summaryrefslogtreecommitdiffstats
path: root/mm/mempolicy.c
AgeCommit message (Collapse)Author
2013-07-31mm: mempolicy: fix mbind_range() && vma_adjust() interactionOleg Nesterov
vma_adjust() does vma_set_policy(vma, vma_policy(next)) and this is doubly wrong: 1. This leaks vma->vm_policy if it is not NULL and not equal to next->vm_policy. This can happen if vma_merge() expands "area", not prev (case 8). 2. This sets the wrong policy if vma_merge() joins prev and area, area is the vma the caller needs to update and it still has the old policy. Revert commit 1444f92c8498 ("mm: merging memory blocks resets mempolicy") which introduced these problems. Change mbind_range() to recheck mpol_equal() after vma_merge() to fix the problem that commit tried to address. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Steven T Hampson <steven.t.hampson@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-03-08mm/mempolicy.c: fix sp_node_init() argument orderingKOSAKI Motohiro
Currently, n_new is wrongly initialized. start and end parameter are inverted. Let's fix it. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Dave Jones <davej@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-03-08mm/mempolicy.c: fix wrong sp_node insertionHillf Danton
n->end is accessed in sp_insert(). Thus it should be update before calling sp_insert(). This mistake may make kernel panic. Signed-off-by: Hillf Danton <dhillf@gmail.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Dave Jones <davej@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23mm: use NUMA_NO_NODEDavid Rientjes
Make a sweep through mm/ and convert code that uses -1 directly to using the more appropriate NUMA_NO_NODE. Signed-off-by: David Rientjes <rientjes@google.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23mm: remove offlining arg to migrate_pagesHugh Dickins
No functional change, but the only purpose of the offlining argument to migrate_pages() etc, was to ensure that __unmap_and_move() could migrate a KSM page for memory hotremove (which took ksm_thread_mutex) but not for other callers. Now all cases are safe, remove the arg. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23ksm: enable KSM page migrationHugh Dickins
Migration of KSM pages is now safe: remove the PageKsm restrictions from mempolicy.c and migrate.c. But keep PageKsm out of __unmap_and_move()'s anon_vma contortions, which are irrelevant to KSM: it looks as if that code was preventing hotremove migration of KSM pages, unless they happened to be in swapcache. There is some question as to whether enforcing a NUMA mempolicy migration ought to migrate KSM pages, mapped into entirely unrelated processes; but moving page_mapcount > 1 is only permitted with MPOL_MF_MOVE_ALL anyway, and it seems reasonable to assume that you wouldn't set MADV_MERGEABLE on any area where this is a worry. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23mm: rename page struct field helpersMel Gorman
The function names page_xchg_last_nid(), page_last_nid() and reset_page_last_nid() were judged to be inconsistent so rename them to a struct_field_op style pattern. As it looked jarring to have reset_page_mapcount() and page_nid_reset_last() beside each other in memmap_init_zone(), this patch also renames reset_page_mapcount() to page_mapcount_reset(). There are others like init_page_count() but as it is used throughout the arch code a rename would likely cause more conflicts than it is worth. [akpm@linux-foundation.org: fix zcache] Signed-off-by: Mel Gorman <mgorman@suse.de> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23mempolicy: fix is_valid_nodemask()Lai Jiangshan
is_valid_nodemask() was introduced by commit 19770b32609b ("mm: filter based on a nodemask as well as a gfp_mask"). but it does not match its comments, because it does not check the zone which > policy_zone. Also in commit b377fd3982ad ("Apply memory policies to top two highest zones when highest zone is ZONE_MOVABLE"), this commits told us, if highest zone is ZONE_MOVABLE, we should also apply memory policies to it. so ZONE_MOVABLE should be valid zone for policies. is_valid_nodemask() need to be changed to match it. Fix: check all zones, even its zoneid > policy_zone. Use nodes_intersects() instead open code to check it. Reported-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-02mm: mempolicy: Convert shared_policy mutex to spinlockMel Gorman
Sasha was fuzzing with trinity and reported the following problem: BUG: sleeping function called from invalid context at kernel/mutex.c:269 in_atomic(): 1, irqs_disabled(): 0, pid: 6361, name: trinity-main 2 locks held by trinity-main/6361: #0: (&mm->mmap_sem){++++++}, at: [<ffffffff810aa314>] __do_page_fault+0x1e4/0x4f0 #1: (&(&mm->page_table_lock)->rlock){+.+...}, at: [<ffffffff8122f017>] handle_pte_fault+0x3f7/0x6a0 Pid: 6361, comm: trinity-main Tainted: G W 3.7.0-rc2-next-20121024-sasha-00001-gd95ef01-dirty #74 Call Trace: __might_sleep+0x1c3/0x1e0 mutex_lock_nested+0x29/0x50 mpol_shared_policy_lookup+0x2e/0x90 shmem_get_policy+0x2e/0x30 get_vma_policy+0x5a/0xa0 mpol_misplaced+0x41/0x1d0 handle_pte_fault+0x465/0x6a0 This was triggered by a different version of automatic NUMA balancing but in theory the current version is vunerable to the same problem. do_numa_page -> numa_migrate_prep -> mpol_misplaced -> get_vma_policy -> shmem_get_policy It's very unlikely this will happen as shared pages are not marked pte_numa -- see the page_mapcount() check in change_pte_range() -- but it is possible. To address this, this patch restores sp->lock as originally implemented by Kosaki Motohiro. In the path where get_vma_policy() is called, it should not be calling sp_alloc() so it is not necessary to treat the PTL specially. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-02mempolicy: remove arg from mpol_parse_str, mpol_to_strHugh Dickins
Remove the unused argument (formerly no_context) from mpol_parse_str() and from mpol_to_str(). Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-02tmpfs mempolicy: fix /proc/mounts corrupting memoryHugh Dickins
