Age | Commit message (Collapse) | Author |
|
We currently set the root-domain online span automatically when the
domain is added to the cpu if the cpu is already a member of
cpu_online_map.
This was done as a hack/bug-fix for s2ram, but it also causes a problem
with hotplug CPU_DOWN transitioning. The right way to fix the original
problem is to actually respond to CPU_UP events, instead of CPU_ONLINE,
which is already too late.
This solves the hung reboot regression reported by Andrew Morton and
others.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch checks if we can set the rt_runtime_us to 0. If there is a
realtime task in the group, we don't want to set the rt_runtime_us as 0
or bad things will happen. (that task wont get any CPU time despite
being TASK_RUNNNG)
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
it was only possible to configure the rt-group scheduling parameters
beyond the default value in a very small range.
that's because div64_64() has a different calling convention than
do_div() :/
fix a few untidies while we are here; sysctl_sched_rt_period may overflow
due to that multiplication, so cast to u64 first. Also that RUNTIME_INF
juggling makes little sense although its an effective NOP.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Function sys_sched_rr_get_interval returns wrong time slice value for
SCHED_FIFO tasks. The time slice for SCHED_FIFO tasks should be 0.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
The API is trivial, and so is the implementation.
Signed-off-by: Pavel Roskin <proski@gnu.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Kei Tokunaga reported an interactivity problem when moving tasks
between control groups.
Tasks would retain their old vruntime when moved between groups, this
can cause funny lags. Re-set the vruntime on group move to fit within
the new tree.
Reported-by: Kei Tokunaga <tokunaga.keiich@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
The following commits cause a number of regressions:
commit 58e2d4ca581167c2a079f4ee02be2f0bc52e8729
Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Date: Fri Jan 25 21:08:00 2008 +0100
sched: group scheduling, change how cpu load is calculated
commit 6b2d7700266b9402e12824e11e0099ae6a4a6a79
Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Date: Fri Jan 25 21:08:00 2008 +0100
sched: group scheduler, fix fairness of cpu bandwidth allocation for task groups
Namely:
- very frequent wakeups on SMP, reported by PowerTop users.
- cacheline trashing on (large) SMP
- some latencies larger than 500ms
While there is a mergeable patch to fix the latter, the former issues
are not fixable in a manner suitable for .25 (we're at -rc3 now).
Hence we revert them and try again in v2.6.26.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Tested-by: Alexey Zaytsev <alexey.zaytsev@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Unsigned long values are always assigned to switch_count,
make it unsigned long.
kernel/sched.c:3897:15: warning: incorrect type in assignment (different signedness)
kernel/sched.c:3897:15: expected long *switch_count
kernel/sched.c:3897:15: got unsigned long *<noident>
kernel/sched.c:3921:16: warning: incorrect type in assignment (different signedness)
kernel/sched.c:3921:16: expected long *switch_count
kernel/sched.c:3921:16: got unsigned long *<noident>
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
do not call sched_clock() too early. Not only might rq->idle
not be set up - but pure per-cpu data might not be accessible
either.
this solves an ia64 early bootup hang with CONFIG_PRINTK_TIME=y.
Tested-by: Tony Luck <tony.luck@gmail.com>
Acked-by: Tony Luck <tony.luck@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Oleg Nesterov and others have pointed out that on some architectures,
the traditional sequence of
set_current_state(TASK_INTERRUPTIBLE);
if (CONDITION)
return;
schedule();
is racy wrt another CPU doing
CONDITION = 1;
wake_up_process(p);
because while set_current_state() has a memory barrier separating
setting of the TASK_INTERRUPTIBLE state from reading of the CONDITION
variable, there is no such memory barrier on the wakeup side.
Now, wake_up_process() does actually take a spinlock before it reads and
sets the task state on the waking side, and on x86 (and many other
architectures) that spinlock is in fact equivalent to a memory barrier,
but that is not generally guaranteed. The write that sets CONDITION
could move into the critical region protected by the runqueue spinlock.
However, adding a smp_wmb() to before the spinlock should now order the
writing of CONDITION wrt the lock itself, which in turn is ordered wrt
the accesses within the spinlock (which includes the reading of the old
state).
This should thus close the race (which probably has never been seen in
practice, but since smp_wmb() is a no-op on x86, it's not like this will
make anything worse either on the most common architecture where the
spinlock already gave the required protection).
Acked-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Kprobes makes use of preempt_disable(),preempt_enable_noresched() and these
functions inturn call add/sub_preempt_count(). So we need to refuse user from
inserting probe in to these functions.
This patch disallows user from probing add/sub_preempt_count().
