summaryrefslogtreecommitdiffstats
path: root/kernel/time
AgeCommit message (Collapse)Author
2008-09-06Merge branch 'timers-fixes-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: clocksource, acpi_pm.c: check for monotonicity clocksource, acpi_pm.c: use proper read function also in errata mode ntp: fix calculation of the next jiffie to trigger RTC sync x86: HPET: read back compare register before reading counter x86: HPET fix moronic 32/64bit thinko clockevents: broadcast fixup possible waiters HPET: make minimum reprogramming delta useful clockevents: prevent endless loop lockup clockevents: prevent multiple init/shutdown clockevents: enforce reprogram in oneshot setup clockevents: prevent endless loop in periodic broadcast handler clockevents: prevent clockevent event_handler ending up handler_noop
2008-09-06ntp: fix calculation of the next jiffie to trigger RTC syncMaciej W. Rozycki
We have a bug in the calculation of the next jiffie to trigger the RTC synchronisation. The aim here is to run sync_cmos_clock() as close as possible to the middle of a second. Which means we want this function to be called less than or equal to half a jiffie away from when now.tv_nsec equals 5e8 (500000000). If this is not the case for a given call to the function, for this purpose instead of updating the RTC we calculate the offset in nanoseconds to the next point in time where now.tv_nsec will be equal 5e8. The calculated offset is then converted to jiffies as these are the unit used by the timer. Hovewer timespec_to_jiffies() used here uses a ceil()-type rounding mode, where the resulting value is rounded up. As a result the range of now.tv_nsec when the timer will trigger is from 5e8 to 5e8 + TICK_NSEC rather than the desired 5e8 - TICK_NSEC / 2 to 5e8 + TICK_NSEC / 2. As a result if for example sync_cmos_clock() happens to be called at the time when now.tv_nsec is between 5e8 + TICK_NSEC / 2 and 5e8 to 5e8 + TICK_NSEC, it will simply be rescheduled HZ jiffies later, falling in the same range of now.tv_nsec again. Similarly for cases offsetted by an integer multiple of TICK_NSEC. This change addresses the problem by subtracting TICK_NSEC / 2 from the nanosecond offset to the next point in time where now.tv_nsec will be equal 5e8, effectively shifting the following rounding in timespec_to_jiffies() so that it produces a rounded-to-nearest result. Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-06clockevents: broadcast fixup possible waitersThomas Gleixner
Until the C1E patches arrived there where no users of periodic broadcast before switching to oneshot mode. Now we need to trigger a possible waiter for a periodic broadcast when switching to oneshot mode. Otherwise we can starve them for ever. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-09-05sched_clock: fix NOHZ interactionPeter Zijlstra
If HLT stops the TSC, we'll fail to account idle time, thereby inflating the actual process times. Fix this by re-calibrating the clock against GTOD when leaving nohz mode. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: Avi Kivity <avi@qumranet.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-05clockevents: prevent endless loop lockupThomas Gleixner
The C1E/HPET bug reports on AMDX2/RS690 systems where tracked down to a too small value of the HPET minumum delta for programming an event. The clockevents code needs to enforce an interrupt event on the clock event device in some cases. The enforcement code was stupid and naive, as it just added the minimum delta to the current time and tried to reprogram the device. When the minimum delta is too small, then this loops forever. Add a sanity check. Allow reprogramming to fail 3 times, then print a warning and double the minimum delta value to make sure, that this does not happen again. Use the same function for both tick-oneshot and tick-broadcast code. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-05clockevents: prevent multiple init/shutdownThomas Gleixner
While chasing the C1E/HPET bugreports I went through the clock events code inch by inch and found that the broadcast device can be initialized and shutdown multiple times. Multiple shutdowns are not critical, but useless waste of time. Multiple initializations are simply broken. Another CPU might have the device in use already after the first initialization and the second init could just render it unusable again. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-05clockevents: enforce reprogram in oneshot setupThomas Gleixner
