Age | Commit message (Collapse) | Author |
|
All usages of structure net_proto_ops should be declared const.
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Implement all issues related to RemoteBusy in the RECV state table.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
When using DEFER_SETUP on a RFCOMM socket, a SABM frame triggers
authorization which when rejected send a DM response. This is fine
according to the RFCOMM spec:
the responding implementation may replace the "proper" response
on the Multiplexer Control channel with a DM frame, sent on the
referenced DLCI to indicate that the DLCI is not open, and that
the responder would not grant a request to open it later either.
But some stacks doesn't seems to cope with this leaving DLCI 0 open after
receiving DM frame.
To fix it properly a timer was introduced to rfcomm_session which is used
to set a timeout when the last active DLC of a session is unlinked, this
will give the remote stack some time to reply with a proper DISC frame on
DLCI 0 avoiding both sides sending DISC to each other on stacks that
follow the specification and taking care of those who don't by taking
down DLCI 0.
Signed-off-by: Luiz Augusto von Dentz <luiz.dentz@openbossa.org>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Support for receiving of SREJ frames as specified by the state table.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
When L2CAP loses an I-frame we send a SREJ frame to the transmitter side
requesting the lost packet. This patch implement all Recv I-frame events
on SREJ_SENT state table except the ones that deal with SendRej (the REJ
exception at receiver side is yet not implemented).
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Implement CRC16 check for L2CAP packets. FCS is used by Streaming Mode and
Enhanced Retransmission Mode and is a extra check for the packet content.
Using CRC16 is the default, L2CAP won't use FCS only when both side send
a "No FCS" request.
Initially based on a patch from Nathan Holstein <nathan@lampreynetworks.com>
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
L2CAP uses retransmission and monitor timers to inquiry the other side
about unacked I-frames. After sending each I-frame we (re)start the
retransmission timer. If it expires, we start a monitor timer that send a
S-frame with P bit set and wait for S-frame with F bit set. If monitor
timer expires, try again, at a maximum of L2CAP_DEFAULT_MAX_TX.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
When receiving an I-frame with unexpected txSeq, receiver side start the
recovery procedure by sending a REJ S-frame to the transmitter side. So
the transmitter can re-send the lost I-frame.
This patch just adds a basic support for retransmission, it doesn't
mean that ERTM now has full support for packet retransmission.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
ERTM should use Segmentation and Reassembly to break down a SDU in many
PDUs on sending data to the other side.
On sending packets we queue all 'segments' until end of segmentation and
just the add them to the queue for sending. On receiving we create a new
SKB with the SDU reassembled.
Initially based on a patch from Nathan Holstein <nathan@lampreynetworks.com>
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
This patch adds support for ERTM transfers, without retransmission, with
txWindow up to 63 and with acknowledgement of packets received. Now the
packets are queued before call l2cap_do_send(), so packets couldn't be
sent at the time we call l2cap_sock_sendmsg(). They will be sent in
an asynchronous way on later calls of l2cap_ertm_send(). Besides if an
error occurs on calling l2cap_do_send() we disconnect the channel.
Initially based on a patch from Nathan Holstein <nathan@lampreynetworks.com>
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Add support to config_req and config_rsp to configure ERTM and Streaming
mode. If the remote device specifies ERTM or Streaming mode, then the
same mode is proposed. Otherwise ERTM or Basic mode is used. And in case
of a state 2 device, the remote device should propose the same mode. If
not, then the channel gets disconnected.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
To enable Enhanced Retransmission mode it needs to be set via a socket
option. A different mode can be set on a socket, but on listen() and
connect() the mode is checked and ERTM is only allowed if it is enabled
via the module parameter.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
hdev->req_lock is used as mutex so make it a mutex.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The device model itself has no real usable reference counting at the
moment and this causes problems if parents are deleted before their
children. The device model itself handles the memory details of this
correctly, but the uevent order is not consistent. This causes various
problems for systems like HAL or even X.
So until device_put() does a proper cleanup, the device for Bluetooth
connection will be protected with an extra reference counting to ensure
the correct order of uevents when connections are terminated.
This is not an automatic feature. Higher Bluetooth layers like HIDP or
BNEP should grab this new reference to ensure that their uevents are
send before the ones from the parent device.
