summaryrefslogtreecommitdiffstats
path: root/mm/page_alloc.c
AgeCommit message (Collapse)Author
2011-03-22mm: add __GFP_OTHER_NODE flagAndi Kleen
Add a new __GFP_OTHER_NODE flag to tell the low level numa statistics in zone_statistics() that an allocation is on behalf of another thread. This way the local and remote counters can be still correct, even when background daemons like khugepaged are changing memory mappings. This only affects the accounting, but I think it's worth doing that right to avoid confusing users. I first tried to just pass down the right node, but this required a lot of changes to pass down this parameter and at least one addition of a 10th argument to a 9 argument function. Using the flag is a lot less intrusive. Open: should be also used for migration? [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22mm: compaction: Use async migration for __GFP_NO_KSWAPD and enforce no writebackAndrea Arcangeli
__GFP_NO_KSWAPD allocations are usually very expensive and not mandatory to succeed as they have graceful fallback. Waiting for I/O in those, tends to be overkill in terms of latencies, so we can reduce their latency by disabling sync migrate. Unfortunately, even with async migration it's still possible for the process to be blocked waiting for a request slot (e.g. get_request_wait in the block layer) when ->writepage is called. To prevent __GFP_NO_KSWAPD blocking, this patch prevents ->writepage being called on dirty page cache for asynchronous migration. Addresses https://bugzilla.kernel.org/show_bug.cgi?id=31142 [mel@csn.ul.ie: Avoid writebacks for NFS, retry locked pages, use bool] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Arthur Marsh <arthur.marsh@internode.on.net> Cc: Clemens Ladisch <cladisch@googlemail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Reported-by: Alex Villacis Lasso <avillaci@ceibo.fiec.espol.edu.ec> Tested-by: Alex Villacis Lasso <avillaci@ceibo.fiec.espol.edu.ec> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22mm: batch-free pcp list if possibleNamhyung Kim
free_pcppages_bulk() frees pages from pcp lists in a round-robin fashion by keeping batch_free counter. But it doesn't need to spin if there is only one non-empty list. This can be checked by batch_free == MIGRATE_PCPTYPES. [akpm@linux-foundation.org: fix comment] Signed-off-by: Namhyung Kim <namhyung@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22oom: suppress nodes that are not allowed from meminfo on page alloc failureDavid Rientjes
Displaying extremely verbose meminfo for all nodes on the system is overkill for page allocation failures when the context restricts that allocation to only a subset of nodes. We don't particularly care about the state of all nodes when some are not allowed in the current context, they can have an abundance of memory but we can't allocate from that part of memory. This patch suppresses disallowed nodes from the meminfo dump on a page allocation failure if the context requires it. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22oom: suppress show_mem() for many nodes in irq context on page alloc failureDavid Rientjes
When a page allocation failure occurs, show_mem() is called to dump the state of the VM so users may understand what happened to get into that condition. This output, however, can be extremely verbose. In irq context, it may result in significant delays that incur NMI watchdog timeouts when the machine is large (we use CONFIG_NODES_SHIFT > 8 here to define a "large" machine since the length of the show_mem() output is proportional to the number of possible nodes). This patch suppresses the show_mem() call in irq context when the kernel has CONFIG_NODES_SHIFT > 8. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22oom: suppress nodes that are not allowed from meminfo on oom killDavid Rientjes
The oom killer is extremely verbose for machines with a large number of cpus and/or nodes. This verbosity can often be harmful if it causes other important messages to be scrolled from the kernel log and incurs a signicant time delay, specifically for kernels with CONFIG_NODES_SHIFT > 8. This patch causes only memory information to be displayed for nodes that are allowed by current's cpuset when dumping the VM state. Information for all other nodes is irrelevant to the oom condition; we don't care if there's an abundance of memory elsewhere if we can't access it. This only affects the behavior of dumping memory information when an oom is triggered. Other dumps, such as for sysrq+m, still display the unfiltered form when using the existing show_mem() interface. Additionally, the per-cpu pageset statistics are extremely verbose in oom killer output, so it is now suppressed. This removes nodes_weight(current->mems_allowed) * (1 + nr_cpus) lines from the oom killer output. Callers may use __show_mem(SHOW_MEM_FILTER_NODES) to filter disallowed nodes. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-17mm: PageBuddy and mapcount robustnessAndrea Arcangeli
