
caparray[0] = CAP_MKNOD;
cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP);
cap_set_proc(cap);
cap_free(cap);
The following test program will get and set the bounding
set (but not pI). For instance
./bset get
(lists capabilities in bset)
./bset drop cap_net_raw
(starts shell with new bset)
(use capset, setuid binary, or binary with
file capabilities to try to increase caps)
************************************************************
cap_bound.c
************************************************************
#include <sys/prctl.h>
#include <linux/capability.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef PR_CAPBSET_READ
#define PR_CAPBSET_READ 23
#endif
#ifndef PR_CAPBSET_DROP
#define PR_CAPBSET_DROP 24
#endif
int usage(char *me)
{
printf("Usage: %s get\n", me);
printf(" %s drop <capability>\n", me);
return 1;
}
#define numcaps 32
char *captable[numcaps] = {
"cap_chown",
"cap_dac_override",
"cap_dac_read_search",
"cap_fowner",
"cap_fsetid",
"cap_kill",
"cap_setgid",
"cap_setuid",
"cap_setpcap",
"cap_linux_immutable",
"cap_net_bind_service",
"cap_net_broadcast",
"cap_net_admin",
"cap_net_raw",
"cap_ipc_lock",
"cap_ipc_owner",
"cap_sys_module",
"cap_sys_rawio",
"cap_sys_chroot",
"cap_sys_ptrace",
"cap_sys_pacct",
"cap_sys_admin",
"cap_sys_boot",
"cap_sys_nice",
"cap_sys_resource",
"cap_sys_time",
"cap_sys_tty_config",
"cap_mknod",
"cap_lease",
"cap_audit_write",
"cap_audit_control",
"cap_setfcap"
};
int getbcap(void)
{
int comma=0;
unsigned long i;
int ret;
printf("i know of %d capabilities\n", numcaps);
printf("capability bounding set:");
for (i=0; i<numcaps; i++) {
ret = prctl(PR_CAPBSET_READ, i);
if (ret < 0)
perror("prctl");
else if (ret==1)
printf("%s%s", (comma++) ? ", " : " ", captable[i]);
}
printf("\n");
return 0;
}
int capdrop(char *str)
{
unsigned long i;
int found=0;
for (i=0; i<numcaps; i++) {
if (strcmp(captable[i], str) == 0) {
found=1;
break;
}
}
if (!found)
return 1;
if (prctl(PR_CAPBSET_DROP, i)) {
perror("prctl");
return 1;
}
return 0;
}
int main(int argc, char *argv[])
{
if (argc<2)
return usage(argv[0]);
if (strcmp(argv[1], "get")==0)
return getbcap();
if (strcmp(argv[1], "drop")!=0 || argc<3)
return usage(argv[0]);
if (capdrop(argv[2])) {
printf("unknown capability\n");
return 1;
}
return execl("/bin/bash", "/bin/bash", NULL);
}
************************************************************
[serue@us.ibm.com: fix typo]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>a
Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com>
Tested-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The following replaces the earlier patches sent. It should address
David Rientjes's comments, and has been compile tested on all the
architectures that it touches, save for parisc.
For the /proc/<pid>/pagemap code[1], we need to able to query how
much virtual address space a particular task has. The trick is
that we do it through /proc and can't use TASK_SIZE since it
references "current" on some arches. The process opening the
/proc file might be a 32-bit process opening a 64-bit process's
pagemap file.
x86_64 already has a TASK_SIZE_OF() macro:
#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_IA32)) ? IA32_PAGE_OFFSET : TASK_SIZE64)
I'd like to have that for other architectures. So, add it
for all the architectures that actually use "current" in
their TASK_SIZE. For the others, just add a quick #define
in sched.h to use plain old TASK_SIZE.
1. http://www.linuxworld.com/news/2007/042407-kernel.html
- MIPS portion from Ralf Baechle <ralf@linux-mips.org>
[akpm@linux-foundation.org: fix mips build]
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Matt Mackall <mpm@selenic.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
As Roland pointed out, we have the very old problem with exec. de_thread()
sets SIGNAL_GROUP_EXIT, kills other threads, changes ->group_leader and then
clears signal->flags. All signals (even fatal ones) sent in this window
(which is not too small) will be lost.