Recently I suggested using "mount -o remount,mpol=local /tmp" in NUMA mempolicy testing. Very nasty. Reading /proc/mounts, /proc/pid/mounts or /proc/pid/mountinfo may then corrupt one bit of kernel memory, often in a page table (causing "Bad swap" or "Bad page map" warning or "Bad pagetable" oops), sometimes in a vm_area_struct or rbnode or somewhere worse. "mpol=prefer" and "mpol=prefer:Node" are equally toxic. Recent NUMA enhancements are not to blame: this dates back to 2.6.35, when commit e17f74af351c "mempolicy: don't call mpol_set_nodemask() when no_context" skipped mpol_parse_str()'s call to mpol_set_nodemask(), which used to initialize v.preferred_node, or set MPOL_F_LOCAL in flags. With slab poisoning, you can then rely on mpol_to_str() to set the bit for node 0x6b6b, probably in the next page above the caller's stack. mpol_parse_str() is only called from shmem_parse_options(): no_context is always true, so call it unused for now, and remove !no_context code. Set v.nodes or v.preferred_node or MPOL_F_LOCAL as mpol_to_str() might expect. Then mpol_to_str() can ignore its no_context argument also, the mpol being appropriately initialized whether contextualized or not. Rename its no_context unused too, and let subsequent patch remove them (that's not needed for stable backporting, which would involve rejects). I don't understand why MPOL_LOCAL is described as a pseudo-policy: it's a reasonable policy which suffers from a confusing implementation in terms of MPOL_PREFERRED with MPOL_F_LOCAL. I believe this would be much more robust if MPOL_LOCAL were recognized in switch statements throughout, MPOL_F_LOCAL deleted, and MPOL_PREFERRED use the (possibly empty) nodes mask like everyone else, instead of its preferred_node variant (I presume an optimization from the days before MPOL_LOCAL). But that would take me too long to get right and fully tested. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-16Merge tag 'balancenuma-v11' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma Pull Automatic NUMA Balancing bare-bones from Mel Gorman: "There are three implementations for NUMA balancing, this tree (balancenuma), numacore which has been developed in tip/master and autonuma which is in aa.git. In almost all respects balancenuma is the dumbest of the three because its main impact is on the VM side with no attempt to be smart about scheduling. In the interest of getting the ball rolling, it would be desirable to see this much merged for 3.8 with the view to building scheduler smarts on top and adapting the VM where required for 3.9. The most recent set of comparisons available from different people are mel: https://lkml.org/lkml/2012/12/9/108 mingo: https://lkml.org/lkml/2012/12/7/331 tglx: https://lkml.org/lkml/2012/12/10/437 srikar: https://lkml.org/lkml/2012/12/10/397 The results are a mixed bag. In my own tests, balancenuma does reasonably well. It's dumb as rocks and does not regress against mainline. On the other hand, Ingo's tests shows that balancenuma is incapable of converging for this workloads driven by perf which is bad but is potentially explained by the lack of scheduler smarts. Thomas' results show balancenuma improves on mainline but falls far short of numacore or autonuma. Srikar's results indicate we all suffer on a large machine with imbalanced node sizes. My own testing showed that recent numacore results have improved dramatically, particularly in the last week but not universally. We've butted heads heavily on system CPU usage and high levels of migration even when it shows that overall performance is better. There are also cases where it regresses. Of interest is that for specjbb in some configurations it will regress for lower numbers of warehouses and show gains for higher numbers which is not reported by the tool by default and sometimes missed in treports. Recently I reported for numacore that the JVM was crashing with NullPointerExceptions but currently it's unclear what the source of this problem is. Initially I thought it was in how numacore batch handles PTEs but I'm no longer think this is the case. It's possible numacore is just able to trigger it due to higher rates of migration. These reports were quite late in the cycle so I/we would like to start with this tree as it contains much of the code we can agree on and has not changed significantly over the last 2-3 weeks." * tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits) mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable mm/rmap: Convert the struct anon_vma::mutex to an rwsem mm: migrate: Account a transhuge page properly when rate limiting mm: numa: Account for failed allocations and isolations as migration failures mm: numa: Add THP migration for the NUMA working set scanning fault case build fix mm: numa: Add THP migration for the NUMA working set scanning fault case. mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG mm: sched: numa: Control enabling and disabling of NUMA balancing mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships mm: numa: migrate: Set last_nid on newly allocated page mm: numa: split_huge_page: Transfer last_nid on tail page mm: numa: Introduce last_nid to the page frame sched: numa: Slowly increase the scanning period as NUMA faults are handled mm: numa: Rate limit setting of pte_numa if node is saturated mm: numa: Rate limit the amount of memory that is migrated between nodes mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting mm: numa: Migrate pages handled during a pmd_numa hinting fault mm: numa: Migrate on reference policy ...
2012-12-12mempolicy: use N_MEMORY instead N_HIGH_MEMORYLai Jiangshan
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12thp: change split_huge_page_pmd() interfaceKirill A. Shutemov
Pass vma instead of mm and add address parameter. In most cases we already have vma on the stack. We provides split_huge_page_pmd_mm() for few cases when we have mm, but not vma. This change is preparation to huge zero pmd splitting implementation. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11mm, mempolicy: remove duplicate codeDavid Rientjes
Remove some duplicate code and simplify alloc_pages_vma(). No functional change. Signed-off-by: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11mm: sched: numa: Control enabling and disabling of NUMA balancingMel Gorman
This patch adds Kconfig options and kernel parameters to allow the enabling and disabling of automatic NUMA balancing. The existance of such a switch was and is very important when debugging problems related to transparent hugepages and we should have the same for automatic NUMA placement. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: Use a two-stage filter to restrict pages being migrated for ↵Mel Gorman
unlikely task<->node relationships Note: This two-stage filter was taken directly from the sched/numa patch "sched, numa, mm: Add the scanning page fault machinery" but is only a partial extraction. As the end result is not necessarily recognisable, the signed-offs-by had to be removed. Will be added back if requested. While it is desirable that all threads in a process run on its home node, this is not always possible or necessary. There may be more threads than exist within the node or the node might over-subscribed with unrelated processes. This can cause a situation whereby a page gets migrated off its home node because the threads clearing pte_numa were running off-node. This patch uses page->last_nid to build a two-stage filter before pages get migrated to avoid problems with short or unlikely task<->node relationships. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: Migrate on reference policyMel Gorman