Change the _mapcount value indicating PageBuddy from -2 to -128 for more robusteness against page_mapcount() undeflows. Use reset_page_mapcount instead of __ClearPageBuddy in bad_page to ignore the previous retval of PageBuddy(). Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reported-by: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-15Merge commit 'v2.6.38' into x86/mmIngo Molnar
Conflicts: arch/x86/mm/numa_64.c Merge reason: Resolve the conflict, update the branch to .38. Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-02-26mm: Move early_node_map[] reverse scan helpers under HAVE_MEMBLOCKYinghai Lu
Heiko found recent memblock change triggers these warnings on s390: mm/page_alloc.c:3623:22: warning: 'last_active_region_index_in_nid' defined but not used mm/page_alloc.c:3638:22: warning: 'previous_active_region_index_in_nid' defined but not used Need to move those two function under HAVE_MEMBLOCK with its only user, find_memory_core_early(). -tj: Minor updates to description. Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Tejun Heo <tj@kernel.org>
2011-02-25mm: fix dubious code in __count_immobile_pages()Namhyung Kim
When pfn_valid_within() failed 'iter' was incremented twice. Signed-off-by: Namhyung Kim <namhyung@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-02-24bootmem: Move __alloc_memory_core_early() to nobootmem.cYinghai Lu
Now that bootmem.c and nobootmem.c are separate, there's no reason to define __alloc_memory_core_early(), which is used only by nobootmem, inside #ifdef in page_alloc.c. Move it to nobootmem.c and make it static. This patch doesn't introduce any behavior change. -tj: Updated commit description. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Acked-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Tejun Heo <tj@kernel.org>
2011-02-24bootmem: Move contig_page_data definition to bootmem.c/nobootmem.cYinghai Lu
Now that bootmem.c and nobootmem.c are separate, it's cleaner to define contig_page_data in each file than in page_alloc.c with #ifdef. Move it. This patch doesn't introduce any behavior change. -v2: According to Andrew, fixed the struct layout. -tj: Updated commit description. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Acked-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Tejun Heo <tj@kernel.org>
2011-02-14Merge branch 'linus' into x86/bootmemIngo Molnar
Conflicts: arch/x86/mm/numa_64.c Merge reason: fix the conflict, update to latest -rc and pick up this dependent fix from Yinghai: e6d2e2b2b1e1: memblock: don't adjust size in memblock_find_base() Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-01-26mm: clear pages_scanned only if draining a pcp adds pages to the buddy allocatorDavid Rientjes
Commit 0e093d99763e ("writeback: do not sleep on the congestion queue if there are no congested BDIs or if significant congestion is not being encountered in the current zone") uncovered a livelock in the page allocator that resulted in tasks infinitely looping trying to find memory and kswapd running at 100% cpu. The issue occurs because drain_all_pages() is called immediately following direct reclaim when no memory is freed and try_to_free_pages() returns non-zero because all zones in the zonelist do not have their all_unreclaimable flag set. When draining the per-cpu pagesets back to the buddy allocator for each zone, the zone->pages_scanned counter is cleared to avoid erroneously setting zone->all_unreclaimable later. The problem is that no pages may actually be drained and, thus, the unreclaimable logic never fails direct reclaim so the oom killer may be invoked. This apparently only manifested after wait_iff_congested() was introduced and the zone was full of anonymous memory that would not congest the backing store. The page allocator would infinitely loop if there were no other tasks waiting to be scheduled and clear zone->pages_scanned because of drain_all_pages() as the result of this change before kswapd could scan enough pages to trigger the reclaim logic. Additionally, with every loop of the page allocator and in the reclaim path, kswapd would be kicked and would end up running at 100% cpu. In this scenario, current and kswapd are all running continuously with kswapd