Signed-off-by: Srinivasa DS <srinivasa@in.ibm.com>
Acked-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Refuse to accept or create RT tasks in groups that can't run them.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Clean up some of the excessive ifdeffery introduces in the last patch.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Make the rt group scheduler compile time configurable.
Keep it experimental for now.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Change the rt_ratio interface to rt_runtime_us, to match rt_period_us.
This avoids picking a granularity for the ratio.
Extend the /sys/kernel/uids/<uid>/ interface to allow setting
the group's rt_runtime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Steven mentioned the fun case where a lock holding task will be throttled.
Simple fix: allow groups that have boosted tasks to run anyway.
If a runnable task in a throttled group gets boosted the dequeue/enqueue
done by rt_mutex_setprio() is enough to unthrottle the group.
This is ofcourse not quite correct. Two possible ways forward are:
- second prio array for boosted tasks
- boost to a prio ceiling (this would also work for deadline scheduling)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
lockdep spotted this bogus irq locking. normalize_rt_tasks() can be called
from hardirq context through sysrq-n
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
On Mon, 2008-02-11 at 15:09 +0300, Denis V. Lunev wrote:
> BUG: sleeping function called from invalid context
> at /home/den/src/linux-netns26/kernel/mutex.c:209
> in_atomic():1, irqs_disabled():0
> no locks held by swapper/0.
> Pid: 0, comm: swapper Not tainted 2.6.24 #304
>
> Call Trace:
> <IRQ> [<ffffffff80252d1e>] ? __debug_show_held_locks+0x15/0x27
> [<ffffffff8022c2a8>] __might_sleep+0xc0/0xdf
> [<ffffffff8049f1df>] mutex_lock_nested+0x28/0x2a9
> [<ffffffff80231294>] sched_destroy_group+0x18/0xea
> [<ffffffff8023e835>] sched_destroy_user+0xd/0xf
> [<ffffffff8023e8c1>] free_uid+0x8a/0xab
> [<ffffffff80233e24>] __put_task_struct+0x3f/0xd3
> [<ffffffff80236708>] delayed_put_task_struct+0x23/0x25
> [<ffffffff8026fda7>] __rcu_process_callbacks+0x8d/0x215
> [<ffffffff8026ff52>] rcu_process_callbacks+0x23/0x44
> [<ffffffff8023a2ae>] __do_softirq+0x79/0xf8
> [<ffffffff8020f8c3>] ? profile_pc+0x2a/0x67
> [<ffffffff8020d38c>] call_softirq+0x1c/0x30
> [<ffffffff8020f689>] do_softirq+0x61/0x9c
> [<ffffffff8023a233>] irq_exit+0x51/0x53
> [<ffffffff8021bd1a>] smp_apic_timer_interrupt+0x77/0xad
> [<ffffffff8020ce3b>] apic_timer_interrupt+0x6b/0x70
> <EOI> [<ffffffff8020b0dd>] ? default_idle+0x43/0x76
> [<ffffffff8020b0db>] ? default_idle+0x41/0x76
> [<ffffffff8020b09a>] ? default_idle+0x0/0x76
> [<ffffffff8020b186>] ? cpu_idle+0x76/0x98
separate the tg->shares protection from the task_group lock.
Reported-by: Denis V. Lunev <den@openvz.org>
Tested-by: Denis V. Lunev <den@openvz.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/willy/misc
* 'task_killable' of git://git.kernel.org/pub/scm/linux/kernel/git/willy/misc: (22 commits)
Remove commented-out code copied from NFS
NFS: Switch from intr mount option to TASK_KILLABLE
Add wait_for_completion_killable
Add wait_event_killable
Add schedule_timeout_killable
Use mutex_lock_killable in vfs_readdir
Add mutex_lock_killable
Use lock_page_killable
Add lock_page_killable
Add fatal_signal_pending
Add TASK_WAKEKILL
exit: Use task_is_*
signal: Use task_is_*
sched: Use task_contributes_to_load, TASK_ALL and TASK_NORMAL
ptrace: Use task_is_*
power: Use task_is_*
wait: Use TASK_NORMAL
proc/base.c: Use task_is_*
proc/array.c: Use TASK_REPORT
perfmon: Use task_is_*
...
Fixed up conflicts in NFS/sunrpc manually..
|
|
This removes the extra struct task_struct *p parameter in inc_nr_running
and dec_nr_running functions.
Signed-off by: Jerry Stralko <gerb.stralko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
The break_lock data structure and code for spinlocks is quite nasty.
Not only does it double the size of a spinlock but it changes locking to
a potentially less optimal trylock.
Put all of that under CONFIG_GENERIC_LOCKBREAK, and introduce a
__raw_spin_is_contended that uses the lock data itself to determine whether
there are waiters on the lock, to be used if CONFIG_GENERIC_LOCKBREAK is
not set.
