summaryrefslogtreecommitdiffstats
path: root/kernel
AgeCommit message (Collapse)Author
2012-08-21workqueue: use irqsafe timer for delayed_workTejun Heo
Up to now, for delayed_works, try_to_grab_pending() couldn't be used from IRQ handlers because IRQs may happen while delayed_work_timer_fn() is in progress leading to indefinite -EAGAIN. This patch makes delayed_work use the new TIMER_IRQSAFE flag for delayed_work->timer. This makes try_to_grab_pending() and thus mod_delayed_work_on() safe to call from IRQ handlers. Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-21Merge branch 'timers/core' of ↵Tejun Heo
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into for-3.7
2012-08-21timer: Implement TIMER_IRQSAFETejun Heo
Timer internals are protected with irq-safe locks but timer execution isn't, so a timer being dequeued for execution and its execution aren't atomic against IRQs. This makes it impossible to wait for its completion from IRQ handlers and difficult to shoot down a timer from IRQ handlers. This issue caused some issues for delayed_work interface. Because there's no way to reliably shoot down delayed_work->timer from IRQ handlers, __cancel_delayed_work() can't share the logic to steal the target delayed_work with cancel_delayed_work_sync(), and can only steal delayed_works which are on queued on timer. Similarly, the pending mod_delayed_work() can't be used from IRQ handlers. This patch adds a new timer flag TIMER_IRQSAFE, which makes the timer to be executed without enabling IRQ after dequeueing such that its dequeueing and execution are atomic against IRQ handlers. This makes it safe to wait for the timer's completion from IRQ handlers, for example, using del_timer_sync(). It can never be executing on the local CPU and if executing on other CPUs it won't be interrupted until done. This will enable simplifying delayed_work cancel/mod interface. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: torvalds@linux-foundation.org Cc: peterz@infradead.org Link: http://lkml.kernel.org/r/1344449428-24962-5-git-send-email-tj@kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-08-21timer: Clean up timer initializersTejun Heo
Over time, timer initializers became messy with unnecessarily duplicated code which are inconsistently spread across timer.h and timer.c. This patch cleans up timer initializers. * timer.c::__init_timer() is renamed to do_init_timer(). * __TIMER_INITIALIZER() added. It takes @flags and all initializers are wrappers around it. * init_timer[_on_stack]_key() now take @flags. * __init_timer[_on_stack]() added. They take @flags and all init macros are wrappers around them. * __setup_timer[_on_stack]() added. It uses __init_timer() and takes @flags. All setup macros are wrappers around the two. Note that this patch doesn't add missing init/setup combinations - e.g. init_timer_deferrable_on_stack(). Adding missing ones is trivial. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: torvalds@linux-foundation.org Cc: peterz@infradead.org Link: http://lkml.kernel.org/r/1344449428-24962-4-git-send-email-tj@kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-08-21timer: Generalize timer->base flags handlingTejun Heo
To prepare for addition of another flag, generalize timer->base flags handling. * Rename from TBASE_*_FLAG to TIMER_* and make them LU constants. * Define and use TIMER_FLAG_MASK for flags masking so that multiple flags can be handled correctly. * Don't dereference timer->base directly even if !tbase_get_deferrable(). All two such places are already passed in @base, so use it instead. * Make sure tvec_base's alignment is large enough for timer->base flags using BUILD_BUG_ON(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: torvalds@linux-foundation.org Cc: peterz@infradead.org Link: http://lkml.kernel.org/r/1344449428-24962-2-git-send-email-tj@kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-08-20workqueue: deprecate system_nrt[_freezable]_wqTejun Heo
system_nrt[_freezable]_wq are now spurious. Mark them deprecated and convert all users to system[_freezable]_wq. If you're cc'd and wondering what's going on: Now all workqueues are non-reentrant, so there's no reason to use system_nrt[_freezable]_wq. Please use system[_freezable]_wq instead. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-By: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: David Airlie <airlied@linux.ie> Cc: Jiri Kosina <jkosina@suse.cz> Cc: "David S. Miller" <davem@davemloft.net> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: David Howells <dhowells@redhat.com>
2012-08-20workqueue: gut system_nrt[_freezable]_wq()Tejun Heo
Now that all workqueues are non-reentrant, system[_freezable]_wq() are equivalent to system_nrt[_freezable]_wq(). Replace the latter with wrappers around system[_freezable]_wq(). The wrapping goes through inline functions so that __deprecated can be added easily. Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-20workqueue: gut flush[_delayed]_work_sync()Tejun Heo
Now that all workqueues are non-reentrant, flush[_delayed]_work_sync() are equivalent to flush[_delayed]_work(). Drop the separate implementation and make them thin wrappers around flush[_delayed]_work(). * start_flush_work() no longer takes @wait_executing as the only left user - flush_work() - always sets it to %true. * __cancel_work_timer() uses flush_work() instead of wait_on_work(). Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-20workqueue: make all workqueues non-reentrantTejun Heo
By default, each per-cpu part of a bound workqueue operates separately and a work item may be executing concurrently on different CPUs. The behavior avoids some cross-cpu traffic but leads to subtle weirdities and not-so-subtle contortions in the API. * There's no sane usefulness in allowing a single work item to be executed concurrently on multiple CPUs. People just get the behavior unintentionally and get surprised after learning about it. Most either explicitly synchronize or use non-reentrant/ordered workqueue but this is error-prone. * flush_work() can't wait for multiple instances of the same work item on different CPUs. If a work item is executing on cpu0 and then queued on cpu1, flush_work() can only wait for the one on cpu1. Unfortunately, work items can easily cross CPU boundaries unintentionally when the queueing thread gets migrated. This means that if multiple queuers compete, flush_work() can't even guarantee that the instance queued right before it is finished before returning. * flush_work_sync() was added to work around some of the deficiencies of flush_work(). In addition to the usual flushing, it ensures that all currently executing instances are finished before returning. This