incrementing zone->pages_scanned and current clearing it. The problem is even more pronounced when current swaps some of its memory to swap cache and the reclaimable logic then considers all active anonymous memory in the all_unreclaimable logic, which requires a much higher zone->pages_scanned value for try_to_free_pages() to return zero that is never attainable in this scenario. Before wait_iff_congested(), the page allocator would incur an unconditional timeout and allow kswapd to elevate zone->pages_scanned to a level that the oom killer would be called the next time it loops. The fix is to only attempt to drain pcp pages if there is actually a quantity to be drained. The unconditional clearing of zone->pages_scanned in free_pcppages_bulk() need not be changed since other callers already ensure that draining will occur. This patch ensures that free_pcppages_bulk() will actually free memory before calling into it from drain_all_pages() so zone->pages_scanned is only cleared if appropriate. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-26mm: fix deferred congestion timeout if preferred zone is not allowedDavid Rientjes
Before 0e093d99763e ("writeback: do not sleep on the congestion queue if there are no congested BDIs or if significant congestion is not being encountered in the current zone"), preferred_zone was only used for NUMA statistics, to determine the zoneidx from which to allocate from given the type requested, and whether to utilize memory compaction. wait_iff_congested(), though, uses preferred_zone to determine if the congestion wait should be deferred because its dirty pages are backed by a congested bdi. This incorrectly defers the timeout and busy loops in the page allocator with various cond_resched() calls if preferred_zone is not allowed in the current context, usually consuming 100% of a cpu. This patch ensures preferred_zone is an allowed zone in the fastpath depending on whether current is constrained by its cpuset or nodes in its mempolicy (when the nodemask passed is non-NULL). This is correct since the fastpath allocation always passes ALLOC_CPUSET when trying to allocate memory. In the slowpath, this patch resets preferred_zone to the first zone of the allowed type when the allocation is not constrained by current's cpuset, i.e. it does not pass ALLOC_CPUSET. This patch also ensures preferred_zone is from the set of allowed nodes when called from within direct reclaim since allocations are always constrained by cpusets in this context (it is blockable). Both of these uses of cpuset_current_mems_allowed are protected by get_mems_allowed(). Signed-off-by: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm/page_alloc.c: don't cache `current' in a localAndrew Morton
It's old-fashioned and unneeded. akpm:/usr/src/25> size mm/page_alloc.o text data bss dec hex filename 39884 1241317 18808 1300009 13d629 mm/page_alloc.o (before) 39838 1241317 18808 1299963 13d5fb mm/page_alloc.o (after) Acked-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm/page_alloc.c: simplify calculation of combined index of adjacent buddy listsKyongHo Cho
The previous approach of calucation of combined index was page_idx & ~(1 << order)) but we have same result with page_idx & buddy_idx This reduces instructions slightly as well as enhances readability. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix used-unintialised warning] Signed-off-by: KyongHo Cho <pullip.cho@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: remove PG_buddyAndrea Arcangeli
PG_buddy can be converted to _mapcount == -2. So the PG_compound_lock can be added to page->flags without overflowing (because of the sparse section bits increasing) with CONFIG_X86_PAE=y and CONFIG_X86_PAT=y. This also has to move the memory hotplug code from _mapcount to lru.next to avoid any risk of clashes. We can't use lru.next for PG_buddy removal, but memory hotplug can use lru.next even more easily than the mapcount instead. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: don't alloc harder for gfp nomemalloc even if nowaitAndrea Arcangeli
Not worth throwing away the precious reserved free memory pool for allocations that can fail gracefully (either through mempool or because they're transhuge allocations later falling back to 4k allocations). Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: _GFP_NO_KSWAPDAndrea Arcangeli