This is the simplest possible policy that still does something of note. When a pte_numa is faulted, it is moved immediately. Any replacement policy must at least do better than this and in all likelihood this policy regresses normal workloads. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: numa: Add pte updates, hinting and migration statsMel Gorman
It is tricky to quantify the basic cost of automatic NUMA placement in a meaningful manner. This patch adds some vmstats that can be used as part of a basic costing model. u = basic unit = sizeof(void *) Ca = cost of struct page access = sizeof(struct page) / u Cpte = Cost PTE access = Ca Cupdate = Cost PTE update = (2 * Cpte) + (2 * Wlock) where Cpte is incurred twice for a read and a write and Wlock is a constant representing the cost of taking or releasing a lock Cnumahint = Cost of a minor page fault = some high constant e.g. 1000 Cpagerw = Cost to read or write a full page = Ca + PAGE_SIZE/u Ci = Cost of page isolation = Ca + Wi where Wi is a constant that should reflect the approximate cost of the locking operation Cpagecopy = Cpagerw + (Cpagerw * Wnuma) + Ci + (Ci * Wnuma) where Wnuma is the approximate NUMA factor. 1 is local. 1.2 would imply that remote accesses are 20% more expensive Balancing cost = Cpte * numa_pte_updates + Cnumahint * numa_hint_faults + Ci * numa_pages_migrated + Cpagecopy * numa_pages_migrated Note that numa_pages_migrated is used as a measure of how many pages were isolated even though it would miss pages that failed to migrate. A vmstat counter could have been added for it but the isolation cost is pretty marginal in comparison to the overall cost so it seemed overkill. The ideal way to measure automatic placement benefit would be to count the number of remote accesses versus local accesses and do something like benefit = (remote_accesses_before - remove_access_after) * Wnuma but the information is not readily available. As a workload converges, the expection would be that the number of remote numa hints would reduce to 0. convergence = numa_hint_faults_local / numa_hint_faults where this is measured for the last N number of numa hints recorded. When the workload is fully converged the value is 1. This can measure if the placement policy is converging and how fast it is doing it. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: mempolicy: Hide MPOL_NOOP and MPOL_MF_LAZY from userspace for nowMel Gorman
The use of MPOL_NOOP and MPOL_MF_LAZY to allow an application to explicitly request lazy migration is a good idea but the actual API has not been well reviewed and once released we have to support it. For now this patch prevents an application using the services. This will need to be revisited. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: mempolicy: Implement change_prot_numa() in terms of change_protection()Mel Gorman
This patch converts change_prot_numa() to use change_protection(). As pte_numa and friends check the PTE bits directly it is necessary for change_protection() to use pmd_mknuma(). Hence the required modifications to change_protection() are a little clumsy but the end result is that most of the numa page table helpers are just one or two instructions. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: mempolicy: Add MPOL_MF_LAZYLee Schermerhorn
NOTE: Once again there is a lot of patch stealing and the end result is sufficiently different that I had to drop the signed-offs. Will re-add if the original authors are ok with that. This patch adds another mbind() flag to request "lazy migration". The flag, MPOL_MF_LAZY, modifies MPOL_MF_MOVE* such that the selected pages are marked PROT_NONE. The pages will be migrated in the fault path on "first touch", if the policy dictates at that time. "Lazy Migration" will allow testing of migrate-on-fault via mbind(). Also allows applications to specify that only subsequently touched pages be migrated to obey new policy, instead of all pages in range. This can be useful for multi-threaded applications working on a large shared data area that is initialized by an initial thread resulting in all pages on one [or a few, if overflowed] nodes. After PROT_NONE, the pages in regions assigned to the worker threads will be automatically migrated local to the threads on 1st touch. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: mempolicy: Check for misplaced pageLee Schermerhorn
This patch provides a new function to test whether a page resides on a node that is appropriate for the mempolicy for the vma and address where the page is supposed to be mapped. This involves looking up the node where the page belongs. So, the function returns that node so that it may be used to allocated the page without consulting the policy again. A subsequent patch will call this function from the fault path. Because of this, I don't want to go ahead and allocate the page, e.g., via alloc_page_vma() only to have to free it if it has the correct policy. So, I just mimic the alloc_page_vma() node computation logic--sort of. Note: we could use this function to implement a MPOL_MF_STRICT behavior when migrating pages to match mbind() mempolicy--e.g., to ensure that pages in an interleaved range are reinterleaved rather than left where they are when they reside on any page in the interleave nodemask. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> [ Added MPOL_F_LAZY to trigger migrate-on-fault; simplified code now that we don't have to bother with special crap for interleaved ] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: mempolicy: Add MPOL_NOOPLee Schermerhorn
This patch augments the MPOL_MF_LAZY feature by adding a "NOOP" policy to mbind(). When the NOOP policy is used with the 'MOVE and 'LAZY flags, mbind() will map the pages PROT_NONE so that they will be migrated on the next touch. This allows an application to prepare for a new phase of operation where different regions of shared storage will be assigned to worker threads, w/o changing policy. Note that we could just use "default" policy in this case. However, this also allows an application to request that pages be migrated, only if necessary, to follow any arbitrary policy that might currently apply to a range of pages, without knowing the policy, or without specifying multiple mbind()s for ranges with different policies. [ Bug in early version of mpol_parse_str() reported by Fengguang Wu. ] Bug-Reported-by: Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: mempolicy: Make MPOL_LOCAL a real policyPeter Zijlstra
Make MPOL_LOCAL a real and exposed policy such that applications that relied on the previous default behaviour can explicitly request it. Requested-by: Christoph Lameter <cl@linux.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: migrate: Add a tracepoint for migrate_pagesMel Gorman