operation is expensive as it has to walk all CPUs and at the same time fails to address competing queuer case. Incorrectly using flush_work() when flush_work_sync() is necessary is an easy error to make and can lead to bugs which are difficult to reproduce. * Similar problems exist for flush_delayed_work[_sync](). Other than the cross-cpu access concern, there's no benefit in allowing parallel execution and it's plain silly to have this level of contortion for workqueue which is widely used from core code to extremely obscure drivers. This patch makes all workqueues non-reentrant. If a work item is executing on a different CPU when queueing is requested, it is always queued to that CPU. This guarantees that any given work item can be executing on one CPU at maximum and if a work item is queued and executing, both are on the same CPU. The only behavior change which may affect workqueue users negatively is that non-reentrancy overrides the affinity specified by queue_work_on(). On a reentrant workqueue, the affinity specified by queue_work_on() is always followed. Now, if the work item is executing on one of the CPUs, the work item will be queued there regardless of the requested affinity. I've reviewed all workqueue users which request explicit affinity, and, fortunately, none seems to be crazy enough to exploit parallel execution of the same work item. This adds an additional busy_hash lookup if the work item was previously queued on a different CPU. This shouldn't be noticeable under any sane workload. Work item queueing isn't a very high-frequency operation and they don't jump across CPUs all the time. In a micro benchmark to exaggerate this difference - measuring the time it takes for two work items to repeatedly jump between two CPUs a number (10M) of times with busy_hash table densely populated, the difference was around 3%. While the overhead is measureable, it is only visible in pathological cases and the difference isn't huge. This change brings much needed sanity to workqueue and makes its behavior consistent with timer. I think this is the right tradeoff to make. This enables significant simplification of workqueue API. Simplification patches will follow. Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-20workqueue: fix checkpatch issuesValentin Ilie
Fixed some checkpatch warnings. tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit. Signed-off-by: Valentin Ilie <valentin.ilie@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org> LKML-Reference: <1345326762-21747-1-git-send-email-valentin.ilie@gmail.com>
2012-08-16workqueue: use system_highpri_wq for unbind_workJoonsoo Kim
To speed cpu down processing up, use system_highpri_wq. As scheduling priority of workers on it is higher than system_wq and it is not contended by other normal works on this cpu, work on it is processed faster than system_wq. tj: CPU up/downs care quite a bit about latency these days. This shouldn't hurt anything and makes sense. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-16workqueue: use system_highpri_wq for highpri workers in rebind_workers()Joonsoo Kim
In rebind_workers(), we do inserting a work to rebind to cpu for busy workers. Currently, in this case, we use only system_wq. This makes a possible error situation as there is mismatch between cwq->pool and worker->pool. To prevent this, we should use system_highpri_wq for highpri worker to match theses. This implements it. tj: Rephrased comment a bit. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-16workqueue: introduce system_highpri_wqJoonsoo Kim
Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker or highpri worker. But, we don't consider this difference in rebind_workers(), we use just system_wq for highpri worker. It makes mismatch between cwq->pool and worker->pool. It doesn't make error in current implementation, but possible in the future. Now, we introduce system_highpri_wq to use proper cwq for highpri workers in rebind_workers(). Following patch fix this issue properly. tj: Even apart from rebinding, having system_highpri_wq generally makes sense. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-16workqueue: change value of lcpu in __queue_delayed_work_on()Joonsoo Kim
We assign cpu id into work struct's data field in __queue_delayed_work_on(). In current implementation, when work is come in first time, current running cpu id is assigned. If we do __queue_delayed_work_on() with CPU A on CPU B, __queue_work() invoked in delayed_work_timer_fn() go into the following sub-optimal path in case of WQ_NON_REENTRANT. gcwq = get_gcwq(cpu); if (wq->flags & WQ_NON_REENTRANT && (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND. It is sufficient to prevent to go into sub-optimal path. tj: Slightly rephrased the comment. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-16workqueue: correct req_cpu in trace_workqueue_queue_work()Joonsoo Kim
When we do tracing workqueue_queue_work(), it records requested cpu. But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND, requested cpu is changed as local cpu. In case of @wq->flag & WQ_UNBOUND, above change is not occured, therefore it is reasonable to correct it. Use temporary local variable for storing requested cpu. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-16workqueue: use enum value to set array size of pools in gcwqJoonsoo Kim
Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent size of pools, definition of worker_pool in gcwq doesn't use it. Using it makes code robust and prevent future mistakes. So change code to use this enum value. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-13workqueue: add missing wmb() in clear_work_data()Tejun Heo
Any operation which clears PENDING should be preceded by a wmb to guarantee that the next PENDING owner sees all the changes made before PENDING release. There are only two places where PENDING is cleared - set_work_cpu_and_clear_pending() and clear_work_data(). The caller of the former already does smp_wmb() but the latter doesn't have any. Move the wmb above set_work_cpu_and_clear_pending() into it and add one to clear_work_data(). There hasn't been any report related to this issue, and, given how clear_work_data() is used, it is extremely unlikely to have caused any actual problems on any architecture. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2012-08-13workqueue: fix CPU binding of flush_delayed_work[_sync]()Tejun Heo