Transparent hugepage allocations must be allowed not to invoke kswapd or any other kind of indirect reclaim (especially when the defrag sysfs is control disabled). It's unacceptable to swap out anonymous pages (potentially anonymous transparent hugepages) in order to create new transparent hugepages. This is true for the MADV_HUGEPAGE areas too (swapping out a kvm virtual machine and so having it suffer an unbearable slowdown, so another one with guest physical memory marked MADV_HUGEPAGE can run 30% faster if it is running memory intensive workloads, makes no sense). If a transparent hugepage allocation fails the slowdown is minor and there is total fallback, so kswapd should never be asked to swapout memory to allow the high order allocation to succeed. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: comment reminder in destroy_compound_pageAndrea Arcangeli
Warn destroy_compound_page that __split_huge_page_refcount is heavily dependent on its internal behavior. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: clear compound mappingAndrea Arcangeli
Clear compound mapping for anonymous compound pages like it already happens for regular anonymous pages. But crash if mapping is set for any tail page, also the PageAnon check is meaningless for tail pages. This check only makes sense for the head page, for tail page it can only hide bugs and we definitely don't want to hide bugs. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: fix bad_page to show the real reason the page is badAndrea Arcangeli
page_count shows the count of the head page, but the actual check is done on the tail page, so show what is really being checked. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm: set correct numa_zonelist_order string when configured on the kernel ↵Volodymyr G. Lukiianyk
command line When numa_zonelist_order parameter is set to "node" or "zone" on the command line it's still showing as "default" in sysctl. That's because early_param parsing function changes only user_zonelist_order variable. Fix this by copying user-provided string to numa_zonelist_order if it was successfully parsed. Signed-off-by: Volodymyr G Lukiianyk <volodymyrgl@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm: kswapd: stop high-order balancing when any suitable zone is balancedMel Gorman
Simon Kirby reported the following problem We're seeing cases on a number of servers where cache never fully grows to use all available memory. Sometimes we see servers with 4 GB of memory that never seem to have less than 1.5 GB free, even with a constantly-active VM. In some cases, these servers also swap out while this happens, even though they are constantly reading the working set into memory. We have been seeing this happening for a long time; I don't think it's anything recent, and it still happens on 2.6.36. After some debugging work by Simon, Dave Hansen and others, the prevaling theory became that kswapd is reclaiming order-3 pages requested by SLUB too aggressive about it. There are two apparent problems here. On the target machine, there is a small Normal zone in comparison to DMA32. As kswapd tries to balance all zones, it would continually try reclaiming for Normal even though DMA32 was balanced enough for callers. The second problem is that sleeping_prematurely() does not use the same logic as balance_pgdat() when deciding whether to sleep or not. This keeps kswapd artifically awake. A number of tests were run and the figures from previous postings will look very different for a few reasons. One, the old figures were forcing my network card to use GFP_ATOMIC in attempt to replicate Simon's problem. Second, I previous specified slub_min_order=3 again in an attempt to reproduce Simon's problem. In this posting, I'm depending on Simon to say whether his problem is fixed or not and these figures are to show the impact to the ordinary cases. Finally, the "vmscan" figures are taken from /proc/vmstat instead of the tracepoints. There is less information but recording is less disruptive. The first test of relevance was postmark with a process running in the background reading a large amount of anonymous memory in blocks. The objective was to vaguely simulate what was happening on Simon's machine and it's memory intensive enough to have kswapd awake. POSTMARK traceonly kanyzone Transactions per second: 156.00 ( 0.00%) 153.00 (-1.96%) Data megabytes read per second: 21.51 ( 0.00%) 21.52 ( 0.05%) Data megabytes written per second: 29.28 ( 0.00%) 29.11 (-0.58%) Files created alone per second: 250.00 ( 0.00%) 416.00 (39.90%) Files create/transact per second: 79.00 ( 0.00%) 76.00 (-3.95%) Files deleted alone per second: 520.00 ( 0.00%) 420.00 (-23.81%) Files delete/transact per second: 79.00 ( 0.00%) 76.00 (-3.95%) MMTests Statistics: duration User/Sys Time Running Test (seconds) 16.58 17.4 Total Elapsed