The pgmigrate_success and pgmigrate_fail vmstat counters tells the user about migration activity but not the type or the reason. This patch adds a tracepoint to identify the type of page migration and why the page is being migrated. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-06tmpfs: fix shared mempolicy leakMel Gorman
This fixes a regression in 3.7-rc, which has since gone into stable. Commit 00442ad04a5e ("mempolicy: fix a memory corruption by refcount imbalance in alloc_pages_vma()") changed get_vma_policy() to raise the refcount on a shmem shared mempolicy; whereas shmem_alloc_page() went on expecting alloc_page_vma() to drop the refcount it had acquired. This deserves a rework: but for now fix the leak in shmem_alloc_page(). Hugh: shmem_swapin() did not need a fix, but surely it's clearer to use the same refcounting there as in shmem_alloc_page(), delete its onstack mempolicy, and the strange mpol_cond_copy() and __mpol_cond_copy() - those were invented to let swapin_readahead() make an unknown number of calls to alloc_pages_vma() with one mempolicy; but since 00442ad04a5e, alloc_pages_vma() has kept refcount in balance, so now no problem. Reported-and-tested-by: Tommi Rantala <tt.rantala@gmail.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-16mm, mempolicy: fix printing stack contents in numa_mapsDavid Rientjes
When reading /proc/pid/numa_maps, it's possible to return the contents of the stack where the mempolicy string should be printed if the policy gets freed from beneath us. This happens because mpol_to_str() may return an error the stack-allocated buffer is then printed without ever being stored. There are two possible error conditions in mpol_to_str(): - if the buffer allocated is insufficient for the string to be stored, and - if the mempolicy has an invalid mode. The first error condition is not triggered in any of the callers to mpol_to_str(): at least 50 bytes is always allocated on the stack and this is sufficient for the string to be written. A future patch should convert this into BUILD_BUG_ON() since we know the maximum strlen possible, but that's not -rc material. The second error condition is possible if a race occurs in dropping a reference to a task's mempolicy causing it to be freed during the read(). The slab poison value is then used for the mode and mpol_to_str() returns -EINVAL. This race is only possible because get_vma_policy() believes that mm->mmap_sem protects task->mempolicy, which isn't true. The exit path does not hold mm->mmap_sem when dropping the reference or setting task->mempolicy to NULL: it uses task_lock(task) instead. Thus, it's required for the caller of a task mempolicy to hold task_lock(task) while grabbing the mempolicy and reading it. Callers with a vma policy store their mempolicy earlier and can simply increment the reference count so it's guaranteed not to be freed. Reported-by: Dave Jones <davej@redhat.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: revert 0def08e3 ("mm/mempolicy.c: check return code of check_range")Minchan Kim
Revert commit 0def08e3acc2 because check_range can't fail in migrate_to_node with considering current usecases. Quote from Johannes : I think it makes sense to revert. Not because of the semantics, but I : just don't see how check_range() could even fail for this callsite: : : 1. we pass mm->mmap->vm_start in there, so we should not fail due to : find_vma() : : 2. we pass MPOL_MF_DISCONTIG_OK, so the discontig checks do not apply : and so can not fail : : 3. we pass MPOL_MF_MOVE | MPOL_MF_MOVE_ALL, the page table loops will : continue until addr == end, so we never fail with -EIO And I added a new VM_BUG_ON for checking migrate_to_node's future usecase which might pass to MPOL_MF_STRICT. Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vasiliy Kulikov <segooon@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mempolicy: fix a memory corruption by refcount imbalance in alloc_pages_vma()Mel Gorman
Commit cc9a6c877661 ("cpuset: mm: reduce large amounts of memory barrier related damage v3") introduced a potential memory corruption. shmem_alloc_page() uses a pseudo vma and it has one significant unique combination, vma->vm_ops=NULL and vma->policy->flags & MPOL_F_SHARED. get_vma_policy() does NOT increase a policy ref when vma->vm_ops=NULL and mpol_cond_put() DOES decrease a policy ref when a policy has MPOL_F_SHARED. Therefore, when a cpuset update race occurs, alloc_pages_vma() falls in 'goto retry_cpuset' path, decrements the reference count and frees the policy prematurely. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Josh Boyer <jwboyer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mempolicy: fix refcount leak in mpol_set_shared_policy()KOSAKI Motohiro
When shared_policy_replace() fails to allocate new->policy is not freed correctly by mpol_set_shared_policy(). The problem is that shared mempolicy code directly call kmem_cache_free() in multiple places where it is easy to make a mistake. This patch creates an sp_free wrapper function and uses it. The bug was introduced pre-git age (IOW, before 2.6.12-rc2). [mgorman@suse.de: Editted changelog] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Josh Boyer <jwboyer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mempolicy: fix a race in shared_policy_replace()Mel Gorman
shared_policy_replace() use of sp_alloc() is unsafe. 1) sp_node cannot be dereferenced if sp->lock is not held and 2) another thread can modify sp_node between spin_unlock for allocating a new sp node and next spin_lock. The bug was introduced before 2.6.12-rc2. Kosaki's original patch for this problem was to allocate an sp node and policy within shared_policy_replace and initialise it when the lock is reacquired. I was not keen on this approach because it partially duplicates sp_alloc(). As the paths were sp->lock is taken are not that performance critical this patch converts sp->lock to sp->mutex so it can sleep when calling sp_alloc(). [kosaki.motohiro@jp.fujitsu.com: Original patch] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Josh Boyer <jwboyer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mempolicy: remove mempolicy sharingKOSAKI Motohiro