delayed_work encodes the workqueue to use and the last CPU in delayed_work->work.data while it's on timer. The target CPU is implicitly recorded as the CPU the timer is queued on and delayed_work_timer_fn() queues delayed_work->work to the CPU it is running on. Unfortunately, this leaves flush_delayed_work[_sync]() no way to find out which CPU the delayed_work was queued for when they try to re-queue after killing the timer. Currently, it chooses the local CPU flush is running on. This can unexpectedly move a delayed_work queued on a specific CPU to another CPU and lead to subtle errors. There isn't much point in trying to save several bytes in struct delayed_work, which is already close to a hundred bytes on 64bit with all debug options turned off. This patch adds delayed_work->cpu to remember the CPU it's queued for. Note that if the timer is migrated during CPU down, the work item could be queued to the downed global_cwq after this change. As a detached global_cwq behaves like an unbound one, this doesn't change much for the delayed_work. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org>
2012-08-03workqueue: implement mod_delayed_work[_on]()Tejun Heo
Workqueue was lacking a mechanism to modify the timeout of an already pending delayed_work. delayed_work users have been working around this using several methods - using an explicit timer + work item, messing directly with delayed_work->timer, and canceling before re-queueing, all of which are error-prone and/or ugly. This patch implements mod_delayed_work[_on]() which behaves similarly to mod_timer() - if the delayed_work is idle, it's queued with the given delay; otherwise, its timeout is modified to the new value. Zero @delay guarantees immediate execution. v2: Updated to reflect try_to_grab_pending() changes. Now safe to be called from bh context. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com>
2012-08-03workqueue: mark a work item being canceled as suchTejun Heo
There can be two reasons try_to_grab_pending() can fail with -EAGAIN. One is when someone else is queueing or deqeueing the work item. With the previous patches, it is guaranteed that PENDING and queued state will soon agree making it safe to busy-retry in this case. The other is if multiple __cancel_work_timer() invocations are racing one another. __cancel_work_timer() grabs PENDING and then waits for running instances of the target work item on all CPUs while holding PENDING and !queued. try_to_grab_pending() invoked from another task will keep returning -EAGAIN while the current owner is waiting. Not distinguishing the two cases is okay because __cancel_work_timer() is the only user of try_to_grab_pending() and it invokes wait_on_work() whenever grabbing fails. For the first case, busy looping should be fine but wait_on_work() doesn't cause any critical problem. For the latter case, the new contender usually waits for the same condition as the current owner, so no unnecessarily extended busy-looping happens. Combined, these make __cancel_work_timer() technically correct even without irq protection while grabbing PENDING or distinguishing the two different cases. While the current code is technically correct, not distinguishing the two cases makes it difficult to use try_to_grab_pending() for other purposes than canceling because it's impossible to tell whether it's safe to busy-retry grabbing. This patch adds a mechanism to mark a work item being canceled. try_to_grab_pending() now disables irq on success and returns -EAGAIN to indicate that grabbing failed but PENDING and queued states are gonna agree soon and it's safe to busy-loop. It returns -ENOENT if the work item is being canceled and it may stay PENDING && !queued for arbitrary amount of time. __cancel_work_timer() is modified to mark the work canceling with WORK_OFFQ_CANCELING after grabbing PENDING, thus making try_to_grab_pending() fail with -ENOENT instead of -EAGAIN. Also, it invokes wait_on_work() iff grabbing failed with -ENOENT. This isn't necessary for correctness but makes it consistent with other future users of try_to_grab_pending(). v2: try_to_grab_pending() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Updated so that try_to_grab_pending() disables irq on success rather than requiring preemption disabled by the caller. This makes busy-looping easier and will allow try_to_grap_pending() to be used from bh/irq contexts. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Fengguang Wu <fengguang.wu@intel.com>
2012-08-03workqueue: reorganize try_to_grab_pending() and __cancel_timer_work()Tejun Heo
* Use bool @is_dwork instead of @timer and let try_to_grab_pending() use to_delayed_work() to determine the delayed_work address. * Move timer handling from __cancel_work_timer() to try_to_grab_pending(). * Make try_to_grab_pending() use -EAGAIN instead of -1 for busy-looping and drop the ret local variable. * Add proper function comment to try_to_grab_pending(). This makes the code a bit easier to understand and will ease further changes. This patch doesn't make any functional change. v2: Use @is_dwork instead of @timer. Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-03workqueue: factor out __queue_delayed_work() from queue_delayed_work_on()Tejun Heo
This is to prepare for mod_delayed_work[_on]() and doesn't cause any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-03workqueue: introduce WORK_OFFQ_FLAG_*Tejun Heo
Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain WORK_STRUCT_FLAG_* and flush color. If the work item is queued, the rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise, WORK_STRUCT_CWQ is clear and the bits contain the last CPU number - either a real CPU number or one of WORK_CPU_*. Scheduled addition of mod_delayed_work[_on]() requires an additional flag, which is used only while a work item is off queue. There are more than enough bits to represent off-queue CPU number on both 32 and 64bits. This patch introduces WORK_OFFQ_FLAG_* which occupy the lower part of the @work->data high bits while off queue. This patch doesn't define any actual OFFQ flag yet. Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to make room for OFFQ flags. To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON() to check that there are enough bits to accomodate off-queue CPU number is added. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-03workqueue: move try_to_grab_pending() upwardsTejun Heo
try_to_grab_pending() will be used by to-be-implemented mod_delayed_work[_on](). Move try_to_grab_pending() and related functions above queueing functions. This patch only moves functions around. Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-03workqueue: fix zero @delay handling of queue_delayed_work_on()Tejun Heo
If @delay is zero and the dealyed_work is idle, queue_delayed_work() queues it for immediate execution; however, queue_delayed_work_on() lacks this logic and always goes through timer regardless of @delay. This patch moves 0 @delay handling logic from queue_delayed_work() to queue_delayed_work_on() so that both functions behave the same. Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-03workqueue: unify local CPU queueing handlingTejun Heo