Time (seconds) 218.48 222.47 VMstat Reclaim Statistics: vmscan Direct reclaims 0 4 Direct reclaim pages scanned 0 203 Direct reclaim pages reclaimed 0 184 Kswapd pages scanned 326631 322018 Kswapd pages reclaimed 312632 309784 Kswapd low wmark quickly 1 4 Kswapd high wmark quickly 122 475 Kswapd skip congestion_wait 1 0 Pages activated 700040 705317 Pages deactivated 212113 203922 Pages written 9875 6363 Total pages scanned 326631 322221 Total pages reclaimed 312632 309968 %age total pages scanned/reclaimed 95.71% 96.20% %age total pages scanned/written 3.02% 1.97% proc vmstat: Faults Major Faults 300 254 Minor Faults 645183 660284 Page ins 493588 486704 Page outs 4960088 4986704 Swap ins 1230 661 Swap outs 9869 6355 Performance is mildly affected because kswapd is no longer doing as much work and the background memory consumer process is getting in the way. Note that kswapd scanned and reclaimed fewer pages as it's less aggressive and overall fewer pages were scanned and reclaimed. Swap in/out is particularly reduced again reflecting kswapd throwing out fewer pages. The slight performance impact is unfortunate here but it looks like a direct result of kswapd being less aggressive. As the bug report is about too many pages being freed by kswapd, it may have to be accepted for now. The second test is a streaming IO benchmark that was previously used by Johannes to show regressions in page reclaim. MICRO traceonly kanyzone User/Sys Time Running Test (seconds) 29.29 28.87 Total Elapsed Time (seconds) 492.18 488.79 VMstat Reclaim Statistics: vmscan Direct reclaims 2128 1460 Direct reclaim pages scanned 2284822 1496067 Direct reclaim pages reclaimed 148919 110937 Kswapd pages scanned 15450014 16202876 Kswapd pages reclaimed 8503697 8537897 Kswapd low wmark quickly 3100 3397 Kswapd high wmark quickly 1860 7243 Kswapd skip congestion_wait 708 801 Pages activated 9635 9573 Pages deactivated 1432 1271 Pages written 223 1130 Total pages scanned 17734836 17698943 Total pages reclaimed 8652616 8648834 %age total pages scanned/reclaimed 48.79% 48.87% %age total pages scanned/written 0.00% 0.01% proc vmstat: Faults Major Faults 165 221 Minor Faults 9655785 9656506 Page ins 3880 7228 Page outs 37692940 37480076 Swap ins 0 69 Swap outs 19 15 Again fewer pages are scanned and reclaimed as expected and this time the test completed faster. Note that kswapd is hitting its watermarks faster (low and high wmark quickly) which I expect is due to kswapd reclaiming fewer pages. I also ran fs-mark, iozone and sysbench but there is nothing interesting to report in the figures. Performance is not significantly changed and the reclaim statistics look reasonable. Tgis patch: When the allocator enters its slow path, kswapd is woken up to balance the node. It continues working until all zones within the node are balanced. For order-0 allocations, this makes perfect sense but for higher orders it can have unintended side-effects. If the zone sizes are imbalanced, kswapd may reclaim heavily within a smaller zone discarding an excessive number of pages. The user-visible behaviour is that kswapd is awake and reclaiming even though plenty of pages are free from a suitable zone. This patch alters the "balance" logic for high-order reclaim allowing kswapd to stop if any suitable zone becomes balanced to reduce the number of pages it reclaims from other zones. kswapd still tries to ensure that order-0 watermarks for all zones are met before sleeping. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Eric B Munson <emunson@mgebm.net> Cc: Simon Kirby <sim@hostway.ca> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm: migration: allow migration to operate asynchronously and avoid ↵Mel Gorman
synchronous compaction in the faster path Migration synchronously waits for writeback if the initial passes fails. Callers of memory compaction do not necessarily want this behaviour if the caller is latency sensitive or expects that synchronous migration is not going to have a significantly better success rate. This patch adds a sync parameter to migrate_pages() allowing the caller to indicate if wait_on_page_writeback() is allowed within migration or not. For reclaim/compaction, try_to_compact_pages() is first called asynchronously, direct reclaim runs and then try_to_compact_pages() is called synchronously as there is a greater expectation that it'll succeed. [akpm@linux-foundation.org: build/merge fix] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm: vmscan: reclaim order-0 and use compaction instead of lumpy reclaimMel Gorman