Dave Jones' system call fuzz testing tool "trinity" triggered the following bug error with slab debugging enabled ============================================================================= BUG numa_policy (Not tainted): Poison overwritten ----------------------------------------------------------------------------- INFO: 0xffff880146498250-0xffff880146498250. First byte 0x6a instead of 0x6b INFO: Allocated in mpol_new+0xa3/0x140 age=46310 cpu=6 pid=32154 __slab_alloc+0x3d3/0x445 kmem_cache_alloc+0x29d/0x2b0 mpol_new+0xa3/0x140 sys_mbind+0x142/0x620 system_call_fastpath+0x16/0x1b INFO: Freed in __mpol_put+0x27/0x30 age=46268 cpu=6 pid=32154 __slab_free+0x2e/0x1de kmem_cache_free+0x25a/0x260 __mpol_put+0x27/0x30 remove_vma+0x68/0x90 exit_mmap+0x118/0x140 mmput+0x73/0x110 exit_mm+0x108/0x130 do_exit+0x162/0xb90 do_group_exit+0x4f/0xc0 sys_exit_group+0x17/0x20 system_call_fastpath+0x16/0x1b INFO: Slab 0xffffea0005192600 objects=27 used=27 fp=0x (null) flags=0x20000000004080 INFO: Object 0xffff880146498250 @offset=592 fp=0xffff88014649b9d0 The problem is that the structure is being prematurely freed due to a reference count imbalance. In the following case mbind(addr, len) should replace the memory policies of both vma1 and vma2 and thus they will become to share the same mempolicy and the new mempolicy will have the MPOL_F_SHARED flag. +-------------------+-------------------+ | vma1 | vma2(shmem) | +-------------------+-------------------+ | | addr addr+len alloc_pages_vma() uses get_vma_policy() and mpol_cond_put() pair for maintaining the mempolicy reference count. The current rule is that get_vma_policy() only increments refcount for shmem VMA and mpol_conf_put() only decrements refcount if the policy has MPOL_F_SHARED. In above case, vma1 is not shmem vma and vma->policy has MPOL_F_SHARED! The reference count will be decreased even though was not increased whenever alloc_page_vma() is called. This has been broken since commit [52cd3b07: mempolicy: rework mempolicy Reference Counting] in 2008. There is another serious bug with the sharing of memory policies. Currently, mempolicy rebind logic (it is called from cpuset rebinding) ignores a refcount of mempolicy and override it forcibly. Thus, any mempolicy sharing may cause mempolicy corruption. The bug was introduced by commit [68860ec1: cpusets: automatic numa mempolicy rebinding]. Ideally, the shared policy handling would be rewritten to either properly handle COW of the policy structures or at least reference count MPOL_F_SHARED based exclusively on information within the policy. However, this patch takes the easier approach of disabling any policy sharing between VMAs. Each new range allocated with sp_alloc will allocate a new policy, set the reference count to 1 and drop the reference count of the old policy. This increases the memory footprint but is not expected to be a major problem as mbind() is unlikely to be used for fine-grained ranges. It is also inefficient because it means we allocate a new policy even in cases where mbind_range() could use the new_policy passed to it. However, it is more straight-forward and the change should be invisible to the user. [mgorman@suse.de: Edited changelog] Reported-by: Dave Jones <davej@redhat.com>, Cc: Christoph Lameter <cl@linux.com>, Reviewed-by: Christoph Lameter <cl@linux.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Josh Boyer <jwboyer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09revert "mm: mempolicy: Let vma_merge and vma_split handle vma->vm_policy ↵KOSAKI Motohiro
linkages" Commit 05f144a0d5c2 ("mm: mempolicy: Let vma_merge and vma_split handle vma->vm_policy linkages") removed vma->vm_policy updates code but it is the purpose of mbind_range(). Now, mbind_range() is virtually a no-op and while it does not allow memory corruption it is not the right fix. This patch is a revert. [mgorman@suse.de: Edited changelog] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Cc: Josh Boyer <jwboyer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-09-06Remove user-triggerable BUG from mpol_to_strDave Jones
Trivially triggerable, found by trinity: kernel BUG at mm/mempolicy.c:2546! Process trinity-child2 (pid: 23988, threadinfo ffff88010197e000, task ffff88007821a670) Call Trace: show_numa_map+0xd5/0x450 show_pid_numa_map+0x13/0x20 traverse+0xf2/0x230 seq_read+0x34b/0x3e0 vfs_read+0xac/0x180 sys_pread64+0xa2/0xc0 system_call_fastpath+0x1a/0x1f RIP: mpol_to_str+0x156/0x360 Cc: stable@vger.kernel.org Signed-off-by: Dave Jones <davej@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-30Merge branch 'slab/next' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux Pull SLAB changes from Pekka Enberg: "Most of the changes included are from Christoph Lameter's "common slab" patch series that unifies common parts of SLUB, SLAB, and SLOB allocators. The unification is needed for Glauber Costa's "kmem memcg" work that will hopefully appear for v3.7. The rest of the changes are fixes and speedups by various people." * 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: (32 commits) mm: Fix build warning in kmem_cache_create() slob: Fix early boot kernel crash mm, slub: ensure irqs are enabled for kmemcheck mm, sl[aou]b: Move kmem_cache_create mutex handling to common code mm, sl[aou]b: Use a common mutex definition mm, sl[aou]b: Common definition for boot state of the slab allocators mm, sl[aou]b: Extract common code for kmem_cache_create() slub: remove invalid reference to list iterator variable mm: Fix signal SIGFPE in slabinfo.c. slab: move FULL state transition to an initcall slab: Fix a typo in commit 8c138b "slab: Get rid of obj_size macro" mm, slab: Build fix for recent kmem_cache changes slab: rename gfpflags to allocflags slub: refactoring unfreeze_partials() slub: use __cmpxchg_double_slab() at interrupt disabled place slab/mempolicy: always use local policy from interrupt context slab: Get rid of obj_size macro mm, sl[aou]b: Extract common fields from struct kmem_cache slab: Remove some accessors slab: Use page struct fields instead of casting ...
2012-06-20mm, mempolicy: fix mbind() to do synchronous migrationDavid Rientjes
If the range passed to mbind() is not allocated on nodes set in the nodemask, it migrates the pages to respect the constraint. The final formal of migrate_pages() is a mode of type enum migrate_mode, not a boolean. do_mbind() is currently passing "true" which is the equivalent of MIGRATE_SYNC_LIGHT. This should instead be MIGRATE_SYNC for synchronous page migration. Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-06-20slab/mempolicy: always use local policy from interrupt contextAndi Kleen
slab_node() could access current->mempolicy from interrupt context. However there's a race condition during exit where the mempolicy is first freed and then the pointer zeroed. Using this from interrupts seems bogus anyways. The interrupt will interrupt a random process and therefore get a random mempolicy. Many times, this will be idle's, which noone can change. Just disable this here and always use local for slab from interrupts. I also cleaned up the callers of slab_node a bit which always passed the same argument. I believe the original mempolicy code did that in fact, so it's likely a regression. v2: send version with correct logic v3: simplify. fix typo. Reported-by: Arun Sharma <asharma@fb.com> Cc: penberg@kernel.org Cc: cl@linux.com Signed-off-by: Andi Kleen <ak@linux.intel.com> [tdmackey@twitter.com: Rework control flow based on feedback from cl@linux.com, fix logic, and cleanup current task_struct reference] Acked-by: David Rientjes <rientjes@google.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: David Mackey <tdmackey@twitter.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-05-29mm: do_migrate_pages(): rename argumentsAndrew Morton