Queueing functions have been using different methods to determine the local CPU. * queue_work() superflously uses get/put_cpu() to acquire and hold the local CPU across queue_work_on(). * delayed_work_timer_fn() uses smp_processor_id(). * queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu which is interpreted as the local CPU. * flush_delayed_work[_sync]() were using raw_smp_processor_id(). * __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the target workqueue is bound one but nobody uses this. This patch converts all functions to uniformly use %WORK_CPU_UNBOUND to indicate local CPU and use the local binding feature of __queue_work(). unlikely() is dropped from %WORK_CPU_UNBOUND handling in __queue_work(). Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-03workqueue: set delayed_work->timer function on initializationTejun Heo
delayed_work->timer.function is currently initialized during queue_delayed_work_on(). Export delayed_work_timer_fn() and set delayed_work timer function during delayed_work initialization together with other fields. This ensures the timer function is always valid on an initialized delayed_work. This is to help mod_delayed_work() implementation. To detect delayed_work users which diddle with the internal timer, trigger WARN if timer function doesn't match on queue. Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-03workqueue: disable irq while manipulating PENDINGTejun Heo
Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access to the target work item. They first try to claim the bit and proceed with queueing only after that succeeds and there's a window between PENDING being set and the actual queueing where the task can be interrupted or preempted. There's also a similar window in process_one_work() when clearing PENDING. A work item is dequeued, gcwq->lock is released and then PENDING is cleared and the worker might get interrupted or preempted between releasing gcwq->lock and clearing PENDING. cancel[_delayed]_work_sync() tries to claim or steal PENDING. The function assumes that a work item with PENDING is either queued or in the process of being [de]queued. In the latter case, it busy-loops until either the work item loses PENDING or is queued. If canceling coincides with the above described interrupts or preemptions, the canceling task will busy-loop while the queueing or executing task is preempted. This patch keeps irq disabled across claiming PENDING and actual queueing and moves PENDING clearing in process_one_work() inside gcwq->lock so that busy looping from PENDING && !queued doesn't wait for interrupted/preempted tasks. Note that, in process_one_work(), setting last CPU and clearing PENDING got merged into single operation. This removes possible long busy-loops and will allow using try_to_grab_pending() from bh and irq contexts. v2: __queue_work() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Disable irq instead of preemption. IRQ will be disabled while grabbing gcwq->lock later anyway and this allows using try_to_grab_pending() from bh and irq contexts. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Fengguang Wu <fengguang.wu@intel.com>
2012-08-03workqueue: add missing smp_wmb() in process_one_work()Tejun Heo
WORK_STRUCT_PENDING is used to claim ownership of a work item and process_one_work() releases it before starting execution. When someone else grabs PENDING, all pre-release updates to the work item should be visible and all updates made by the new owner should happen afterwards. Grabbing PENDING uses test_and_set_bit() and thus has a full barrier; however, clearing doesn't have a matching wmb. Given the preceding spin_unlock and use of clear_bit, I don't believe this can be a problem on an actual machine and there hasn't been any related report but it still is theretically possible for clear_pending to permeate upwards and happen before work->entry update. Add an explicit smp_wmb() before work_clear_pending(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: stable@vger.kernel.org
2012-08-03workqueue: make queueing functions return boolTejun Heo
All queueing functions return 1 on success, 0 if the work item was already pending. Update them to return bool instead. This signifies better that they don't return 0 / -errno. This is cleanup and doesn't cause any functional difference. While at it, fix comment opening for schedule_work_on(). Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-03workqueue: reorder queueing functions so that _on() variants are on topTejun Heo
Currently, queue/schedule[_delayed]_work_on() are located below the counterpart without the _on postifx even though the latter is usually implemented using the former. Swap them. This is cleanup and doesn't cause any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-01Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull second vfs pile from Al Viro: "The stuff in there: fsfreeze deadlock fixes by Jan (essentially, the deadlock reproduced by xfstests 068), symlink and hardlink restriction patches, plus assorted cleanups and fixes. Note that another fsfreeze deadlock (emergency thaw one) is *not* dealt with - the series by Fernando conflicts a lot with Jan's, breaks userland ABI (FIFREEZE semantics gets changed) and trades the deadlock for massive vfsmount leak; this is going to be handled next cycle. There probably will be another pull request, but that stuff won't be in it." Fix up trivial conflicts due to unrelated changes next to each other in drivers/{staging/gdm72xx/usb_boot.c, usb/gadget/storage_common.c} * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits) delousing target_core_file a bit Documentation: Correct s_umount state for freeze_fs/unfreeze_fs fs: Remove old freezing mechanism ext2: Implement freezing btrfs: Convert to new freezing mechanism nilfs2: Convert to new freezing mechanism ntfs: Convert to new freezing mechanism fuse: Convert to new freezing mechanism gfs2: Convert to new freezing mechanism ocfs2: Convert to new freezing mechanism xfs: Convert to new freezing code ext4: Convert to new freezing mechanism fs: Protect write paths by sb_start_write - sb_end_write fs: Skip atime update on frozen filesystem fs: Add freezing handling to mnt_want_write() / mnt_drop_write() fs: Improve filesystem freezing handling switch the protection of percpu_counter list to spinlock nfsd: Push mnt_want_write() outside of i_mutex btrfs: Push mnt_want_write() outside of i_mutex fat: Push mnt_want_write() outside of i_mutex ...