In tick_oneshot_setup we program the device to the given next_event, but we do not check the return value. We need to make sure that the device is programmed enforced so the interrupt handler engine starts working. Split out the reprogramming function from tick_program_event() and call it with the device, which was handed in to tick_setup_oneshot(). Set the force argument, so the devices is firing an interrupt. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-05clockevents: prevent endless loop in periodic broadcast handlerThomas Gleixner
The reprogramming of the periodic broadcast handler was broken, when the first programming returned -ETIME. The clockevents code stores the new expiry value in the clock events device next_event field only when the programming time has not been elapsed yet. The loop in question calculates the new expiry value from the next_event value and therefor never increases. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-05clockevents: prevent clockevent event_handler ending up handler_noopVenkatesh Pallipadi
There is a ordering related problem with clockevents code, due to which clockevents_register_device() called after tickless/highres switch will not work. The new clockevent ends up with clockevents_handle_noop as event handler, resulting in no timer activity. The problematic path seems to be * old device already has hrtimer_interrupt as the event_handler * new clockevent device registers with a higher rating * tick_check_new_device() is called * clockevents_exchange_device() gets called * old->event_handler is set to clockevents_handle_noop * tick_setup_device() is called for the new device * which sets new->event_handler using the old->event_handler which is noop. Change the ordering so that new device inherits the proper handler. This does not have any issue in normal case as most likely all the clockevent devices are setup before the highres switch. But, can potentially be affecting some corner case where HPET force detect happens after the highres switch. This was a problem with HPET in MSI mode code that we have been experimenting with. Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: Shaohua Li <shaohua.li@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-08-21nohz: fix wrong event handler after online an offlined cpuMiao Xie
On the tickless system(CONFIG_NO_HZ=y and CONFIG_HIGH_RES_TIMERS=n), after I made an offlined cpu online, I found this cpu's event handler was tick_handle_periodic, not tick_nohz_handler. After debuging, I found this bug was caused by the wrong tick mode. the tick mode is not changed to NOHZ_MODE_INACTIVE when the cpu is offline. This patch fixes this bug. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-31sched clock: revert various sched_clock() changesIngo Molnar
Found an interactivity problem on a quad core test-system - simple CPU loops would occasionally delay the system un an unacceptable way. After much debugging with Peter Zijlstra it turned out that the problem is caused by the string of sched_clock() changes - they caused the CPU clock to jump backwards a bit - which confuses the scheduler arithmetics. (which is unsigned for performance reasons) So revert: # c300ba2: sched_clock: and multiplier for TSC to gtod drift # c0c8773: sched_clock: only update deltas with local reads. # af52a90: sched_clock: stop maximum check on NO HZ # f7cce27: sched_clock: widen the max and min time This solves the interactivity problems. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Mike Galbraith <efault@gmx.de>
2008-07-26cpumask: change cpumask_of_cpu_ptr to use new cpumask_of_cpuMike Travis
* Replace previous instances of the cpumask_of_cpu_ptr* macros with a the new (lvalue capable) generic cpumask_of_cpu(). Signed-off-by: Mike Travis <travis@sgi.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-24Merge branch 'timers-fixes-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: nohz: adjust tick_nohz_stop_sched_tick() call of s390 as well nohz: prevent tick stop outside of the idle loop
