summaryrefslogtreecommitdiffstats
path: root/mm/memory.c
AgeCommit message (Collapse)Author
2005-09-10[PATCH] mm/filemap.c: make two functions staticAdrian Bunk
With Nick Piggin <npiggin@suse.de> Give some things static scope. Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05[PATCH] x86: ptep_clear optimizationZachary Amsden
Add a new accessor for PTEs, which passes the full hint from the mmu_gather struct; this allows architectures with hardware pagetables to optimize away atomic PTE operations when destroying an address space. Removing the locked operation should allow better pipelining of memory access in this loop. I measured an average savings of 30-35 cycles per zap_pte_range on the first 500 destructions on Pentium-M, but I believe the optimization would win more on older processors which still assert the bus lock on xchg for an exclusive cacheline. Update: I made some new measurements, and this saves exactly 26 cycles over ptep_get_and_clear on Pentium M. On P4, with a PAE kernel, this saves 180 cycles per ptep_get_and_clear, for a whopping 92160 cycles savings for a full address space destruction. pte_clear_full is not yet used, but is provided for future optimizations (in particular, when running inside of a hypervisor that queues page table updates, the full hint allows us to avoid queueing unnecessary page table update for an address space in the process of being destroyed. This is not a huge win, but it does help a bit, and sets the stage for further hypervisor optimization of the mm layer on all architectures. Signed-off-by: Zachary Amsden <zach@vmware.com> Cc: Christoph Lameter <christoph@lameter.com> Cc: <linux-mm@kvack.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05[PATCH] mm: remove implied vm_ops checkPaolo 'Blaisorblade' Giarrusso
If !vma->vm-ops we already BUG above, so retesting it is useless. The compiler cannot optimize this because BUG is a macro and is not thus marked noreturn; that should possibly be fixed. Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-29[PATCH] Lazy page table copies in fork()Nick Piggin
Defer copying of ptes until fault time when it is possible to reconstruct the pte from backing store. Idea from Andi Kleen and Nick Piggin. Thanks to input from Rik van Riel and Linus and to Hugh for correcting my blundering. Ray Fucillo <fucillo@intersystems.com> reports: "I applied this latest patch to a 2.6.12 kernel and found that it does resolve the problem. Prior to the patch on this machine, I was seeing about 23ms spent in fork for ever 100MB of shared memory segment. After applying the patch, fork is taking about 1ms regardless of the shared memory size." Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-03Fix up recent get_user_pages() handlingLinus Torvalds
The VM_FAULT_WRITE thing is an extra bit, not a valid return value, and has to be treated as such by get_user_pages(). Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-03[PATCH] fix get_user_pages bugNick Piggin
Checking pte_dirty instead of pte_write in __follow_page is problematic for s390, and for copy_one_pte which leaves dirty when clearing write. So revert __follow_page to check pte_write as before, and make do_wp_page pass back a special extra VM_FAULT_WRITE bit to say it has done its full job: once get_user_pages receives this value, it no longer requires pte_write in __follow_page. But most callers of handle_mm_fault, in the various architectures, have switch statements which do not expect this new case. To avoid changing them all in a hurry, make an inline wrapper function (using the old name) that masks off the new bit, and use the extended interface with double underscores. Yes, we do have a call to do_wp_page from do_swap_page, but no need to change that: in rare case it's needed, another do_wp_page will follow. Signed-off-by: Hugh Dickins <hugh@veritas.com> [ Cleanups by Nick Piggin ] Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-01[PATCH] x86_64: access of some bad addressHugh Dickins
x86_64 has a large sparse gate area between VSYSCALL_START and VSYSCALL_END, not all of it presently backed by pmds. Alexander Nyberg has found that in some circumstances gdb may try to ptrace here, and hit get_user_pages BUG_ON. It seems odd that gdb should be accessing here, but it certainly shouldn't crash in this way: relax BUG_ON to -EFAULT. Fixes kernel bugzilla #4801. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-01Fix get_user_pages() race for write accessLinus Torvalds
There's no real guarantee that handle_mm_fault() will always be able to break a COW situation - if an update from another thread ends up modifying the page table some way, handle_mm_fault() may end up requiring us to re-try the operation. That's normally fine, but get_user_pages() ended up re-trying it as a read, and thus a write access could in theory end up losing the dirty bit or be done on a page that had not been properly COW'ed. This makes get_user_pages() always retry write accesses as write accesses by making "follow_page()" require that a writable follow has the dirty bit set. That simplifies the code and solves the race: if the COW break fails for some reason, we'll just loop around and try again. Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-27[PATCH] check_user_page_readable() deadlock fixAndrew Morton
Fix bug identifued by Richard Purdie <rpurdie@rpsys.net>. oprofile calls check_user_page_readable() from interrupt context, so we deadlock over various VFS locks. But check_user_page_readable() doesn't imply either a read or a write of the page's contents. Change __follow_page() so that check_user_page_readable() can tell __follow_page() that we're not accessing the page's contents, and use that info to avoid the troublesome lock-takings. Also, make follow_page() inline for the single callsite in memory.c to save a bit of stack space. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25[PATCH] mm: fix remap_pte_range BUGHugh Dickins