Based on a report by Brian Rogers <brian@xyzw.org>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
rfcomm tty may be used before rfcomm_tty_driver initilized,
The problem is that now socket layer init before tty layer, if userspace
program do socket callback right here then oops will happen.
reporting in:
http://marc.info/?l=linux-bluetooth&m=124404919324542&w=2
make 3 changes:
1. remove #ifdef in rfcomm/core.c,
make it blank function when rfcomm tty not selected in rfcomm.h
2. tune the rfcomm_init error patch to ensure
tty driver initilized before rfcomm socket usage.
3. remove __exit for rfcomm_cleanup_sockets
because above change need call it in a __init function.
Reported-by: Oliver Hartkopp <oliver@hartkopp.net>
Tested-by: Oliver Hartkopp <oliver@hartkopp.net>
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/holtmann/bluetooth-next-2.6
|
|
Furthermore, it twiddles with the details of SKB list handling
directly, which we're trying to eliminate.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
With the re-write of the RFKILL subsystem it is now possible to easily
integrate RFKILL soft-switch support into the Bluetooth subsystem. All
Bluetooth devices will now get automatically RFKILL support.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The Bluetooth source uses some endian conversion helpers, that in the end
translate to kernel standard routines. So remove this obfuscation since it
is fully pointless.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
This adds the basic constants required to add support for L2CAP Enhanced
Retransmission feature.
Based on a patch from Nathan Holstein <nathan@lampreynetworks.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Using the L2CAP_CONF_HINT macro is easier to understand than using a
hardcoded 0x80 value.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Use macros instead of hardcoded numbers to make the L2CAP source code
more readable.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Due to a semantic changes in flush_workqueue() the current approach of
synchronizing the sysfs handling for connections doesn't work anymore. The
whole approach is actually fully broken and based on assumptions that are
no longer valid.
With the introduction of Simple Pairing support, the creation of low-level
ACL links got changed. This change invalidates the reason why in the past
two independent work queues have been used for adding/removing sysfs
devices. The adding of the actual sysfs device is now postponed until the
host controller successfully assigns an unique handle to that link. So
the real synchronization happens inside the controller and not the host.
The only left-over problem is that some internals of the sysfs device
handling are not initialized ahead of time. This leaves potential access
to invalid data and can cause various NULL pointer dereferences. To fix
this a new function makes sure that all sysfs details are initialized
when an connection attempt is made. The actual sysfs device is only
registered when the connection has been successfully established. To
avoid a race condition with the registration, the check if a device is
registered has been moved into the removal work.
As an extra protection two flush_work() calls are left in place to
make sure a previous add/del work has been completed first.
Based on a report by Marc Pignat <marc.pignat@hevs.ch>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Tested-by: Justin P. Mattock <justinmattock@gmail.com>
Tested-by: Roger Quadros <ext-roger.quadros@nokia.com>
Tested-by: Marc Pignat <marc.pignat@hevs.ch>
|
|
The Bluetooth stack uses a reference counting for all established ACL
links and if no user (L2CAP connection) is present, the link will be
terminated to save power. The problem part is the dedicated pairing
when using Legacy Pairing (Bluetooth 2.0 and before). At that point
no user is present and pairing attempts will be disconnected within
10 seconds or less. In previous kernel version this was not a problem
since the disconnect timeout wasn't triggered on incoming connections
for the first time. However this caused issues with broken host stacks
that kept the connections around after dedicated pairing. When the
support for Simple Pairing got added, the link establishment procedure
needed to be changed and now causes issues when using Legacy Pairing
When using Simple Pairing it is possible to do a proper reference
counting of ACL link users. With Legacy Pairing this is not possible
since the specification is unclear in some areas and too many broken
Bluetooth devices have already been deployed. So instead of trying to
deal with all the broken devices, a special pairing timeout will be
introduced that increases the timeout to 60 seconds when pairing is
triggered.
If a broken devices now puts the stack into an unforeseen state, the
worst that happens is the disconnect timeout triggers after 120 seconds
instead of 4 seconds. This allows successful pairings with legacy and
broken devices now.
Based on a report by Johan Hedberg <johan.hedberg@nokia.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Use a different work_struct variables for add_conn() and del_conn() and
use single work queue instead of two for adding and deleting connections.