2008-07-23Merge branch 'cpus4096-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'cpus4096-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (31 commits) NR_CPUS: Replace NR_CPUS in speedstep-centrino.c cpumask: Provide a generic set of CPUMASK_ALLOC macros, FIXUP NR_CPUS: Replace NR_CPUS in cpufreq userspace routines NR_CPUS: Replace per_cpu(..., smp_processor_id()) with __get_cpu_var NR_CPUS: Replace NR_CPUS in arch/x86/kernel/genapic_flat_64.c NR_CPUS: Replace NR_CPUS in arch/x86/kernel/genx2apic_uv_x.c NR_CPUS: Replace NR_CPUS in arch/x86/kernel/cpu/proc.c NR_CPUS: Replace NR_CPUS in arch/x86/kernel/cpu/mcheck/mce_64.c cpumask: Optimize cpumask_of_cpu in lib/smp_processor_id.c, fix cpumask: Use optimized CPUMASK_ALLOC macros in the centrino_target cpumask: Provide a generic set of CPUMASK_ALLOC macros cpumask: Optimize cpumask_of_cpu in lib/smp_processor_id.c cpumask: Optimize cpumask_of_cpu in kernel/time/tick-common.c cpumask: Optimize cpumask_of_cpu in drivers/misc/sgi-xp/xpc_main.c cpumask: Optimize cpumask_of_cpu in arch/x86/kernel/ldt.c cpumask: Optimize cpumask_of_cpu in arch/x86/kernel/io_apic_64.c cpumask: Replace cpumask_of_cpu with cpumask_of_cpu_ptr Revert "cpumask: introduce new APIs" cpumask: make for_each_cpu_mask a bit smaller net: Pass reference to cpumask variable in net/sunrpc/svc.c ... Fix up trivial conflicts in drivers/cpufreq/cpufreq.c manually
2008-07-23Merge branch 'core/softlockup-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'core/softlockup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: softlockup: fix invalid proc_handler for softlockup_panic softlockup: fix watchdog task wakeup frequency softlockup: fix watchdog task wakeup frequency softlockup: show irqtrace softlockup: print a module list on being stuck softlockup: fix NMI hangs due to lock race - 2.6.26-rc regression softlockup: fix false positives on nohz if CPU is 100% idle for more than 60 seconds softlockup: fix softlockup_thresh fix softlockup: fix softlockup_thresh unaligned access and disable detection at runtime softlockup: allow panic on lockup
2008-07-21sysdev: Pass the attribute to the low level sysdev show/store functionAndi Kleen
This allow to dynamically generate attributes and share show/store functions between attributes. Right now most attributes are generated by special macros and lots of duplicated code. With the attribute passed it's instead possible to attach some data to the attribute and then use that in shared low level functions to do different things. I need this for the dynamically generated bank attributes in the x86 machine check code, but it'll allow some further cleanups. I converted all users in tree to the new show/store prototype. It's a single huge patch to avoid unbisectable sections. Runtime tested: x86-32, x86-64 Compiled only: ia64, powerpc Not compile tested/only grep converted: sh, arm, avr32 Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-07-18cpumask: Optimize cpumask_of_cpu in kernel/time/tick-common.cMike Travis
* Optimize various places where a pointer to the cpumask_of_cpu value will result in reducing stack pressure. Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-18Merge branch 'linus' into timers/nohzIngo Molnar
2008-07-18nohz: prevent tick stop outside of the idle loopThomas Gleixner
Jack Ren and Eric Miao tracked down the following long standing problem in the NOHZ code: scheduler switch to idle task enable interrupts Window starts here ----> interrupt happens (does not set NEED_RESCHED) irq_exit() stops the tick ----> interrupt happens (does set NEED_RESCHED) return from schedule() cpu_idle(): preempt_disable(); Window ends here The interrupts can happen at any point inside the race window. The first interrupt stops the tick, the second one causes the scheduler to rerun and switch away from idle again and we end up with the tick disabled. The fact that it needs two interrupts where the first one does not set NEED_RESCHED and the second one does made the bug obscure and extremly hard to reproduce and analyse. Kudos to Jack and Eric. Solution: Limit the NOHZ functionality to the idle loop to make sure that we can not run into such a situation ever again. cpu_idle() { preempt_disable(); while(1) { tick_nohz_stop_sched_tick(1); <- tell NOHZ code that we are in the idle loop while (!need_resched()) halt(); tick_nohz_restart_sched_tick(); <- disables NOHZ mode preempt_enable_no_resched(); schedule(); preempt_disable(); } } In hindsight we should have done this forever, but ... /me grabs a large brown paperbag. Debugged-by: Jack Ren <jack.ren@marvell.com>, Debugged-by: eric miao <eric.y.miao@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-07-16Merge branch 'linus' into cpus4096Ingo Molnar
Conflicts: arch/x86/xen/smp.c kernel/sched_rt.c net/iucv/iucv.c Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-15Merge branch 'linus' into core/softlockupIngo Molnar
Conflicts: kernel/softlockup.c Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-15Merge branch 'generic-ipi' into generic-ipi-for-linusIngo Molnar