Lumpy reclaim is disruptive. It reclaims a large number of pages and ignores the age of the pages it reclaims. This can incur significant stalls and potentially increase the number of major faults. Compaction has reached the point where it is considered reasonably stable (meaning it has passed a lot of testing) and is a potential candidate for displacing lumpy reclaim. This patch introduces an alternative to lumpy reclaim whe compaction is available called reclaim/compaction. The basic operation is very simple - instead of selecting a contiguous range of pages to reclaim, a number of order-0 pages are reclaimed and then compaction is later by either kswapd (compact_zone_order()) or direct compaction (__alloc_pages_direct_compact()). [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: use conventional task_struct naming] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm: page allocator: adjust the per-cpu counter threshold when memory is lowMel Gorman
Commit aa45484 ("calculate a better estimate of NR_FREE_PAGES when memory is low") noted that watermarks were based on the vmstat NR_FREE_PAGES. To avoid synchronization overhead, these counters are maintained on a per-cpu basis and drained both periodically and when a threshold is above a threshold. On large CPU systems, the difference between the estimate and real value of NR_FREE_PAGES can be very high. The system can get into a case where pages are allocated far below the min watermark potentially causing livelock issues. The commit solved the problem by taking a better reading of NR_FREE_PAGES when memory was low. Unfortately, as reported by Shaohua Li this accurate reading can consume a large amount of CPU time on systems with many sockets due to cache line bouncing. This patch takes a different approach. For large machines where counter drift might be unsafe and while kswapd is awake, the per-cpu thresholds for the target pgdat are reduced to limit the level of drift to what should be a safe level. This incurs a performance penalty in heavy memory pressure by a factor that depends on the workload and the machine but the machine should function correctly without accidentally exhausting all memory on a node. There is an additional cost when kswapd wakes and sleeps but the event is not expected to be frequent - in Shaohua's test case, there was one recorded sleep and wake event at least. To ensure that kswapd wakes up, a safe version of zone_watermark_ok() is introduced that takes a more accurate reading of NR_FREE_PAGES when called from wakeup_kswapd, when deciding whether it is really safe to go back to sleep in sleeping_prematurely() and when deciding if a zone is really balanced or not in balance_pgdat(). We are still using an expensive function but limiting how often it is called. When the test case is reproduced, the time spent in the watermark functions is reduced. The following report is on the percentage of time spent cumulatively spent in the functions zone_nr_free_pages(), zone_watermark_ok(), __zone_watermark_ok(), zone_watermark_ok_safe(), zone_page_state_snapshot(), zone_page_state(). vanilla 11.6615% disable-threshold 0.2584% David said: : We had to pull aa454840 "mm: page allocator: calculate a better estimate : of NR_FREE_PAGES when memory is low and kswapd is awake" from 2.6.36 : internally because tests showed that it would cause the machine to stall : as the result of heavy kswapd activity. I merged it back with this fix as : it is pending in the -mm tree and it solves the issue we were seeing, so I : definitely think this should be pushed to -stable (and I would seriously : consider it for 2.6.37 inclusion even at this late date). Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reported-by: Shaohua Li <shaohua.li@intel.com> Reviewed-by: Christoph Lameter <cl@linux.com> Tested-by: Nicolas Bareil <nico@chdir.org> Cc: David Rientjes <rientjes@google.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: <stable@kernel.org> [2.6.37.1, 2.6.36.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-12-29memblock: Make find_memory_core_early() find from top-downYinghai Lu
That is used for find ram in node or bootmem type. We should make it top-down so it will be consistent to memblock_find, and to avoid allocating potentially valuable low memory before we actually need it. Suggested-by: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <4D0C075B.3040501@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-12-22Merge branch 'master' into for-nextJiri Kosina
Conflicts: MAINTAINERS arch/arm/mach-omap2/pm24xx.c drivers/scsi/bfa/bfa_fcpim.c Needed to update to apply fixes for which the old branch was too outdated.