It eliminates the following error on a preemptible kernel:
[ 204.358032] Unable to handle kernel NULL pointer dereference at virtual address 0000000c
[ 204.370697] pgd = c0004000
[ 204.373443] [0000000c] *pgd=00000000
[ 204.378601] Internal error: Oops: 17 [#1] PREEMPT
[ 204.383361] Modules linked in: vfat fat rfcomm sco l2cap sd_mod scsi_mod iphb pvr2d drm omaplfb ps
[ 204.438537] CPU: 0 Not tainted (2.6.28-maemo2 #1)
[ 204.443664] PC is at klist_put+0x2c/0xb4
[ 204.447601] LR is at klist_put+0x18/0xb4
[ 204.451568] pc : [<c0270f08>] lr : [<c0270ef4>] psr: a0000113
[ 204.451568] sp : cf1b3f10 ip : cf1b3f10 fp : cf1b3f2c
[ 204.463104] r10: 00000000 r9 : 00000000 r8 : bf08029c
[ 204.468353] r7 : c7869200 r6 : cfbe2690 r5 : c78692c8 r4 : 00000001
[ 204.474945] r3 : 00000001 r2 : cf1b2000 r1 : 00000001 r0 : 00000000
[ 204.481506] Flags: NzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment kernel
[ 204.488861] Control: 10c5387d Table: 887fc018 DAC: 00000017
[ 204.494628] Process btdelconn (pid: 515, stack limit = 0xcf1b22e0)
Signed-off-by: Roger Quadros <ext-roger.quadros@nokia.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Some of the qualification tests demand that in case of failures in L2CAP
the HCI disconnect should indicate a reason why L2CAP fails. This is a
bluntly layer violation since multiple L2CAP connections could be using
the same ACL and thus forcing a disconnect reason is not a good idea.
To comply with the Bluetooth test specification, the disconnect reason
is now stored in the L2CAP connection structure and every time a new
L2CAP channel is added it will set back to its default. So only in the
case where the L2CAP channel with the disconnect reason is really the
last one, it will propagated to the HCI layer.
The HCI layer has been extended with a disconnect indication that allows
it to ask upper layers for a disconnect reason. The upper layer must not
support this callback and in that case it will nicely default to the
existing behavior. If an upper layer like L2CAP can provide a disconnect
reason that one will be used to disconnect the ACL or SCO link.
No modification to the ACL disconnect timeout have been made. So in case
of Linux to Linux connection the initiator will disconnect the ACL link
before the acceptor side can signal the specific disconnect reason. That
is perfectly fine since Linux doesn't make use of this value anyway. The
L2CAP layer has a perfect valid error code for rejecting connection due
to a security violation. It is unclear why the Bluetooth specification
insists on having specific HCI disconnect reason.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
In preparation for L2CAP fixed channel support, the CID value of a
L2CAP connection needs to be accessible via the socket interface. The
CID is the connection identifier and exists as source and destination
value. So extend the L2CAP socket address structure with this field and
change getsockname() and getpeername() to fill it in.
The bind() and connect() functions have been modified to handle L2CAP
socket address structures of variable sizes. This makes them future
proof if additional fields need to be added.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
If the extended features mask indicates support for fixed channels,
request the list of available fixed channels. This also enables the
fixed channel features bit so remote implementations can request
information about it. Currently only the signal channel will be
listed.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The recommendation for the L2CAP PSM 1 (SDP) is to not use any kind
of authentication or encryption. So don't trigger authentication
for incoming and outgoing SDP connections.
For L2CAP PSM 3 (RFCOMM) there is no clear requirement, but with
Bluetooth 2.1 the initiator is required to enable authentication
and encryption first and this gets enforced. So there is no need
to trigger an additional authentication step. The RFCOMM service
security will make sure that a secure enough link key is present.
When the encryption gets enabled after the SDP connection setup,
then switch the security level from SDP to low security.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
If the remote L2CAP server uses authentication pending stage and
encryption is enabled it can happen that a L2CAP connection request is
sent twice due to a race condition in the connection state machine.
When the remote side indicates any kind of connection pending, then
track this state and skip sending of L2CAP commands for this period.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
When two L2CAP connections are requested quickly after the ACL link has
been established there exists a window for a race condition where a
connection request is sent before the information response has been
received. Any connection request should only be sent after an exchange
of the extended features mask has been finished.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
When receiving incoming connection to specific services, always use
general bonding. This ensures that the link key gets stored and can be
used for further authentications.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
When attempting to setup eSCO connections it can happen that some link
manager implementations fail to properly negotiate the eSCO parameters
and thus fail the eSCO setup. Normally the link manager is responsible
for the negotiation of the parameters and actually fallback to SCO if
no agreement can be reached. In cases where the link manager is just too
stupid, then at least try to establish a SCO link if eSCO fails.