Conflicts: arch/powerpc/Kconfig arch/s390/kernel/time.c arch/x86/kernel/apic_32.c arch/x86/kernel/cpu/perfctr-watchdog.c arch/x86/kernel/i8259_64.c arch/x86/kernel/ldt.c arch/x86/kernel/nmi_64.c arch/x86/kernel/smpboot.c arch/x86/xen/smp.c include/asm-x86/hw_irq_32.h include/asm-x86/hw_irq_64.h include/asm-x86/mach-default/irq_vectors.h include/asm-x86/mach-voyager/irq_vectors.h include/asm-x86/smp.h kernel/Makefile Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-15Merge branch 'timers/for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'timers/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: x86: add PCI ID for 6300ESB force hpet x86: add another PCI ID for ICH6 force-hpet kernel-paramaters: document pmtmr= command line option acpi_pm clccksource: fix printk format warning nohz: don't stop idle tick if softirqs are pending. pmtmr: allow command line override of ioport nohz: reduce jiffies polling overhead hrtimer: Remove unused variables in ktime_divns() hrtimer: remove warning in hres_timers_resume posix-timers: print RT watchdog message
2008-07-14Merge branch 'sched/for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'sched/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (76 commits) sched_clock: and multiplier for TSC to gtod drift sched_clock: record TSC after gtod sched_clock: only update deltas with local reads. sched_clock: fix calculation of other CPU sched_clock: stop maximum check on NO HZ sched_clock: widen the max and min time sched_clock: record from last tick sched: fix accounting in task delay accounting & migration sched: add avg-overlap support to RT tasks sched: terminate newidle balancing once at least one task has moved over sched: fix warning sched: build fix sched: sched_clock_cpu() based cpu_clock(), lockdep fix sched: export cpu_clock sched: make sched_{rt,fair}.c ifdefs more readable sched: bias effective_load() error towards failing wake_affine(). sched: incremental effective_load() sched: correct wakeup weight calculations sched: fix mult overflow sched: update shares on wakeup ...
2008-07-11sched_clock: stop maximum check on NO HZSteven Rostedt
Working with ftrace I would get large jumps of 11 millisecs or more with the clock tracer. This killed the latencing timings of ftrace and also caused the irqoff self tests to fail. What was happening is with NO_HZ the idle would stop the jiffy counter and before the jiffy counter was updated the sched_clock would have a bad delta jiffies to compare with the gtod with the maximum. The jiffies would stop and the last sched_tick would record the last gtod. On wakeup, the sched clock update would compare the gtod + delta jiffies (which would be zero) and compare it to the TSC. The TSC would have correctly (with a stable TSC) moved forward several jiffies. But because the jiffies has not been updated yet the clock would be prevented from moving forward because it would appear that the TSC jumped too far ahead. The clock would then virtually stop, until the jiffies are updated. Then the next sched clock update would see that the clock was very much behind since the delta jiffies is now correct. This would then jump the clock forward by several jiffies. This caused ftrace to report several milliseconds of interrupts off latency at every resume from NO_HZ idle. This patch adds hooks into the nohz code to disable the checking of the maximum clock update when nohz is in effect. It resumes the max check when nohz has updated the jiffies again. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Cc: Steven Rostedt <srostedt@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-11nohz: don't stop idle tick if softirqs are pending.Heiko Carstens
In case a cpu goes idle but softirqs are pending only an error message is printed to the console. It may take a very long time until the pending softirqs will finally be executed. Worst case would be a hanging system. With this patch the timer tick just continues and the softirqs will be executed after the next interrupt. Still a delay but better than a hanging system. Currently we have at least two device drivers on s390 which under certain circumstances schedule a tasklet from process context. This is a reason why we can end up with pending softirqs when going idle. Fixing these drivers seems to be non-trivial. However there is no question that the drivers should be fixed. This patch shouldn't be considered as a bug fix. It just is intended to keep a system running even if device drivers are buggy. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jan Glauber <jan.glauber@de.ibm.com> Cc: Stefan Weinhuber <wein@de.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-08x86, clockevents: add C1E aware idle functionThomas Gleixner