With this patch exec doesn't abuse SIGNAL_GROUP_EXIT. signal_group_exit(),
the new helper, should be used to detect exit_group() or exec() in progress.
It can have more users, but this patch does only strictly necessary changes.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Robin Holt <holt@sgi.com>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It was dumb to make get_task_comm() return void. Change it to return a
pointer to the resulting output for caller convenience.
Cc: Ulrich Drepper <drepper@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In order to correlate audit records to an individual login add a session
id. This is incremented every time a user logs in and is included in
almost all messages which currently output the auid. The field is
labeled ses= or oses=
Signed-off-by: Eric Paris <eparis@redhat.com>
|
|
Keeping loginuid in audit_context is racy and results in messier
code. Taken to task_struct, out of the way of ->audit_context
changes.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/willy/misc
* 'task_killable' of git://git.kernel.org/pub/scm/linux/kernel/git/willy/misc: (22 commits)
Remove commented-out code copied from NFS
NFS: Switch from intr mount option to TASK_KILLABLE
Add wait_for_completion_killable
Add wait_event_killable
Add schedule_timeout_killable
Use mutex_lock_killable in vfs_readdir
Add mutex_lock_killable
Use lock_page_killable
Add lock_page_killable
Add fatal_signal_pending
Add TASK_WAKEKILL
exit: Use task_is_*
signal: Use task_is_*
sched: Use task_contributes_to_load, TASK_ALL and TASK_NORMAL
ptrace: Use task_is_*
power: Use task_is_*
wait: Use TASK_NORMAL
proc/base.c: Use task_is_*
proc/array.c: Use TASK_REPORT
perfmon: Use task_is_*
...
Fixed up conflicts in NFS/sunrpc manually..
|
|
The break_lock data structure and code for spinlocks is quite nasty.
Not only does it double the size of a spinlock but it changes locking to
a potentially less optimal trylock.
Put all of that under CONFIG_GENERIC_LOCKBREAK, and introduce a
__raw_spin_is_contended that uses the lock data itself to determine whether
there are waiters on the lock, to be used if CONFIG_GENERIC_LOCKBREAK is
not set.
Rename need_lockbreak to spin_needbreak, make it use spin_is_contended to
decouple it from the spinlock implementation, and make it typesafe (rwlocks
do not have any need_lockbreak sites -- why do they even get bloated up
with that break_lock then?).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
syslets (or other threads/processes that want io context sharing) can
set this to enforce sharing of io context.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
|
|
This is where it belongs and then it doesn't take up space for a
process that doesn't do IO.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
|
|
Right now, the linux kernel (with scheduler statistics enabled) keeps track
of the maximum time a process is waiting to be scheduled. While the maximum
is a very useful metric, tracking average and total is equally useful
(at least for latencytop) to figure out the accumulated effect of scheduler
delays. The accumulated effect is important to judge the performance impact
of scheduler tuning/behavior.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
fix softlockup tunables signedness.
mark tunables read-mostly.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
LatencyTOP kernel infrastructure; it measures latencies in the
scheduler and tracks it system wide and per process.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
We need to teach no_hz about the rt throttling because its tick driven.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Extend group scheduling to also cover the realtime classes. It uses the time
limiting introduced by the previous patch to allow multiple realtime groups.
The hard time limit is required to keep behaviour deterministic.
The algorithms used make the realtime scheduler O(tg), linear scaling wrt the
number of task groups. This is the worst case behaviour I can't seem to get out
of, the avg. case of the algorithms can be improved, I focused on correctness
and worst case.
[ akpm@linux-foundation.org: move side-effects out of BUG_ON(). ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Very simple time limit on the realtime scheduling classes.
Allow the rq's realtime class to consume sched_rt_ratio of every
sched_rt_period slice. If the class exceeds this quota the fair class
will preempt the realtime class.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Use HR-timers (when available) to deliver an accurate preemption tick.
The regular scheduler tick that runs at 1/HZ can be too coarse when nice
level are used. The fairness system will still keep the cpu utilisation 'fair'
by then delaying the task that got an excessive amount of CPU time but try to
minimize this by delivering preemption points spot-on.