s/from_nodes/from and s/to_nodes/to/. The "_nodes" is redundant - it duplicates the argument's type. Done in a fit of irritation over 80-col issues :( Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <mkosaki@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: do_migrate_pages() calls migrate_to_node() even if task is already on a ↵Larry Woodman
correct node While running an application that moves tasks from one cpuset to another I noticed that it takes much longer and moves many more pages than expected. The reason for this is do_migrate_pages() does its best to preserve the relative node differential from the first node of the cpuset because the application may have been written with that in mind. If memory was interleaved on the nodes of the source cpuset by an application do_migrate_pages() will try its best to maintain that interleaving on the nodes of the destination cpuset. This means copying the memory from all source nodes to the destination nodes even if the source and destination nodes overlap. This is a problem for userspace NUMA placement tools. The amount of time spent doing extra memory moves cancels out some of the NUMA performance improvements. Furthermore, if the number of source and destination nodes are to maintain the previous interleaving layout anyway. This patch changes do_migrate_pages() to only preserve the relative layout inside the program if the number of NUMA nodes in the source and destination mask are the same. If the number is different, we do a much more efficient migration by not touching memory that is in an allowed node. This preserves the old behaviour for programs that want it, while allowing a userspace NUMA placement tool to use the new, faster migration. This improves performance in our tests by up to a factor of 7. Without this change migrating tasks from a cpuset containing nodes 0-7 to a cpuset containing nodes 3-4, we migrate from ALL the nodes even if they are in the both the source and destination nodesets: Migrating 7 to 4 Migrating 6 to 3 Migrating 5 to 4 Migrating 4 to 3 Migrating 1 to 4 Migrating 3 to 4 Migrating 0 to 3 Migrating 2 to 3 With this change we only migrate from nodes that are not in the destination nodesets: Migrating 7 to 4 Migrating 6 to 3 Migrating 5 to 4 Migrating 2 to 3 Migrating 1 to 4 Migrating 0 to 3 Yet if we move from a cpuset containing nodes 2,3,4 to a cpuset containing 3,4,5 we still do move everything so that we preserve the desired NUMA offsets: Migrating 4 to 5 Migrating 3 to 4 Migrating 2 to 3 As far as performance is concerned this simple patch improves the time it takes to move 14, 20 and 26 large tasks from a cpuset containing nodes 0-7 to a cpuset containing nodes 1 & 3 by up to a factor of 7. Here are the timings with and without the patch: BEFORE PATCH -- Move times: 59, 140, 651 seconds ============ Moving 14 tasks from nodes (0-7) to nodes (1,3) numad(8780) do_migrate_pages (mm=0xffff88081d414400 from_nodes=0xffff880818c81d28 to_nodes=0xffff880818c81ce8 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x7 dest=0x3 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x6 dest=0x1 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x5 dest=0x3 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x4 dest=0x1 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x2 dest=0x1 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x1 dest=0x3 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x0 dest=0x1 flags=0x4) (Above moves repeated for each of the 14 tasks...) PID 8890 moved to node(s) 1,3 in 59.2 seconds Moving 20 tasks from nodes (0-7) to nodes (1,4-5) numad(8780) do_migrate_pages (mm=0xffff88081d88c700 from_nodes=0xffff880818c81d28 to_nodes=0xffff880818c81ce8 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x7 dest=0x4 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x6 dest=0x1 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x3 dest=0x1 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x2 dest=0x5 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x1 dest=0x4 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x0 dest=0x1 flags=0x4) (Above moves repeated for each of the 20 tasks...) PID 8962 moved to node(s) 1,4-5 in 139.88 seconds Moving 26 tasks from nodes (0-7) to nodes (1-3,5) numad(8780) do_migrate_pages (mm=0xffff88081d5bc740 from_nodes=0xffff880818c81d28 to_nodes=0xffff880818c81ce8 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x7 dest=0x5 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x6 dest=0x3 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x5 dest=0x2 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x3 dest=0x5 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x2 dest=0x3 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x1 dest=0x2 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x0 dest=0x1 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x4 dest=0x1 flags=0x4) (Above moves repeated for each of the 26 tasks...) PID 9058 moved to node(s) 1-3,5 in 651.45 seconds AFTER PATCH -- Move times: 42, 56, 93 seconds =========== Moving 14 tasks from nodes (0-7) to nodes (5,7) numad(33209) do_migrate_pages (mm=0xffff88101d5ff140 from_nodes=0xffff88101e7b5d28 to_nodes=0xffff88101e7b5ce8 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x6 dest=0x5 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x4 dest=0x5 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x3 dest=0x7 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x2 dest=0x5 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x1 dest=0x7 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x0 dest=0x5 flags=0x4) (Above moves repeated for each of the 14 tasks...) PID 33221 moved to node(s) 5,7 in 41.67 seconds Moving 20 tasks from nodes (0-7) to nodes (1,3,5) numad(33209) do_migrate_pages (mm=0xffff88101d6c37c0 from_nodes=0xffff88101e7b5d28 to_nodes=0xffff88101e7b5ce8 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x7 dest=0x3 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x6 dest=0x1 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x4 dest=0x3 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x2 dest=0x5 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x0 dest=0x1 flags=0x4) (Above moves repeated for each of the 20 tasks...) PID 33289 moved to node(s) 1,3,5 in 56.3 seconds Moving 26 tasks from nodes (0-7) to nodes (1,3,5,7) numad(33209) do_migrate_pages (mm=0xffff88101d924400 from_nodes=0xffff88101e7b5d28 to_nodes=0xffff88101e7b5ce8 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d924400 source=0x6 dest=0x5 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d924400 source=0x4 dest=0x1 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d924400 source=0x2 dest=0x5 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d924400 source=0x0 dest=0x1 flags=0x4) (Above moves repeated for each of the 26 tasks...) PID 33372 moved to node(s) 1,3,5,7 in 92.67 seconds [akpm@linux-foundation.org: clean up comment layout] Signed-off-by: Larry Woodman <lwoodman@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/mempolicy.c: use enum value MPOL_REBIND_ONCE in mpol_rebind_policy()Wang Sheng-Hui