For the Bluetooth devices with EDR support this includes handling packet
types of EDR basebands. This is particular tricky since for the EDR the
logic of enabling/disabling one specific packet type is turned around.
This fix contains an extra bitmask to disable eSCO EDR packet when
trying to fallback to a SCO connection.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
A role switch with devices following the Bluetooth pre-2.1 standards
or without Encryption Pause and Resume support is not possible if
encryption is enabled. Most newer headsets require the role switch,
but also require that the connection is encrypted.
For connections with a high security mode setting, the link will be
immediately dropped. When the connection uses medium security mode
setting, then a grace period is introduced where the TX is halted and
the remote device gets a change to re-enable encryption after the
role switch. If not re-enabled the link will be dropped.
Based on initial work by Ville Tervo <ville.tervo@nokia.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Change the RFCOMM internals to use the new security levels and remove
the link mode details.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Change the L2CAP internals to use the new security levels and remove
the link mode details.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The current security model is based around the flags AUTH, ENCRYPT and
SECURE. Starting with support for the Bluetooth 2.1 specification this is
no longer sufficient. The different security levels are now defined as
SDP, LOW, MEDIUM and SECURE.
Previously it was possible to set each security independently, but this
actually doesn't make a lot of sense. For Bluetooth the encryption depends
on a previous successful authentication. Also you can only update your
existing link key if you successfully created at least one before. And of
course the update of link keys without having proper encryption in place
is a security issue.
The new security levels from the Bluetooth 2.1 specification are now
used internally. All old settings are mapped to the new values and this
way it ensures that old applications still work. The only limitation
is that it is no longer possible to set authentication without also
enabling encryption. No application should have done this anyway since
this is actually a security issue. Without encryption the integrity of
the authentication can't be guaranteed.
As default for a new L2CAP or RFCOMM connection, the LOW security level
is used. The only exception here are the service discovery sessions on
PSM 1 where SDP level is used. To have similar security strength as with
a Bluetooth 2.0 and before combination key, the MEDIUM level should be
used. This is according to the Bluetooth specification. The MEDIUM level
will not require any kind of man-in-the-middle (MITM) protection. Only
the HIGH security level will require this.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
In order to decide if listening RFCOMM sockets should be accept()ed
the BD_ADDR of the remote device needs to be known. This patch adds
a socket option which defines a timeout for deferring the actual
connection setup.
The connection setup is done after reading from the socket for the
first time. Until then writing to the socket returns ENOTCONN.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The L2CAP and RFCOMM applications require support for authorization
and the ability of rejecting incoming connection requests. The socket
interface is not really able to support this.
This patch does the ground work for a socket option to defer connection
setup. Setting this option allows calling of accept() and then the
first read() will trigger the final connection setup. Calling close()
would reject the connection.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
With the introduction of CONFIG_DYNAMIC_PRINTK_DEBUG it is possible to
allow debugging without having to recompile the kernel. This patch turns
all BT_DBG() calls into pr_debug() to support dynamic debug messages.
As a side effect all CONFIG_BT_*_DEBUG statements are now removed and
some broken debug entries have been fixed.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The Bluetooth subsystem was not using the HCI Reset command when doing
device initialization. The Bluetooth 1.0b specification was ambiguous
on how the device firmware was suppose to handle it. Almost every device
was triggering a transport reset at the same time. In case of USB this
ended up in disconnects from the bus.
All modern Bluetooth dongles handle this perfectly fine and a lot of
them actually require that HCI Reset is sent. If not then they are
either stuck in their HID Proxy mode or their internal structures for
inquiry and paging are not correctly setup.
To handle old and new devices smoothly the Bluetooth subsystem contains
a quirk to force the HCI Reset on initialization. However maintaining
such a quirk becomes more and more complicated. This patch turns the
logic around and lets the old devices disable the HCI Reset command.
The only device where the HCI_QUIRK_NO_RESET is still needed are the
original Digianswer devices and dongles with an early CSR firmware.
CSR reported that they fixed this for version 12 firmware. The last
official release of version 11 firmware is build ID 115. The first
version 12 candidate was build ID 117.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
__FUNCTION__ is gcc-specific, use __func__
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The Security Mode 4 of the Bluetooth 2.1 specification has strict
authentication and encryption requirements. It is the initiators job
to create a secure ACL link. However in case of malicious devices, the
acceptor has to make sure that the ACL is encrypted before allowing
any kind of L2CAP connection. The only exception here is the PSM 1 for
the service discovery protocol, because that is allowed to run on an
insecure ACL link.