2012-07-31Merge tag 'irqdomain-for-linus' of git://git.secretlab.ca/git/linux-2.6Linus Torvalds
Pull irqdomain changes from Grant Likely: "Round of refactoring and enhancements to irq_domain infrastructure. This series starts the process of simplifying irqdomain. The ultimate goal is to merge LEGACY, LINEAR and TREE mappings into a single system, but had to back off from that after some last minute bugs. Instead it mainly reorganizes the code and ensures that the reverse map gets populated when the irq is mapped instead of the first time it is looked up. Merging of the irq_domain types is deferred to v3.7 In other news, this series adds helpers for creating static mappings on a linear or tree mapping." * tag 'irqdomain-for-linus' of git://git.secretlab.ca/git/linux-2.6: irqdomain: Improve diagnostics when a domain mapping fails irqdomain: eliminate slow-path revmap lookups irqdomain: Fix irq_create_direct_mapping() to test irq_domain type. irqdomain: Eliminate dedicated radix lookup functions irqdomain: Support for static IRQ mapping and association. irqdomain: Always update revmap when setting up a virq irqdomain: Split disassociating code into separate function irq_domain: correct a minor wrong comment for linear revmap irq_domain: Standardise legacy/linear domain selection irqdomain: Make ops->map hook optional irqdomain: Remove unnecessary test for IRQ_DOMAIN_MAP_LEGACY irqdomain: Simple NUMA awareness. devicetree: add helper inline for retrieving a node's full name
2012-07-31Merge branch 'akpm' (Andrew's patch-bomb)Linus Torvalds
Merge Andrew's second set of patches: - MM - a few random fixes - a couple of RTC leftovers * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (120 commits) rtc/rtc-88pm80x: remove unneed devm_kfree rtc/rtc-88pm80x: assign ret only when rtc_register_driver fails mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables tmpfs: distribute interleave better across nodes mm: remove redundant initialization mm: warn if pg_data_t isn't initialized with zero mips: zero out pg_data_t when it's allocated memcg: gix memory accounting scalability in shrink_page_list mm/sparse: remove index_init_lock mm/sparse: more checks on mem_section number mm/sparse: optimize sparse_index_alloc memcg: add mem_cgroup_from_css() helper memcg: further prevent OOM with too many dirty pages memcg: prevent OOM with too many dirty pages mm: mmu_notifier: fix freed page still mapped in secondary MMU mm: memcg: only check anon swapin page charges for swap cache mm: memcg: only check swap cache pages for repeated charging mm: memcg: split swapin charge function into private and public part mm: memcg: remove needless !mm fixup to init_mm when charging mm: memcg: remove unneeded shmem charge type ...
2012-07-31Merge tag 'random_for_linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random Pull random subsystem patches from Ted Ts'o: "This patch series contains a major revamp of how we collect entropy from interrupts for /dev/random and /dev/urandom. The goal is to addresses weaknesses discussed in the paper "Mining your Ps and Qs: Detection of Widespread Weak Keys in Network Devices", by Nadia Heninger, Zakir Durumeric, Eric Wustrow, J. Alex Halderman, which will be published in the Proceedings of the 21st Usenix Security Symposium, August 2012. (See https://factorable.net for more information and an extended version of the paper.)" Fix up trivial conflicts due to nearby changes in drivers/{mfd/ab3100-core.c, usb/gadget/omap_udc.c} * tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random: (33 commits) random: mix in architectural randomness in extract_buf() dmi: Feed DMI table to /dev/random driver random: Add comment to random_initialize() random: final removal of IRQF_SAMPLE_RANDOM um: remove IRQF_SAMPLE_RANDOM which is now a no-op sparc/ldc: remove IRQF_SAMPLE_RANDOM which is now a no-op [ARM] pxa: remove IRQF_SAMPLE_RANDOM which is now a no-op board-palmz71: remove IRQF_SAMPLE_RANDOM which is now a no-op isp1301_omap: remove IRQF_SAMPLE_RANDOM which is now a no-op pxa25x_udc: remove IRQF_SAMPLE_RANDOM which is now a no-op omap_udc: remove IRQF_SAMPLE_RANDOM which is now a no-op goku_udc: remove IRQF_SAMPLE_RANDOM which was commented out uartlite: remove IRQF_SAMPLE_RANDOM which is now a no-op drivers: hv: remove IRQF_SAMPLE_RANDOM which is now a no-op xen-blkfront: remove IRQF_SAMPLE_RANDOM which is now a no-op n2_crypto: remove IRQF_SAMPLE_RANDOM which is now a no-op pda_power: remove IRQF_SAMPLE_RANDOM which is now a no-op i2c-pmcmsp: remove IRQF_SAMPLE_RANDOM which is now a no-op input/serio/hp_sdc.c: remove IRQF_SAMPLE_RANDOM which is now a no-op mfd: remove IRQF_SAMPLE_RANDOM which is now a no-op ...