2010-12-06PM / Hibernate: Fix memory corruption related to swapRafael J. Wysocki
There is a problem that swap pages allocated before the creation of a hibernation image can be released and used for storing the contents of different memory pages while the image is being saved. Since the kernel stored in the image doesn't know of that, it causes memory corruption to occur after resume from hibernation, especially on systems with relatively small RAM that need to swap often. This issue can be addressed by keeping the GFP_IOFS bits clear in gfp_allowed_mask during the entire hibernation, including the saving of the image, until the system is finally turned off or the hibernation is aborted. Unfortunately, for this purpose it's necessary to rework the way in which the hibernate and suspend code manipulates gfp_allowed_mask. This change is based on an earlier patch from Hugh Dickins. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reported-by: Ondrej Zary <linux@rainbow-software.org> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: stable@kernel.org
2010-11-28Kill off a bunch of warning: ‘inline’ is not at beginning of declarationJesper Juhl
These warnings are spewed during a build of a 'allnoconfig' kernel (especially the ones from u64_stats_sync.h show up a lot) when building with -Wextra (which I often do).. They are a) annoying b) easy to get rid of. This patch kills them off. include/linux/u64_stats_sync.h:70:1: warning: ‘inline’ is not at beginning of declaration include/linux/u64_stats_sync.h:77:1: warning: ‘inline’ is not at beginning of declaration include/linux/u64_stats_sync.h:84:1: warning: ‘inline’ is not at beginning of declaration include/linux/u64_stats_sync.h:96:1: warning: ‘inline’ is not at beginning of declaration include/linux/u64_stats_sync.h:115:1: warning: ‘inline’ is not at beginning of declaration include/linux/u64_stats_sync.h:127:1: warning: ‘inline’ is not at beginning of declaration kernel/time.c:241:1: warning: ‘inline’ is not at beginning of declaration kernel/time.c:257:1: warning: ‘inline’ is not at beginning of declaration kernel/perf_event.c:4513:1: warning: ‘inline’ is not at beginning of declaration mm/page_alloc.c:4012:1: warning: ‘inline’ is not at beginning of declaration Signed-off-by: Jesper Juhl <jj@chaosbits.net> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-11-25mm/page_alloc.c: fix build_all_zonelist() where percpu_alloc() is wrongly ↵KAMEZAWA Hiroyuki
called under stop_machine_run() During memory hotplug, build_allzonelists() may be called under stop_machine_run(). In this function, setup_zone_pageset() is called. But it's bug because it will do page allocation under stop_machine_run(). Here is a report from Alok Kataria. BUG: sleeping function called from invalid context at kernel/mutex.c:94 in_atomic(): 0, irqs_disabled(): 1, pid: 4, name: migration/0 Pid: 4, comm: migration/0 Not tainted 2.6.35.6-45.fc14.x86_64 #1 Call Trace: [<ffffffff8103d12b>] __might_sleep+0xeb/0xf0 [<ffffffff81468245>] mutex_lock+0x24/0x50 [<ffffffff8110eaa6>] pcpu_alloc+0x6d/0x7ee [<ffffffff81048888>] ? load_balance+0xbe/0x60e [<ffffffff8103a1b3>] ? rt_se_boosted+0x21/0x2f [<ffffffff8103e1cf>] ? dequeue_rt_stack+0x18b/0x1ed [<ffffffff8110f237>] __alloc_percpu+0x10/0x12 [<ffffffff81465e22>] setup_zone_pageset+0x38/0xbe [<ffffffff810d6d81>] ? build_zonelists_node.clone.58+0x79/0x8c [<ffffffff81452539>] __build_all_zonelists+0x419/0x46c [<ffffffff8108ef01>] ? cpu_stopper_thread+0xb2/0x198 [<ffffffff8108f075>] stop_machine_cpu_stop+0x8e/0xc5 [<ffffffff8108efe7>] ? stop_machine_cpu_stop+0x0/0xc5 [<ffffffff8108ef57>] cpu_stopper_thread+0x108/0x198 [<ffffffff81467a37>] ? schedule+0x5b2/0x5cc [<ffffffff8108ee4f>] ? cpu_stopper_thread+0x0/0x198 [<ffffffff81065f29>] kthread+0x7f/0x87 [<ffffffff8100aae4>] kernel_thread_helper+0x4/0x10 [<ffffffff81065eaa>] ? kthread+0x0/0x87 [<ffffffff8100aae0>] ? kernel_thread_helper+0x0/0x10 Built 5 zonelists in Node order, mobility grouping on. Total pages: 289456 Policy zone: Normal This patch tries to fix the issue by moving setup_zone_pageset() out from stop_machine_run(). It's obviously not necessary to be called under stop_machine_run(). [akpm@linux-foundation.org: remove unneeded local] Reported-by: Alok Kataria <akataria@vmware.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Petr Vandrovec <petr@vmware.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26mm: add casts to/from gfp_t in gfp_to_alloc_flags()Namhyung Kim