C1E on AMD machines is like C3 but without control from the OS. Up to now we disabled the local apic timer for those machines as it stops when the CPU goes into C1E. This excludes those machines from high resolution timers / dynamic ticks, which hurts especially X2 based laptops. The current boot time C1E detection has another, more serious flaw as well: some BIOSes do not enable C1E until the ACPI processor module is loaded. This causes systems to stop working after that point. To work nicely with C1E enabled machines we use a separate idle function, which checks on idle entry whether C1E was enabled in the Interrupt Pending Message MSR. This allows us to do timer broadcasting for C1E and covers the late enablement of C1E as well. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-26smp_call_function: get rid of the unused nonatomic/retry argumentJens Axboe
It's never used and the comments refer to nonatomic and retry interchangably. So get rid of it. Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2008-05-30nohz: reduce jiffies polling overheadIngo Molnar
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-05-30softlockup: fix false positives on nohz if CPU is 100% idle for more than 60 ↵Ingo Molnar
seconds Fix (probably theoretical only) rq->clock update bug: in tick_nohz_update_jiffies() [which is called on all irq entry on all cpus where the irq entry hits an idle cpu] we call touch_softlockup_watchdog() before we update jiffies. That works fine most of the time when idle timeouts are within 60 seconds. But when an idle timeout is beyond 60 seconds, jiffies is updated with a jump of more than 60 seconds, which causes a jump in cpu-clock of more than 60 seconds, triggering a false positive. Reported-by: David Miller <davem@davemloft.net> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-05-23clocksource/events: use performance variant for_each_cpu_mask_nrMike Travis
Change references from for_each_cpu_mask to for_each_cpu_mask_nr where appropriate Reviewed-by: Paul Jackson <pj@sgi.com> Reviewed-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-03clocksource: allow read access to available/current_clocksourceHeiko Carstens
There is no harm, when users can read the info and we ask often enough during debugging for this kind of information. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: John Stultz <johnstul@us.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-03clocksource: Fix permissions for available_clocksourceHeiko Carstens
File permissions for /sys/devices/system/clocksource/clocksource0/available_clocksource are 600 which allows write access. But this is in fact a read only file. So change permissions to 400. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: John Stultz <johnstul@us.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-01ntp: handle leap second via timerRoman Zippel
Remove the leap second handling from second_overflow(), which doesn't have to check for it every second anymore. With CONFIG_NO_HZ this also makes sure the leap second is handled close to the full second. Additionally this makes it possible to abort a leap second properly by resetting the STA_INS/STA_DEL status bits. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: john stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-01ntp: remove current_tick_length()Roman Zippel
current_tick_length used to do a little more, but now it just returns tick_length, which we can also access directly at the few places, where it's needed. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: john stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-01ntp: rename TICK_LENGTH_SHIFT to NTP_SCALE_SHIFTRoman Zippel
As TICK_LENGTH_SHIFT is used for more than just the tick length, the name isn't quite approriate anymore, so this renames it to NTP_SCALE_SHIFT. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: john stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-01ntp: support for TAIRoman Zippel
This adds support for setting the TAI value (International Atomic Time). The value is reported back to userspace via timex (as we don't have a ntp_gettime() syscall). Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: john stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-01ntp: increase time_offset resolutionRoman Zippel