2012-07-31mm: allow PF_MEMALLOC from softirq contextMel Gorman
This is needed to allow network softirq packet processing to make use of PF_MEMALLOC. Currently softirq context cannot use PF_MEMALLOC due to it not being associated with a task, and therefore not having task flags to fiddle with - thus the gfp to alloc flag mapping ignores the task flags when in interrupts (hard or soft) context. Allowing softirqs to make use of PF_MEMALLOC therefore requires some trickery. This patch borrows the task flags from whatever process happens to be preempted by the softirq. It then modifies the gfp to alloc flags mapping to not exclude task flags in softirq context, and modify the softirq code to save, clear and restore the PF_MEMALLOC flag. The save and clear, ensures the preempted task's PF_MEMALLOC flag doesn't leak into the softirq. The restore ensures a softirq's PF_MEMALLOC flag cannot leak back into the preempted process. This should be safe due to the following reasons Softirqs can run on multiple CPUs sure but the same task should not be executing the same softirq code. Neither should the softirq handler be preempted by any other softirq handler so the flags should not leak to an unrelated softirq. Softirqs re-enable hardware interrupts in __do_softirq() so can be preempted by hardware interrupts so PF_MEMALLOC is inherited by the hard IRQ. However, this is similar to a process in reclaim being preempted by a hardirq. While PF_MEMALLOC is set, gfp_to_alloc_flags() distinguishes between hard and soft irqs and avoids giving a hardirq the ALLOC_NO_WATERMARKS flag. If the softirq is deferred to ksoftirq then its flags may be used instead of a normal tasks but as the softirq cannot be preempted, the PF_MEMALLOC flag does not leak to other code by accident. [davem@davemloft.net: Document why PF_MEMALLOC is safe] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31mm/hotplug: correctly setup fallback zonelists when creating new pgdatJiang Liu
When hotadd_new_pgdat() is called to create new pgdat for a new node, a fallback zonelist should be created for the new node. There's code to try to achieve that in hotadd_new_pgdat() as below: /* * The node we allocated has no zone fallback lists. For avoiding * to access not-initialized zonelist, build here. */ mutex_lock(&zonelists_mutex); build_all_zonelists(pgdat, NULL); mutex_unlock(&zonelists_mutex); But it doesn't work as expected. When hotadd_new_pgdat() is called, the new node is still in offline state because node_set_online(nid) hasn't been called yet. And build_all_zonelists() only builds zonelists for online nodes as: for_each_online_node(nid) { pg_data_t *pgdat = NODE_DATA(nid); build_zonelists(pgdat); build_zonelist_cache(pgdat); } Though we hope to create zonelist for the new pgdat, but it doesn't. So add a new parameter "pgdat" the build_all_zonelists() to build pgdat for the new pgdat too. Signed-off-by: Jiang Liu <liuj97@gmail.com> Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Keping Chen <chenkeping@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31memcg: rename config variablesAndrew Morton
Sanity: CONFIG_CGROUP_MEM_RES_CTLR -> CONFIG_MEMCG CONFIG_CGROUP_MEM_RES_CTLR_SWAP -> CONFIG_MEMCG_SWAP CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED -> CONFIG_MEMCG_SWAP_ENABLED CONFIG_CGROUP_MEM_RES_CTLR_KMEM -> CONFIG_MEMCG_KMEM [mhocko@suse.cz: fix missed bits] Cc: Glauber Costa <glommer@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31mm: prepare for removal of obsolete /proc/sys/vm/nr_pdflush_threadsWanpeng Li
Since per-BDI flusher threads were introduced in 2.6, the pdflush mechanism is not used any more. But the old interface exported through /proc/sys/vm/nr_pdflush_threads still exists and is obviously useless. For back-compatibility, printk warning information and return 2 to notify the users that the interface is removed. Signed-off-by: Wanpeng Li <liwp@linux.vnet.ibm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31mm: account the total_vm in the vm_stat_account()Huang Shijie
vm_stat_account() accounts the shared_vm, stack_vm and reserved_vm now. But we can also account for total_vm in the vm_stat_account() which makes the code tidy. Even for mprotect_fixup(), we can get the right result in the end. Signed-off-by: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31Merge branch 'perf-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf updates from Ingo Molnar: "The biggest changes are Intel Nehalem-EX PMU uncore support, uprobes updates/cleanups/fixes from Oleg and diverse tooling updates (mostly fixes) now that Arnaldo is back from vacation." * 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits) uprobes: __replace_page() needs munlock_vma_page() uprobes: Rename vma_address() and make it return "unsigned long" uprobes: Fix register_for_each_vma()->vma_address() check uprobes: Introduce vaddr_to_offset(vma, vaddr) uprobes: Teach build_probe_list() to consider the range uprobes: Remove insert_vm_struct()->uprobe_mmap() uprobes: Remove copy_vma()->uprobe_mmap() uprobes: Fix overflow in vma_address()/find_active_uprobe() uprobes: Suppress uprobe_munmap() from mmput() uprobes: Uprobe_mmap/munmap needs list_for_each_entry_safe() uprobes: Clean up and document write_opcode()->lock_page(old_page) uprobes: Kill write_opcode()->lock_page(new_page) uprobes: __replace_page() should not use page_address_in_vma() uprobes: Don't recheck vma/f_mapping in write_opcode() perf/x86: Fix missing struct before structure name perf/x86: Fix format definition of SNB-EP uncore QPI box perf/x86: Make bitfield unsigned perf/x86: Fix LLC-* and node-* events on Intel SandyBridge perf/x86: Add Intel Nehalem-EX uncore support perf/x86: Fix typo in format definition of uncore PCU filter ...