We have enum definition in mempolicy.h: MPOL_REBIND_ONCE. It should replace the magic number 0 for step comparison in function mpol_rebind_policy. Signed-off-by: Wang Sheng-Hui <shhuiw@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-23mm: mempolicy: Let vma_merge and vma_split handle vma->vm_policy linkagesMel Gorman
Dave Jones' system call fuzz testing tool "trinity" triggered the following bug error with slab debugging enabled ============================================================================= BUG numa_policy (Not tainted): Poison overwritten ----------------------------------------------------------------------------- INFO: 0xffff880146498250-0xffff880146498250. First byte 0x6a instead of 0x6b INFO: Allocated in mpol_new+0xa3/0x140 age=46310 cpu=6 pid=32154 __slab_alloc+0x3d3/0x445 kmem_cache_alloc+0x29d/0x2b0 mpol_new+0xa3/0x140 sys_mbind+0x142/0x620 system_call_fastpath+0x16/0x1b INFO: Freed in __mpol_put+0x27/0x30 age=46268 cpu=6 pid=32154 __slab_free+0x2e/0x1de kmem_cache_free+0x25a/0x260 __mpol_put+0x27/0x30 remove_vma+0x68/0x90 exit_mmap+0x118/0x140 mmput+0x73/0x110 exit_mm+0x108/0x130 do_exit+0x162/0xb90 do_group_exit+0x4f/0xc0 sys_exit_group+0x17/0x20 system_call_fastpath+0x16/0x1b INFO: Slab 0xffffea0005192600 objects=27 used=27 fp=0x (null) flags=0x20000000004080 INFO: Object 0xffff880146498250 @offset=592 fp=0xffff88014649b9d0 This implied a reference counting bug and the problem happened during mbind(). mbind() applies a new memory policy to a range and uses mbind_range() to merge existing VMAs or split them as necessary. In the event of splits, mpol_dup() will allocate a new struct mempolicy and maintain existing reference counts whose rules are documented in Documentation/vm/numa_memory_policy.txt . The problem occurs with shared memory policies. The vm_op->set_policy increments the reference count if necessary and split_vma() and vma_merge() have already handled the existing reference counts. However, policy_vma() screws it up by replacing an existing vma->vm_policy with one that potentially has the wrong reference count leading to a premature free. This patch removes the damage caused by policy_vma(). With this patch applied Dave's trinity tool runs an mbind test for 5 minutes without error. /proc/slabinfo reported that there are no numa_policy or shared_policy_node objects allocated after the test completed and the shared memory region was deleted. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Dave Jones <davej@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Stephen Wilson <wilsons@start.ca> Cc: Christoph Lameter <cl@linux.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <stable@vger.kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-23Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull user namespace enhancements from Eric Biederman: "This is a course correction for the user namespace, so that we can reach an inexpensive, maintainable, and reasonably complete implementation. Highlights: - Config guards make it impossible to enable the user namespace and code that has not been converted to be user namespace safe. - Use of the new kuid_t type ensures the if you somehow get past the config guards the kernel will encounter type errors if you enable user namespaces and attempt to compile in code whose permission checks have not been updated to be user namespace safe. - All uids from child user namespaces are mapped into the initial user namespace before they are processed. Removing the need to add an additional check to see if the user namespace of the compared uids remains the same. - With the user namespaces compiled out the performance is as good or better than it is today. - For most operations absolutely nothing changes performance or operationally with the user namespace enabled. - The worst case performance I could come up with was timing 1 billion cache cold stat operations with the user namespace code enabled. This went from 156s to 164s on my laptop (or 156ns to 164ns per stat operation). - (uid_t)-1 and (gid_t)-1 are reserved as an internal error value. Most uid/gid setting system calls treat these value specially anyway so attempting to use -1 as a uid would likely cause entertaining failures in userspace. - If setuid is called with a uid that can not be mapped setuid fails. I have looked at sendmail, login, ssh and every other program I could think of that would call setuid and they all check for and handle the case where setuid fails. - If stat or a similar system call is called from a context in which we can not map a uid we lie and return overflowuid. The LFS experience suggests not lying and returning an error code might be better, but the historical precedent with uids is different and I can not think of anything that would break by lying about a uid we can't map. - Capabilities are localized to the current user namespace making it safe to give the initial user in a user namespace all capabilities. My git tree covers all of the modifications needed to convert the core kernel and enough changes to make a system bootable to runlevel 1." Fix up trivial conflicts due to nearby independent changes in fs/stat.c * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits) userns: Silence silly gcc warning. cred: use correct cred accessor with regards to rcu read lock userns: Convert the move_pages, and migrate_pages permission checks to use uid_eq userns: Convert cgroup permission checks to use uid_eq userns: Convert tmpfs to use kuid and kgid where appropriate userns: Convert sysfs to use kgid/kuid where appropriate userns: Convert sysctl permission checks to use kuid and kgids. userns: Convert proc to use kuid/kgid where appropriate userns: Convert ext4 to user kuid/kgid where appropriate userns: Convert ext3 to use kuid/kgid where appropriate userns: Convert ext2 to use kuid/kgid where appropriate. userns: Convert devpts to use kuid/kgid where appropriate userns: Convert binary formats to use kuid/kgid where appropriate userns: Add negative depends on entries to avoid building code that is userns unsafe userns: signal remove unnecessary map_cred_ns userns: Teach inode_capable to understand inodes whose uids map to other namespaces. userns: Fail exec for suid and sgid binaries with ids outside our user namespace. userns: Convert stat to return values mapped from kuids and kgids userns: Convert user specfied uids and gids in chown into kuids and kgid userns: Use uid_eq gid_eq helpers when comparing kuids and kgids in the vfs ...