The average frequency of this extra interrupt is sched_latency / nr_latency.
Which need not be higher than 1/HZ, its just that the distribution within the
sched_latency period is important.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Why do we even have cond_resched when real preemption
is on? It seems to be a waste of space and time.
remove cond_resched with CONFIG_PREEMPT on.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Introduce a new rlimit that allows the user to set a runtime timeout on
real-time tasks their slice. Once this limit is exceeded the task will receive
SIGXCPU.
So it measures runtime since the last sleep.
Input and ideas by Thomas Gleixner and Lennart Poettering.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Lennart Poettering <mzxreary@0pointer.de>
CC: Michael Kerrisk <mtk.manpages@googlemail.com>
CC: Ulrich Drepper <drepper@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Move the task_struct members specific to rt scheduling together.
A future optimization could be to put sched_entity and sched_rt_entity
into a union.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
This patch implements a new version of RCU which allows its read-side
critical sections to be preempted. It uses a set of counter pairs
to keep track of the read-side critical sections and flips them
when all tasks exit read-side critical section. The details
of this implementation can be found in this paper -
http://www.rdrop.com/users/paulmck/RCU/OLSrtRCU.2006.08.11a.pdf
and the article-
http://lwn.net/Articles/253651/
This patch was developed as a part of the -rt kernel development and
meant to provide better latencies when read-side critical sections of
RCU don't disable preemption. As a consequence of keeping track of RCU
readers, the readers have a slight overhead (optimizations in the paper).
This implementation co-exists with the "classic" RCU implementations
and can be switched to at compiler.
Also includes RCU tracing summarized in debugfs.
[ akpm@linux-foundation.org: build fixes on non-preempt architectures ]
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Dipankar Sarma <dipankar@in.ibm.com>
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Reviewed-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Dmitry Adamushko found that the current implementation of the RT
balancing code left out changes to the sched_setscheduler and
rt_mutex_setprio.
This patch addresses this issue by adding methods to the schedule classes
to handle being switched out of (switched_from) and being switched into
(switched_to) a sched_class. Also a method for changing of priorities
is also added (prio_changed).
This patch also removes some duplicate logic between rt_mutex_setprio and
sched_setscheduler.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
To make the main sched.c code more agnostic to the schedule classes.
Instead of having specific hooks in the schedule code for the RT class
balancing. They are replaced with a pre_schedule, post_schedule
and task_wake_up methods. These methods may be used by any of the classes
but currently, only the sched_rt class implements them.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
We add the notion of a root-domain which will be used later to rescope
global variables to per-domain variables. Each exclusive cpuset
essentially defines an island domain by fully partitioning the member cpus
from any other cpuset. However, we currently still maintain some
policy/state as global variables which transcend all cpusets. Consider,
for instance, rt-overload state.
Whenever a new exclusive cpuset is created, we also create a new
root-domain object and move each cpu member to the root-domain's span.
By default the system creates a single root-domain with all cpus as
members (mimicking the global state we have today).
We add some plumbing for storing class specific data in our root-domain.
Whenever a RQ is switching root-domains (because of repartitioning) we
give each sched_class the opportunity to remove any state from its old
domain and add state to the new one. This logic doesn't have any clients
yet but it will later in the series.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
CC: Christoph Lameter <clameter@sgi.com>
CC: Paul Jackson <pj@sgi.com>
CC: Simon Derr <simon.derr@bull.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
The current wake-up code path tries to determine if it can optimize the
wake-up to "this_cpu" by computing load calculations. The problem is that
these calculations are only relevant to SCHED_OTHER tasks where load is king.
For RT tasks, priority is king. So the load calculation is completely wasted
bandwidth.
Therefore, we create a new sched_class interface to help with
pre-wakeup routing decisions and move the load calculation as a function
of CFS task's class.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Some RT tasks (particularly kthreads) are bound to one specific CPU.
It is fairly common for two or more bound tasks to get queued up at the
same time. Consider, for instance, softirq_timer and softirq_sched. A
timer goes off in an ISR which schedules softirq_thread to run at RT50.
Then the timer handler determines that it's time to smp-rebalance the
system so it schedules softirq_sched to run. So we are in a situation
where we have two RT50 tasks queued, and the system will go into
rt-overload condition to request other CPUs for help.