2012-07-30resource: make sure requested range is included in the root rangeOctavian Purdila
When the requested range is outside of the root range the logic in __reserve_region_with_split will cause an infinite recursion which will overflow the stack as seen in the warning bellow. This particular stack overflow was caused by requesting the (100000000-107ffffff) range while the root range was (0-ffffffff). In this case __request_resource would return the whole root range as conflict range (i.e. 0-ffffffff). Then, the logic in __reserve_region_with_split would continue the recursion requesting the new range as (conflict->end+1, end) which incidentally in this case equals the originally requested range. This patch aborts looking for an usable range when the request does not intersect with the root range. When the request partially overlaps with the root range, it ajust the request to fall in the root range and then continues with the new request. When the request is modified or aborted errors and a stack trace are logged to allow catching the errors in the upper layers. [ 5.968374] WARNING: at kernel/sched.c:4129 sub_preempt_count+0x63/0x89() [ 5.975150] Modules linked in: [ 5.978184] Pid: 1, comm: swapper Not tainted 3.0.22-mid27-00004-gb72c817 #46 [ 5.985324] Call Trace: [ 5.987759] [<c1039dfc>] ? console_unlock+0x17b/0x18d [ 5.992891] [<c1039620>] warn_slowpath_common+0x48/0x5d [ 5.998194] [<c1031758>] ? sub_preempt_count+0x63/0x89 [ 6.003412] [<c1039644>] warn_slowpath_null+0xf/0x13 [ 6.008453] [<c1031758>] sub_preempt_count+0x63/0x89 [ 6.013499] [<c14d60c4>] _raw_spin_unlock+0x27/0x3f [ 6.018453] [<c10c6349>] add_partial+0x36/0x3b [ 6.022973] [<c10c7c0a>] deactivate_slab+0x96/0xb4 [ 6.027842] [<c14cf9d9>] __slab_alloc.isra.54.constprop.63+0x204/0x241 [ 6.034456] [<c103f78f>] ? kzalloc.constprop.5+0x29/0x38 [ 6.039842] [<c103f78f>] ? kzalloc.constprop.5+0x29/0x38 [ 6.045232] [<c10c7dc9>] kmem_cache_alloc_trace+0x51/0xb0 [ 6.050710] [<c103f78f>] ? kzalloc.constprop.5+0x29/0x38 [ 6.056100] [<c103f78f>] kzalloc.constprop.5+0x29/0x38 [ 6.061320] [<c17b45e9>] __reserve_region_with_split+0x1c/0xd1 [ 6.067230] [<c17b4693>] __reserve_region_with_split+0xc6/0xd1 ... [ 7.179057] [<c17b4693>] __reserve_region_with_split+0xc6/0xd1 [ 7.184970] [<c17b4779>] reserve_region_with_split+0x30/0x42 [ 7.190709] [<c17a8ebf>] e820_reserve_resources_late+0xd1/0xe9 [ 7.196623] [<c17c9526>] pcibios_resource_survey+0x23/0x2a [ 7.202184] [<c17cad8a>] pcibios_init+0x23/0x35 [ 7.206789] [<c17ca574>] pci_subsys_init+0x3f/0x44 [ 7.211659] [<c1002088>] do_one_initcall+0x72/0x122 [ 7.216615] [<c17ca535>] ? pci_legacy_init+0x3d/0x3d [ 7.221659] [<c17a27ff>] kernel_init+0xa6/0x118 [ 7.226265] [<c17a2759>] ? start_kernel+0x334/0x334 [ 7.231223] [<c14d7482>] kernel_thread_helper+0x6/0x10 Signed-off-by: Octavian Purdila <octavian.purdila@intel.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-30taskstats: check nla_reserve() returnAlan Cox
Addresses https://bugzilla.kernel.org/show_bug.cgi?id=44621 Reported-by: <rucsoftsec@gmail.com> Signed-off-by: Alan Cox <alan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-30sysctl: suppress kmemleak messagesSteven Rostedt
register_sysctl_table() is a strange function, as it makes internal allocations (a header) to register a sysctl_table. This header is a handle to the table that is created, and can be used to unregister the table. But if the table is permanent and never unregistered, the header acts the same as a static variable. Unfortunately, this allocation of memory that is never expected to be freed fools kmemleak in thinking that we have leaked memory. For those sysctl tables that are never unregistered, and have no pointer referencing them, kmemleak will think that these are memory leaks: unreferenced object 0xffff880079fb9d40 (size 192): comm "swapper/0", pid 0, jiffies 4294667316 (age 12614.152s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff8146b590>] kmemleak_alloc+0x73/0x98 [<ffffffff8110a935>] kmemleak_alloc_recursive.constprop.42+0x16/0x18 [<ffffffff8110b852>] __kmalloc+0x107/0x153 [<ffffffff8116fa72>] kzalloc.constprop.8+0xe/0x10 [<ffffffff811703c9>] __register_sysctl_paths+0xe1/0x160 [<ffffffff81170463>] register_sysctl_paths+0x1b/0x1d [<ffffffff8117047d>] register_sysctl_table+0x18/0x1a [<ffffffff81afb0a1>] sysctl_init+0x10/0x14 [<ffffffff81b05a6f>] proc_sys_init+0x2f/0x31 [<ffffffff81b0584c>] proc_root_init+0xa5/0xa7 [<ffffffff81ae5b7e>] start_kernel+0x3d0/0x40a [<ffffffff81ae52a7>] x86_64_start_reservations+0xae/0xb2 [<ffffffff81ae53ad>] x86_64_start_kernel+0x102/0x111 [<ffffffffffffffff>] 0xffffffffffffffff The sysctl_base_table used by sysctl itself is one such instance that registers the table to never be unregistered. Use kmemleak_not_leak() to suppress the kmemleak false positive. Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-30kdump: append newline to the last lien of vmcoreinfo noteVivek Goyal