2012-05-15userns: Convert the move_pages, and migrate_pages permission checks to use ↵Eric W. Biederman
uid_eq Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-04-25mm: fix NULL ptr dereference in migrate_pagesSasha Levin
Commit 3268c63 ("mm: fix move/migrate_pages() race on task struct") has added an odd construct where 'mm' is checked for being NULL, and if it is, it would get dereferenced anyways by mput()ing it. This would lead to the following NULL ptr deref and BUG() when calling migrate_pages() with a pid that has no mm struct: [25904.193704] BUG: unable to handle kernel NULL pointer dereference at 0000000000000050 [25904.194235] IP: [<ffffffff810b0de7>] mmput+0x27/0xf0 [25904.194235] PGD 773e6067 PUD 77da0067 PMD 0 [25904.194235] Oops: 0002 [#1] PREEMPT SMP [25904.194235] CPU 2 [25904.194235] Pid: 31608, comm: trinity Tainted: G W 3.4.0-rc2-next-20120412-sasha #69 [25904.194235] RIP: 0010:[<ffffffff810b0de7>] [<ffffffff810b0de7>] mmput+0x27/0xf0 [25904.194235] RSP: 0018:ffff880077d49e08 EFLAGS: 00010202 [25904.194235] RAX: 0000000000000286 RBX: 0000000000000000 RCX: 0000000000000000 [25904.194235] RDX: ffff880075ef8000 RSI: 000000000000023d RDI: 0000000000000286 [25904.194235] RBP: ffff880077d49e18 R08: 0000000000000001 R09: 0000000000000001 [25904.194235] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 [25904.194235] R13: 00000000ffffffea R14: ffff880034287740 R15: ffff8800218d3010 [25904.194235] FS: 00007fc8b244c700(0000) GS:ffff880029800000(0000) knlGS:0000000000000000 [25904.194235] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [25904.194235] CR2: 0000000000000050 CR3: 00000000767c6000 CR4: 00000000000406e0 [25904.194235] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [25904.194235] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [25904.194235] Process trinity (pid: 31608, threadinfo ffff880077d48000, task ffff880075ef8000) [25904.194235] Stack: [25904.194235] ffff8800342876c0 0000000000000000 ffff880077d49f78 ffffffff811b8020 [25904.194235] ffffffff811b7d91 ffff880075ef8000 ffff88002256d200 0000000000000000 [25904.194235] 00000000000003ff 0000000000000000 0000000000000000 0000000000000000 [25904.194235] Call Trace: [25904.194235] [<ffffffff811b8020>] sys_migrate_pages+0x340/0x3a0 [25904.194235] [<ffffffff811b7d91>] ? sys_migrate_pages+0xb1/0x3a0 [25904.194235] [<ffffffff8266cbb9>] system_call_fastpath+0x16/0x1b [25904.194235] Code: c9 c3 66 90 55 31 d2 48 89 e5 be 3d 02 00 00 48 83 ec 10 48 89 1c 24 4c 89 64 24 08 48 89 fb 48 c7 c7 cf 0e e1 82 e8 69 18 03 00 <f0> ff 4b 50 0f 94 c0 84 c0 0f 84 aa 00 00 00 48 89 df e8 72 f1 [25904.194235] RIP [<ffffffff810b0de7>] mmput+0x27/0xf0 [25904.194235] RSP <ffff880077d49e08> [25904.194235] CR2: 0000000000000050 [25904.348999] ---[ end trace a307b3ed40206b4b ]--- Signed-off-by: Sasha Levin <levinsasha928@gmail.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21cpuset: mm: reduce large amounts of memory barrier related damage v3Mel Gorman
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when changing cpuset's mems") wins a super prize for the largest number of memory barriers entered into fast paths for one commit. [get|put]_mems_allowed is incredibly heavy with pairs of full memory barriers inserted into a number of hot paths. This was detected while investigating at large page allocator slowdown introduced some time after 2.6.32. The largest portion of this overhead was shown by oprofile to be at an mfence introduced by this commit into the page allocator hot path. For extra style points, the commit introduced the use of yield() in an implementation of what looks like a spinning mutex. This patch replaces the full memory barriers on both read and write sides with a sequence counter with just read barriers on the fast path side. This is much cheaper on some architectures, including x86. The main bulk of the patch is the retry logic if the nodemask changes in a manner that can cause a false failure. While updating the nodemask, a check is made to see if a false failure is a risk. If it is, the sequence number gets bumped and parallel allocators will briefly stall while the nodemask update takes place. In a page fault test microbenchmark, oprofile samples from __alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The actual results were 3.3.0-rc3 3.3.0-rc3 rc3-vanilla nobarrier-v2r1 Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%) Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%) Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%) Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%) Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%) Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%) Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%) Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%) Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%) Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%) Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%) Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%) Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%) Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%) Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%) MMTests Statistics: duration Sys Time Running Test (seconds) 135.68 132.17 User+Sys Time Running Test (seconds) 164.2 160.13 Total Elapsed Time (seconds) 123.46 120.87 The overall improvement is small but the System CPU time is much improved and roughly in correlation to what oprofile reported (these performance figures are without profiling so skew is expected). The actual number of page faults is noticeably improved. For benchmarks like kernel builds, the overall benefit is marginal but the system CPU time is slightly reduced. To test the actual bug the commit fixed I opened two terminals. The first ran within a cpuset and continually ran a small program that faulted 100M of anonymous data. In a second window, the nodemask of the cpuset was continually randomised in a loop. Without the commit, the program would fail every so often (usually within 10 seconds) and obviously with the commit everything worked fine. With this patch applied, it also worked fine so the fix should be functionally equivalent. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21mm: fix move/migrate_pages() race on task structChristoph Lameter
Migration functions perform the rcu_read_unlock too early. As a result the task pointed to may change from under us. This can result in an oops, as reported by Dave Hansen in https://lkml.org/lkml/2012/2/23/302. The following patch extend the period of the rcu_read_lock until after the permissions checks are done. We also take a refcount so that the task reference is stable when calling security check functions and performing cpuset node validation (which takes a mutex). The refcount is dropped before actual page migration occurs so there is no change to the refcounts held during page migration. Also move the determination of the mm of the task struct to immediately before the do_migrate*() calls so that it is clear that we switch from handling the task during permission checks to the mm for the actual migration. Since the determination is only done once and we then no longer use the task_struct we can be sure that we operate on a specific address space that will not change from under us. [akpm@linux-foundation.org: checkpatch fixes] Signed-off-by: Christoph Lameter <cl@linux.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Reported-by: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read modeAndrea Arcangeli
In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(&current->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-06vm: avoid using find_vma_prev() unnecessarilyLinus Torvalds
Several users of "find_vma_prev()" were not in fact interested in the previous vma if there was no primary vma to be found either. And in those cases, we're much better off just using the regular "find_vma()", and then "prev" can be looked up by just checking vma->vm_prev. The find_vma_prev() semantics are fairly subtle (see Mikulas' recent commit 83cd904d271b: "mm: fix find_vma_prev"), and the whole "return prev by reference" means that it generates worse code too. Thus this "let's avoid using this inconvenient and clearly too subtle interface when we don't really have to" patch. Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: compaction: introduce sync-light migration for use by compactionMel Gorman
This patch adds a lightweight sync migrate operation MIGRATE_SYNC_LIGHT mode that avoids writing back pages to backing storage. Async compaction maps to MIGRATE_ASYNC while sync compaction maps to MIGRATE_SYNC_LIGHT. For other migrate_pages users such as memory hotplug, MIGRATE_SYNC is used. This avoids sync compaction stalling for an excessive length of time, particularly when copying files to a USB stick where there might be a large number of dirty pages backed by a filesystem that does not support ->writepages. [aarcange@redhat.com: This patch is heavily based on Andrea's work] [akpm@linux-foundation.org: fix fs/nfs/write.c build] [akpm@linux-foundation.org: fix fs/btrfs/disk-io.c build] Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Dave Jones <davej@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Andy Isaacson <adi@hexapodia.org> Cc: Nai Xia <nai.xia@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>