Out-of-tree user of remap_pfn_range hit kernel BUG at mm/memory.c:1112! It passes an unrounded size to remap_pfn_range, which was okay before 2.6.12, but misses remap_pte_range's new end condition. An audit of all the other ptwalks confirms that this is the only one so exposed. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24[PATCH] DocBook: update commentsMartin Waitz
This patch updates some comments to match code changes. Signed-off-by: Martin Waitz <tali@admingilde.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23[PATCH] sparsemem memory modelAndy Whitcroft
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21[PATCH] can_share_swap_page: use page_mapcountHugh Dickins
Remember that ironic get_user_pages race? when the raised page_count on a page swapped out led do_wp_page to decide that it had to copy on write, so substituted a different page into userspace. 2.6.7 onwards have Andrea's solution, where try_to_unmap_one backs out if it finds page_count raised. Which works, but is unsatisfying (rmap.c has no other page_count heuristics), and was found a few months ago to hang an intensive page migration test. A year ago I was hesitant to engage page_mapcount, now it seems the right fix. So remove the page_count hack from try_to_unmap_one; and use activate_page in unuse_mm when dropping lock, to replace its secondary effect of helping swapoff to make progress in that case. Simplify can_share_swap_page (now called only on anonymous pages) to check page_mapcount + page_swapcount == 1: still needs the page lock to stabilize their (pessimistic) sum, but does not need swapper_space.tree_lock for that. In do_swap_page, move swap_free and unlock_page below page_add_anon_rmap, to keep sum on the high side, and correct when can_share_swap_page called. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21[PATCH] do_wp_page: cannot share file pageHugh Dickins
A small optimization to do_wp_page's check for whether to avoid copy by reusing the page already mapped. It can never share a cached file page, nor can it share a reserved page (often the empty zero page), so it's a waste of time to lock and unlock in those cases. Which nowadays can both be neatly excluded by a preliminary PageAnon test. Christoph has reported that a preliminary page_count test proved valuable for scalability here, but PageAnon covers more common cases all at once. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21[PATCH] get_user_pages: kill get_page_mapHugh Dickins
Since its birth, get_user_pages has been calling a misguided get_page_map function. follow_page has already returned NULL if the pfn is invalid, we cannot reach an invalid pfn from a validated struct page. Remove get_page_map, and the messy rewind in get_user_pages to cope with its failure. Oh, and could we please call that "struct page *page" like everywhere else, instead of "struct page *map"? Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-17[PATCH] do_swap_page() can map random data if swap read failsKirill Korotaev
There is a bug in do_swap_page(): when swap page happens to be unreadable, page filled with random data is mapped into user address space. The fix is to check for PageUptodate and send SIGBUS in case of error. Signed-Off-By: Kirill Korotaev <dev@sw.ru> Signed-Off-By: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Acked-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19[PATCH] freepgt: hugetlb_free_pgd_rangeHugh Dickins
ia64 and ppc64 had hugetlb_free_pgtables functions which were no longer being called, and it wasn't obvious what to do about them. The ppc64 case turns out to be easy: the associated tables are noted elsewhere and freed later, safe to either skip its hugetlb areas or go through the motions of freeing nothing. Since ia64 does need a special case, restore to ppc64 the special case of skipping them. The ia64 hugetlb case has been broken since pgd_addr_end went in, though it probably appeared to work okay if you just had one such area; in fact it's been broken much longer if you consider a long munmap spanning from another region into the hugetlb region. In the ia64 hugetlb region, more virtual address bits are available than in the other regions, yet the page tables are structured the same way: the page at the bottom is larger. Here we need to scale down each addr before passing it to the standard free_pgd_range. Was about to write a hugely_scaled_down macro, but found htlbpage_to_page already exists for just this purpose. Fixed off-by-one in ia64 is_hugepage_only_range. Uninline free_pgd_range to make it available to ia64. Make sure the vma-gathering loop in free_pgtables cannot join a hugepage_only_range to any other (safe to join huges? probably but don't bother). Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19[PATCH] freepgt: remove MM_VM_SIZE(mm)Hugh Dickins
There's only one usage of MM_VM_SIZE(mm) left, and it's a troublesome macro because mm doesn't contain the (32-bit emulation?) info needed. But it too is only needed because we ignore the end from the vma list. We could make flush_pgtables return that end, or unmap_vmas. Choose the latter, since it's a natural fit with unmap_mapping_range_vma needing to know its restart addr. This does make more than minimal change, but if unmap_vmas had returned the end before, this is how we'd have done it, rather than storing the break_addr in zap_details. unmap_vmas used to return count of vmas scanned, but that's just debug which hasn't been useful in a while; and if we want the map_count 0 on exit check back, it can easily come from the final remove_vm_struct loop. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19[PATCH] freepgt: free_pgtables use vma listHugh Dickins
Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!