The last line of vmcoreinfo note does not end with \n. Parsing all the lines in note becomes easier if all lines end with \n instead of trying to special case the last line. I know at least one tool, vmcore-dmesg in kexec-tools tree which made the assumption that all lines end with \n. I think it is a good idea to fix it. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-30fork: fix error handling in dup_task()Akinobu Mita
The function dup_task() may fail at the following function calls in the following order. 0) alloc_task_struct_node() 1) alloc_thread_info_node() 2) arch_dup_task_struct() Error by 0) is not a matter, it can just return. But error by 1) requires releasing task_struct allocated by 0) before it returns. Likewise, error by 2) requires releasing task_struct and thread_info allocated by 0) and 1). The existing error handling calls free_task_struct() and free_thread_info() which do not only release task_struct and thread_info, but also call architecture specific arch_release_task_struct() and arch_release_thread_info(). The problem is that task_struct and thread_info are not fully initialized yet at this point, but arch_release_task_struct() and arch_release_thread_info() are called with them. For example, x86 defines its own arch_release_task_struct() that releases a task_xstate. If alloc_thread_info_node() fails in dup_task(), arch_release_task_struct() is called with task_struct which is just allocated and filled with garbage in this error handling. This actually happened with tools/testing/fault-injection/failcmd.sh # env FAILCMD_TYPE=fail_page_alloc \ ./tools/testing/fault-injection/failcmd.sh --times=100 \ --min-order=0 --ignore-gfp-wait=0 \ -- make -C tools/testing/selftests/ run_tests In order to fix this issue, make free_{task_struct,thread_info}() not to call arch_release_{task_struct,thread_info}() and call arch_release_{task_struct,thread_info}() implicitly where needed. Default arch_release_task_struct() and arch_release_thread_info() are defined as empty by default. So this change only affects the architectures which implement their own arch_release_task_struct() or arch_release_thread_info() as listed below. arch_release_task_struct(): x86, sh arch_release_thread_info(): mn10300, tile Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: David Howells <dhowells@redhat.com> Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Salman Qazi <sqazi@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-30revert "sched: Fix fork() error path to not crash"Andrew Morton
To make way for "fork: fix error handling in dup_task()", which fixes the errors more completely. Cc: Salman Qazi <sqazi@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-30fork: use vma_pages() to simplify the codeHuang Shijie
The current code can be replaced by vma_pages(). So use it to simplify the code. [akpm@linux-foundation.org: initialise `len' at its definition site] Signed-off-by: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-30kmod: avoid deadlock from recursive kmod callTetsuo Handa
The system deadlocks (at least since 2.6.10) when call_usermodehelper(UMH_WAIT_EXEC) request triggers call_usermodehelper(UMH_WAIT_PROC) request. This is because "khelper thread is waiting for the worker thread at wait_for_completion() in do_fork() since the worker thread was created with CLONE_VFORK flag" and "the worker thread cannot call complete() because do_execve() is blocked at UMH_WAIT_PROC request" and "the khelper thread cannot start processing UMH_WAIT_PROC request because the khelper thread is waiting for the worker thread at wait_for_completion() in do_fork()". The easiest example to observe this deadlock is to use a corrupted /sbin/hotplug binary (like shown below). # : > /tmp/dummy # chmod 755 /tmp/dummy # echo /tmp/dummy > /proc/sys/kernel/hotplug # modprobe whatever call_usermodehelper("/tmp/dummy", UMH_WAIT_EXEC) is called from kobject_uevent_env() in lib/kobject_uevent.c upon loading/unloading a module. do_execve("/tmp/dummy") triggers a call to request_module("binfmt-0000") from search_binary_handler() which in turn calls call_usermodehelper(UMH_WAIT_PROC). In order to avoid deadlock, as a for-now and easy-to-backport solution, do not try to call wait_for_completion() in call_usermodehelper_exec() if the worker thread was created by khelper thread with CLONE_VFORK flag. Future and fundamental solution might be replacing singleton khelper thread with some workqueue so that recursive calls up to max_active dependency loop can be handled without deadlock. [akpm@linux-foundation.org: add comment to kmod_thread_locker] Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Cc: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-30kernel/kmod.c: document call_usermodehelper_fns() a bitAndrew Morton
This function's interface is, uh, subtle. Attempt to apologise for it. Cc: WANG Cong <xiyou.wangcong@gmail.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Kees Cook <keescook@chromium.org> Cc: Serge Hallyn <serge.hallyn@canonical.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>