Rename need_lockbreak to spin_needbreak, make it use spin_is_contended to
decouple it from the spinlock implementation, and make it typesafe (rwlocks
do not have any need_lockbreak sites -- why do they even get bloated up
with that break_lock then?).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
The attached patch is something really simple that can sometimes help
in getting more info out of a hung system.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
We monitor clock overflows, let's also monitor clock underflows.
Signed-off-by: Guillaume Chazarain <guichaz@yahoo.fr>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
sched: fix rq->clock warps on frequency changes
Fix 2bacec8c318ca0418c0ee9ac662ee44207765dd4
(sched: touch softlockup watchdog after idling) that reintroduced warps
on frequency changes. touch_softlockup_watchdog() calls __update_rq_clock
that checks rq->clock for warps, so call it after adjusting rq->clock.
Signed-off-by: Guillaume Chazarain <guichaz@yahoo.fr>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
remove the !PREEMPT_BKL code.
this removes 160 lines of legacy code.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
We need to teach no_hz about the rt throttling because its tick driven.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Extend group scheduling to also cover the realtime classes. It uses the time
limiting introduced by the previous patch to allow multiple realtime groups.
The hard time limit is required to keep behaviour deterministic.
The algorithms used make the realtime scheduler O(tg), linear scaling wrt the
number of task groups. This is the worst case behaviour I can't seem to get out
of, the avg. case of the algorithms can be improved, I focused on correctness
and worst case.
[ akpm@linux-foundation.org: move side-effects out of BUG_ON(). ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Very simple time limit on the realtime scheduling classes.
Allow the rq's realtime class to consume sched_rt_ratio of every
sched_rt_period slice. If the class exceeds this quota the fair class
will preempt the realtime class.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Use HR-timers (when available) to deliver an accurate preemption tick.
The regular scheduler tick that runs at 1/HZ can be too coarse when nice
level are used. The fairness system will still keep the cpu utilisation 'fair'
by then delaying the task that got an excessive amount of CPU time but try to
minimize this by delivering preemption points spot-on.
The average frequency of this extra interrupt is sched_latency / nr_latency.
Which need not be higher than 1/HZ, its just that the distribution within the
sched_latency period is important.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Why do we even have cond_resched when real preemption
is on? It seems to be a waste of space and time.
remove cond_resched with CONFIG_PREEMPT on.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
whitespace fixes.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Move the task_struct members specific to rt scheduling together.
A future optimization could be to put sched_entity and sched_rt_entity
into a union.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
The baseline code statically builds the span maps when the domain is formed.
Previous attempts at dynamically updating the maps caused a suspend-to-ram
regression, which should now be fixed.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
CC: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Dmitry Adamushko found that the current implementation of the RT
balancing code left out changes to the sched_setscheduler and
rt_mutex_setprio.
This patch addresses this issue by adding methods to the schedule classes
to handle being switched out of (switched_from) and being switched into
(switched_to) a sched_class. Also a method for changing of priorities
is also added (prio_changed).
This patch also removes some duplicate logic between rt_mutex_setprio and
sched_setscheduler.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
To make the main sched.c code more agnostic to the schedule classes.
Instead of having specific hooks in the schedule code for the RT class
balancing. They are replaced with a pre_schedule, post_schedule
and task_wake_up methods. These methods may be used by any of the classes
but currently, only the sched_rt class implements them.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Clean-up try_to_wake_up().
Get rid of the 'new_cpu' variable in try_to_wake_up() [ that's, one
#ifdef section less ]. Also remove a few redundant blank lines.
Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
add credits for RT balancing improvements.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
style cleanup of various changes that were done recently.
no code changed:
text data bss dec hex filename
26399 2578 48 29025 7161 sched.o.before
26399 2578 48 29025 7161 sched.o.after
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
remove unused JIFFIES_TO_NS() macro.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
We move the rt-overload data as the first global to per-domain
reclassification. This limits the scope of overload related cache-line
bouncing to stay with a specified partition instead of affecting all
cpus in the system.
Finally, we limit the scope of find_lowest_cpu searches to the domain
instead of the entire system. Note that we would always respect domain
boundaries even without this patch, but we first would scan potentially
all cpus before whittling the list down. Now we can avoid looking at
RQs that are out of scope, again reducing cache-line hits.
Note: In some cases, task->cpus_allowed will effectively reduce our search
to within our domain. However, I believe there are cases where the
cpus_allowed mask may be all ones and therefore we err on the side of
caution. If it can be optimized later, so be it.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
CC: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
We add the notion of a root-domain which will be used later to rescope
global variables to per-domain variables. Each exclusive cpuset
essentially defines an island domain by fully partitioning the member cpus
from any other cpuset. However, we currently still maintain some
policy/state as global variables which transcend all cpusets. Consider,
for instance, rt-overload state.