time_offset is already a 64bit value but its resolution barely used, so this makes better use of it by replacing SHIFT_UPDATE with TICK_LENGTH_SHIFT. Side note: the SHIFT_HZ in SHIFT_UPDATE was incorrect for CONFIG_NO_HZ and the primary reason for changing time_offset to 64bit to avoid the overflow. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: john stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-01ntp: increase time_freq resolutionRoman Zippel
This changes time_freq to a 64bit value and makes it static (the only outside user had no real need to modify it). Intermediate values were already 64bit, so the change isn't that big, but it saves a little in shifts by replacing SHIFT_NSEC with TICK_LENGTH_SHIFT. PPM_SCALE is then used to convert between user space and kernel space representation. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: john stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-01ntp: NTP4 user space bits updateRoman Zippel
This adds a few more things from the ntp nanokernel related to user space. It's now possible to select the resolution used of some values via STA_NANO and the kernel reports in which mode it works (pll/fll). If some values for adjtimex() are outside the acceptable range, they are now simply normalized instead of letting the syscall fail. I removed MOD_CLKA/MOD_CLKB as the mapping didn't really makes any sense, the kernel doesn't support setting the clock. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: john stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-01ntp: cleanup ntp.cRoman Zippel
This is mostly a style cleanup of ntp.c and extracts part of do_adjtimex as ntp_update_offset(). Otherwise the functionality is still the same as before. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: john stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-01remove div_long_long_remRoman Zippel
x86 is the only arch right now, which provides an optimized for div_long_long_rem and it has the downside that one has to be very careful that the divide doesn't overflow. The API is a little akward, as the arguments for the unsigned divide are signed. The signed version also doesn't handle a negative divisor and produces worse code on 64bit archs. There is little incentive to keep this API alive, so this converts the few users to the new API. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-01convert a few do_div usersRoman Zippel
This converts a few users of do_div to div_[su]64 and this demonstrates nicely how it can reduce some expressions to one-liners. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: john stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29kernel: use non-racy method for proc entries creationDenis V. Lunev
Use proc_create()/proc_create_data() to make sure that ->proc_fops and ->data be setup before gluing PDE to main tree. Signed-off-by: Denis V. Lunev <den@openvz.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-25softlockup: fix NOHZ wakeupIngo Molnar
David Miller reported: |---------------> the following commit: | commit 27ec4407790d075c325e1f4da0a19c56953cce23 | Author: Ingo Molnar <mingo@elte.hu> | Date: Thu Feb 28 21:00:21 2008 +0100 | | sched: make cpu_clock() globally synchronous | | Alexey Zaytsev reported (and bisected) that the introduction of | cpu_clock() in printk made the timestamps jump back and forth. | | Make cpu_clock() more reliable while still keeping it fast when it's | called frequently. | | Signed-off-by: Ingo Molnar <mingo@elte.hu> causes watchdog triggers when a cpu exits NOHZ state when it has been there for >= the soft lockup threshold, for example here are some messages from a 128 cpu Niagara2 box: [ 168.106406] BUG: soft lockup - CPU#11 stuck for 128s! [dd:3239] [ 168.989592] BUG: soft lockup - CPU#21 stuck for 86s! [swapper:0] [ 168.999587] BUG: soft lockup - CPU#29 stuck for 91s! [make:4511] [ 168.999615] BUG: soft lockup - CPU#2 stuck for 85s! [swapper:0] [ 169.020514] BUG: soft lockup - CPU#37 stuck for 91s! [swapper:0] [ 169.020514] BUG: soft lockup - CPU#45 stuck for 91s! [sh:4515] [ 169.020515] BUG: soft lockup - CPU#69 stuck for 92s! [swapper:0] [ 169.020515] BUG: soft lockup - CPU#77 stuck for 92s! [swapper:0] [ 169.020515] BUG: soft lockup - CPU#61 stuck for 92s! [swapper:0] [ 169.112554] BUG: soft lockup - CPU#85 stuck for 92s! [swapper:0] [ 169.112554] BUG: soft lockup - CPU#101 stuck for 92s! [swapper:0] [ 169.112554] BUG: soft lockup - CPU#109 stuck for 92s! [swapper:0] [ 169.112554] BUG: soft lockup - CPU#117 stuck for 92s! [swapper:0] [ 169.171483] BUG: soft lockup - CPU#40 stuck for 80s! [dd:3239] [ 169.331483] BUG: soft lockup - CPU#13 stuck for 86s! [swapper:0] [ 169.351500] BUG: soft lockup - CPU#43 stuck for 101s! [dd:3239] [ 169.531482] BUG: soft lockup - CPU#9 stuck for 129s! [mkdir:4565] [ 169.595754] BUG: soft lockup - CPU#20 stuck for 93s! [swapper:0] [ 169.626787] BUG: soft lockup - CPU#52 stuck for 93s! [swapper:0] [ 169.626787] BUG: soft lockup - CPU#84 stuck for 92s! [swapper:0] [ 169.636812] BUG: soft lockup - CPU#116 stuck for 94s! [swapper:0] It's simple enough to trigger this by doing a 10 minute sleep after a fresh bootup then starting a parallel kernel build. I suspect this might be reintroducing a problem we've had and fixed before, see the thread: http://marc.info/?l=linux-kernel&m=119546414004065&w=2 <---------------| touch the softlockup watchdog when exiting NOHZ state - we are obviously not locked up. Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-21Merge branch 'master' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tglx/linux-2.6-hrt * 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/tglx/linux-2.6-hrt: hrtimer: optimize the softirq time optimization hrtimer: reduce calls to hrtimer_get_softirq_time() clockevents: fix typo in tick-broadcast.c jiffies: add time_is_after_jiffies and others which compare with jiffies
2008-04-21Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched-devel * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched-devel: (62 commits) sched: build fix sched: better rt-group documentation sched: features fix sched: /debug/sched_features sched: add SCHED_FEAT_DEADLINE sched: debug: show a weight tree sched: fair: weight calculations sched: fair-group: de-couple load-balancing from the rb-trees sched: fair-group scheduling vs latency sched: rt-group: optimize dequeue_rt_stack sched: debug: add some debug code to handle the full hierarchy sched: fair-group: SMP-nice for group scheduling sched, cpuset: customize sched domains, core sched, cpuset: customize sched domains, docs sched: prepatory code movement sched: rt: multi level group constraints sched: task_group hierarchy sched: fix the task_group hierarchy for UID grouping sched: allow the group scheduler to have multiple levels sched: mix tasks and groups ...
2008-04-21clockevents: fix typo in tick-broadcast.cGlauber Costa
braodcast -> broadcast Signed-off-by: Glauber Costa <gcosta@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-04-19sched: rt-group: synchonised bandwidth periodPeter Zijlstra
Various SMP balancing algorithms require that the bandwidth period run in sync. Possible improvements are moving the rt_bandwidth thing into root_domain and keeping a span per rt_bandwidth which marks throttled cpus. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19x86: tsc prevent time going backwardsThomas Gleixner
We already catch most of the TSC problems by sanity checks, but there is a subtle bug which has been in the code forever. This can cause time jumps in the range of hours. This was reported in: http://lkml.org/lkml/2007/8/23/96 and http://lkml.org/lkml/2008/3/31/23 I was able to reproduce the problem with a gettimeofday loop test on a dual core and a quad core machine which both have sychronized TSCs. The TSCs seems not to be perfectly in sync though, but the kernel is not able to detect the slight delta in the sync check. Still there exists an extremly small window where this delta can be observed with a real big time jump. So far I was only able to reproduce this with the vsyscall gettimeofday implementation, but in theory this might be observable with the syscall based version as well. CPU 0 updates the clock source variables under xtime/vyscall lock and CPU1, where the TSC is slighty behind CPU0, is reading the time right after the seqlock was unlocked. The clocksource reference data was updated with the TSC from CPU0 and the value which is read from TSC on CPU1 is less than the reference data. This results in a huge delta value due to the unsigned subtraction of the TSC value and the reference value. This algorithm can not be changed due to the support of wrapping clock sources like pm timer. The huge delta is converted to nanoseconds and added to xtime, which is then observable by the caller. The next gettimeofday call on CPU1 will show the correct time again as now the TSC has advanced above the reference value. To prevent this TSC specific wreckage we need to compare the TSC value against the reference value and return the latter when it is larger than the actual TSC value. I pondered to mark the TSC unstable when the readout is smaller than the reference value, but this would render an otherwise good and fast clocksource unusable without a real good reason. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>