This causes two problems in the current code:
1) If a high-priority bound task and a low-priority unbounded task queue
up behind the running task, we will fail to ever relocate the unbounded
task because we terminate the search on the first unmovable task.
2) We spend precious futile cycles in the fast-path trying to pull
overloaded tasks over. It is therefore optimial to strive to avoid the
overhead all together if we can cheaply detect the condition before
overload even occurs.
This patch tries to achieve this optimization by utilizing the hamming
weight of the task->cpus_allowed mask. A weight of 1 indicates that
the task cannot be migrated. We will then utilize this information to
skip non-migratable tasks and to eliminate uncessary rebalance attempts.
We introduce a per-rq variable to count the number of migratable tasks
that are currently running. We only go into overload if we have more
than one rt task, AND at least one of them is migratable.
In addition, we introduce a per-task variable to cache the cpus_allowed
weight, since the hamming calculation is probably relatively expensive.
We only update the cached value when the mask is updated which should be
relatively infrequent, especially compared to scheduling frequency
in the fast path.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
this patch extends the soft-lockup detector to automatically
detect hung TASK_UNINTERRUPTIBLE tasks. Such hung tasks are
printed the following way:
------------------>
INFO: task prctl:3042 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message
prctl D fd5e3793 0 3042 2997
f6050f38 00000046 00000001 fd5e3793 00000009 c06d8264 c06dae80 00000286
f6050f40 f6050f00 f7d34d90 f7d34fc8 c1e1be80 00000001 f6050000 00000000
f7e92d00 00000286 f6050f18 c0489d1a f6050f40 00006605 00000000 c0133a5b
Call Trace:
[<c04883a5>] schedule_timeout+0x6d/0x8b
[<c04883d8>] schedule_timeout_uninterruptible+0x15/0x17
[<c0133a76>] msleep+0x10/0x16
[<c0138974>] sys_prctl+0x30/0x1e2
[<c0104c52>] sysenter_past_esp+0x5f/0xa5
=======================
2 locks held by prctl/3042:
#0: (&sb->s_type->i_mutex_key#5){--..}, at: [<c0197d11>] do_fsync+0x38/0x7a
#1: (jbd_handle){--..}, at: [<c01ca3d2>] journal_start+0xc7/0xe9
<------------------
the current default timeout is 120 seconds. Such messages are printed
up to 10 times per bootup. If the system has crashed already then the
messages are not printed.
if lockdep is enabled then all held locks are printed as well.
this feature is a natural extension to the softlockup-detector (kernel
locked up without scheduling) and to the NMI watchdog (kernel locked up
with IRQs disabled).
[ Gautham R Shenoy <ego@in.ibm.com>: CPU hotplug fixes. ]
[ Andrew Morton <akpm@linux-foundation.org>: build warning fix. ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
|
|
The current load balancing scheme isn't good enough for precise
group fairness.
For example: on a 8-cpu system, I created 3 groups as under:
a = 8 tasks (cpu.shares = 1024)
b = 4 tasks (cpu.shares = 1024)
c = 3 tasks (cpu.shares = 1024)
a, b and c are task groups that have equal weight. We would expect each
of the groups to receive 33.33% of cpu bandwidth under a fair scheduler.
This is what I get with the latest scheduler git tree:
Signed-off-by: Ingo Molnar <mingo@elte.hu>
--------------------------------------------------------------------------------
Col1 | Col2 | Col3 | Col4
------|---------|-------|-------------------------------------------------------
a | 277.676 | 57.8% | 54.1% 54.1% 54.1% 54.2% 56.7% 62.2% 62.8% 64.5%
b | 116.108 | 24.2% | 47.4% 48.1% 48.7% 49.3%
c | 86.326 | 18.0% | 47.5% 47.9% 48.5%
--------------------------------------------------------------------------------
Explanation of o/p:
Col1 -> Group name
Col2 -> Cumulative execution time (in seconds) received by all tasks of that
group in a 60sec window across 8 cpus
Col3 -> CPU bandwidth received by the group in the 60sec window, expressed in
percentage. Col3 data is derived as:
Col3 = 100 * Col2 / (NR_CPUS * 60)
Col4 -> CPU bandwidth received by each individual task of the group.