Previously it was enough to reject a L2CAP connection during the
connection setup phase, but with Bluetooth 2.1 it is forbidden to
do any L2CAP protocol exchange on an insecure link (except SDP).
The new hci_conn_check_link_mode() function can be used to check the
integrity of an ACL link. This functions also takes care of the cases
where Security Mode 4 is disabled or one of the devices is based on
an older specification.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
With the introduction of Security Mode 4 and Simple Pairing from the
Bluetooth 2.1 specification it became mandatory that the initiator
requires authentication and encryption before any L2CAP channel can
be established. The only exception here is PSM 1 for the service
discovery protocol (SDP). It is meant to be used without any encryption
since it contains only public information. This is how Bluetooth 2.0
and before handle connections on PSM 1.
For Bluetooth 2.1 devices the pairing procedure differentiates between
no bonding, general bonding and dedicated bonding. The L2CAP layer
wrongly uses always general bonding when creating new connections, but it
should not do this for SDP connections. In this case the authentication
requirement should be no bonding and the just-works model should be used,
but in case of non-SDP connection it is required to use general bonding.
If the new connection requires man-in-the-middle (MITM) protection, it
also first wrongly creates an unauthenticated link key and then later on
requests an upgrade to an authenticated link key to provide full MITM
protection. With Simple Pairing the link key generation is an expensive
operation (compared to Bluetooth 2.0 and before) and doing this twice
during a connection setup causes a noticeable delay when establishing
a new connection. This should be avoided to not regress from the expected
Bluetooth 2.0 connection times. The authentication requirements are known
up-front and so enforce them.
To fulfill these requirements the hci_connect() function has been extended
with an authentication requirement parameter that will be stored inside
the connection information and can be retrieved by userspace at any
time. This allows the correct IO capabilities exchange and results in
the expected behavior.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
When switching a RFCOMM socket to a TTY, the remote modem status might
be needed later. Currently it is lost since the original configuration
is done via the socket interface. So store the modem status and reply
it when the socket has been converted to a TTY.
Signed-off-by: Denis Kenzior <denis.kenzior@trolltech.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Enable the common timestamp functionality that the network subsystem
provides for L2CAP, RFCOMM and SCO sockets. It is possible to either
use SO_TIMESTAMP or the IOCTLs to retrieve the timestamp of the
current packet.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
With the Simple Pairing support, the authentication requirements are
an explicit setting during the bonding process. Track and enforce the
requirements and allow higher layers like L2CAP and RFCOMM to increase
them if needed.
This patch introduces a new IOCTL that allows to query the current
authentication requirements. It is also possible to detect Simple
Pairing support in the kernel this way.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The Bluetooth technology introduces new features on a regular basis
and for some of them it is important that the hardware on both sides
support them. For features like Simple Pairing it is important that
the host stacks on both sides have switched this feature on. To make
valid decisions, a config stage during ACL link establishment has been
introduced that retrieves remote features and if needed also the remote
extended features (known as remote host features) before signalling
this link as connected.
This change introduces full reference counting of incoming and outgoing
ACL links and the Bluetooth core will disconnect both if no owner of it
is present. To better handle interoperability during the pairing phase
the disconnect timeout for incoming connections has been increased to
10 seconds. This is five times more than for outgoing connections.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The Simple Pairing process can only be used if both sides have the
support enabled in the host stack. The current Bluetooth specification
has three ways to detect this support.
If an Extended Inquiry Result has been sent during inquiry then it
is safe to assume that Simple Pairing is enabled. It is not allowed
to enable Extended Inquiry without Simple Pairing. During the remote
name request phase a notification with the remote host supported
features will be sent to indicate Simple Pairing support. Also the
second page of the remote extended features can indicate support for
Simple Pairing.
For all three cases the value of remote Simple Pairing mode is stored
in the inquiry cache for later use.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The Simple Pairing feature is optional and needs to be enabled by the
host stack first. The Linux kernel relies on the Bluetooth daemon to
either enable or disable it, but at any time it needs to know the
current state of the Simple Pairing mode. So track any changes made
by external entities and store the current mode in the HCI device
structure.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|