Whenever a new exclusive cpuset is created, we also create a new
root-domain object and move each cpu member to the root-domain's span.
By default the system creates a single root-domain with all cpus as
members (mimicking the global state we have today).
We add some plumbing for storing class specific data in our root-domain.
Whenever a RQ is switching root-domains (because of repartitioning) we
give each sched_class the opportunity to remove any state from its old
domain and add state to the new one. This logic doesn't have any clients
yet but it will later in the series.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
CC: Christoph Lameter <clameter@sgi.com>
CC: Paul Jackson <pj@sgi.com>
CC: Simon Derr <simon.derr@bull.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
rt-balance when creating new tasks.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
We have logic to detect whether the system has migratable tasks, but we are
not using it when deciding whether to push tasks away. So we add support
for considering this new information.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
The current wake-up code path tries to determine if it can optimize the
wake-up to "this_cpu" by computing load calculations. The problem is that
these calculations are only relevant to SCHED_OTHER tasks where load is king.
For RT tasks, priority is king. So the load calculation is completely wasted
bandwidth.
Therefore, we create a new sched_class interface to help with
pre-wakeup routing decisions and move the load calculation as a function
of CFS task's class.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Some RT tasks (particularly kthreads) are bound to one specific CPU.
It is fairly common for two or more bound tasks to get queued up at the
same time. Consider, for instance, softirq_timer and softirq_sched. A
timer goes off in an ISR which schedules softirq_thread to run at RT50.
Then the timer handler determines that it's time to smp-rebalance the
system so it schedules softirq_sched to run. So we are in a situation
where we have two RT50 tasks queued, and the system will go into
rt-overload condition to request other CPUs for help.
This causes two problems in the current code:
1) If a high-priority bound task and a low-priority unbounded task queue
up behind the running task, we will fail to ever relocate the unbounded
task because we terminate the search on the first unmovable task.
2) We spend precious futile cycles in the fast-path trying to pull
overloaded tasks over. It is therefore optimial to strive to avoid the
overhead all together if we can cheaply detect the condition before
overload even occurs.
This patch tries to achieve this optimization by utilizing the hamming
weight of the task->cpus_allowed mask. A weight of 1 indicates that
the task cannot be migrated. We will then utilize this information to
skip non-migratable tasks and to eliminate uncessary rebalance attempts.
We introduce a per-rq variable to count the number of migratable tasks
that are currently running. We only go into overload if we have more
than one rt task, AND at least one of them is migratable.
In addition, we introduce a per-task variable to cache the cpus_allowed
weight, since the hamming calculation is probably relatively expensive.
We only update the cached value when the mask is updated which should be
relatively infrequent, especially compared to scheduling frequency
in the fast path.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
This patch adds pushing of overloaded RT tasks from a runqueue that is
having tasks (most likely RT tasks) added to the run queue.
TODO: We don't cover the case of waking of new RT tasks (yet).
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
This patch adds the algorithm to pull tasks from RT overloaded runqueues.
When a pull RT is initiated, all overloaded runqueues are examined for
a RT task that is higher in prio than the highest prio task queued on the
target runqueue. If another runqueue holds a RT task that is of higher
prio than the highest prio task on the target runqueue is found it is pulled
to the target runqueue.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
This patch adds an algorithm to push extra RT tasks off a run queue to
other CPU runqueues.
When more than one RT task is added to a run queue, this algorithm takes
an assertive approach to push the RT tasks that are not running onto other
run queues that have lower priority. The way this works is that the highest
RT task that is not running is looked at and we examine the runqueues on
the CPUS for that tasks affinity mask. We find the runqueue with the lowest
prio in the CPU affinity of the picked task, and if it is lower in prio than
the picked task, we push the task onto that CPU runqueue.
We continue pushing RT tasks off the current runqueue until we don't push any
more. The algorithm stops when the next highest RT task can't preempt any
other processes on other CPUS.
TODO: The algorithm may stop when there are still RT tasks that can be
migrated. Specifically, if the highest non running RT task CPU affinity
is restricted to CPUs that are running higher priority tasks, there may
be a lower priority task queued that has an affinity with a CPU that is
running a lower priority task that it could be migrated to. This
patch set does not address this issue.
Note: checkpatch reveals two over 80 character instances. I'm not sure
that breaking them up will help visually, so I left them as is.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
This patch adds accounting to each runqueue to keep track of the
highest prio task queued on the run queue. We only care about
RT tasks, so if the run queue does not contain any active RT tasks
its priority will be considered MAX_RT_PRIO.
This information will be used for later patches.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|