Col4 = 100 * cpu_time_recd_by_task / 60
[I can share the test case that produces a similar o/p if reqd]
The deviation from desired group fairness is as below:
a = +24.47%
b = -9.13%
c = -15.33%
which is quite high.
After the patch below is applied, here are the results:
--------------------------------------------------------------------------------
Col1 | Col2 | Col3 | Col4
------|---------|-------|-------------------------------------------------------
a | 163.112 | 34.0% | 33.2% 33.4% 33.5% 33.5% 33.7% 34.4% 34.8% 35.3%
b | 156.220 | 32.5% | 63.3% 64.5% 66.1% 66.5%
c | 160.653 | 33.5% | 85.8% 90.6% 91.4%
--------------------------------------------------------------------------------
Deviation from desired group fairness is as below:
a = +0.67%
b = -0.83%
c = +0.17%
which is far better IMO. Most of other runs have yielded a deviation within
+-2% at the most, which is good.
Why do we see bad (group) fairness with current scheuler?
=========================================================
Currently cpu's weight is just the summation of individual task weights.
This can yield incorrect results. For ex: consider three groups as below
on a 2-cpu system:
CPU0 CPU1
---------------------------
A (10) B(5)
C(5)
---------------------------
Group A has 10 tasks, all on CPU0, Group B and C have 5 tasks each all
of which are on CPU1. Each task has the same weight (NICE_0_LOAD =
1024).
The current scheme would yield a cpu weight of 10240 (10*1024) for each cpu and
the load balancer will think both CPUs are perfectly balanced and won't
move around any tasks. This, however, would yield this bandwidth:
A = 50%
B = 25%
C = 25%
which is not the desired result.
What's changing in the patch?
=============================
- How cpu weights are calculated when CONFIF_FAIR_GROUP_SCHED is
defined (see below)
- API Change
- Two tunables introduced in sysfs (under SCHED_DEBUG) to
control the frequency at which the load balance monitor
thread runs.
The basic change made in this patch is how cpu weight (rq->load.weight) is
calculated. Its now calculated as the summation of group weights on a cpu,
rather than summation of task weights. Weight exerted by a group on a
cpu is dependent on the shares allocated to it and also the number of
tasks the group has on that cpu compared to the total number of
(runnable) tasks the group has in the system.
Let,
W(K,i) = Weight of group K on cpu i
T(K,i) = Task load present in group K's cfs_rq on cpu i
T(K) = Total task load of group K across various cpus
S(K) = Shares allocated to group K
NRCPUS = Number of online cpus in the scheduler domain to
which group K is assigned.
Then,
W(K,i) = S(K) * NRCPUS * T(K,i) / T(K)
A load balance monitor thread is created at bootup, which periodically
runs and adjusts group's weight on each cpu. To avoid its overhead, two
min/max tunables are introduced (under SCHED_DEBUG) to control the rate
at which it runs.
Fixes from: Peter Zijlstra <a.p.zijlstra@chello.nl>
- don't start the load_balance_monitor when there is only a single cpu.
- rename the kthread because its currently longer than TASK_COMM_LEN
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Clean up the use of ksets and kobjects. Kobjects are instances of
objects (like struct user_info), ksets are collections of objects of a
similar type (like the uids directory containing the user_info directories).
So, use kobjects for the user_info directories, and a kset for the "uids"
directory.
On object cleanup, the final kobject_put() was missing.
Cc: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
task_ppid_nr_ns is called in three places. One of these should never
have called it. In the other two, using it broke the existing
semantics. This was presumably accidental. If the function had not
been there, it would have been much more obvious to the eye that those
patches were changing the behavior. We don't need this function.
In task_state, the pid of the ptracer is not the ppid of the ptracer.
In do_task_stat, ppid is the tgid of the real_parent, not its pid.
I also moved the call outside of lock_task_sighand, since it doesn't
need it.
In sys_getppid, ppid is the tgid of the real_parent, not its pid.
Signed-off-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
|
|
Like signal_pending, but it's only true for signals which are fatal to
this process
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
|