This removes following warning from sparse: mm/page_alloc.c:1934:9: warning: restricted gfp_t degrades to integer Signed-off-by: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26writeback: do not sleep on the congestion queue if there are no congested ↵Mel Gorman
BDIs or if significant congestion is not being encountered in the current zone If congestion_wait() is called with no BDI congested, the caller will sleep for the full timeout and this may be an unnecessary sleep. This patch adds a wait_iff_congested() that checks congestion and only sleeps if a BDI is congested else, it calls cond_resched() to ensure the caller is not hogging the CPU longer than its quota but otherwise will not sleep. This is aimed at reducing some of the major desktop stalls reported during IO. For example, while kswapd is operating, it calls congestion_wait() but it could just have been reclaiming clean page cache pages with no congestion. Without this patch, it would sleep for a full timeout but after this patch, it'll just call schedule() if it has been on the CPU too long. Similar logic applies to direct reclaimers that are not making enough progress. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26memory hotplug: unify is_removable and offline detection codeKAMEZAWA Hiroyuki
Now, sysfs interface of memory hotplug shows whether the section is removable or not. But it checks only migrateype of pages and doesn't check details of cluster of pages. Next, memory hotplug's set_migratetype_isolate() has the same kind of check, too. This patch adds the function __count_unmovable_pages() and makes above 2 checks to use the same logic. Then, is_removable and hotremove code uses the same logic. No changes in the hotremove logic itself. TODO: need to find a way to check RECLAMABLE. But, considering bit, calling shrink_slab() against a range before starting memory hotremove sounds better. If so, this patch's logic doesn't need to be changed. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reported-by: Michal Hocko <mhocko@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26memory hotplug: fix notifier's return value checkKAMEZAWA Hiroyuki
Even if notifier cannot find any pages, it doesn't mean no pages are available...And, if there are no notifiers registered, this condition will be always true and memory hotplug will show -EBUSY. This is a bug but not critical. In most case, a pageblock which will be offlined is MIGRATE_MOVABLE This "notifier" is called only when the pageblock is _not_ MIGRATE_MOVABLE. But if not MIGRATE_MOVABLE, it's common case that memory hotplug will fail. So, no one notice this bug. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26mm, page-allocator: do not check the state of a non-existant buddy during freeMel Gorman
There is a bug in commit 6dda9d55 ("page allocator: reduce fragmentation in buddy allocator by adding buddies that are merging to the tail of the free lists") that means a buddy at order MAX_ORDER is checked for merging. A page of this order never exists so at times, an effectively random piece of memory is being checked. Alan Curry has reported that this is causing memory corruption in userspace data on a PPC32 platform (http://lkml.org/lkml/2010/10/9/32). It is not clear why this is happening. It could be a cache coherency problem where pages mapped in both user and kernel space are getting different cache lines due to the bad read from kernel space (http://lkml.org/lkml/2010/10/13/179). It could also be that there are some special registers being io-remapped at the end of the memmap array and that a read has special meaning on them. Compiler bugs have been ruled out because the assembly before and after the patch looks relatively harmless. This patch fixes the problem by ensuring we are not reading a possibly invalid location of memory. It's not clear why the read causes corruption but one way or the other it is a buggy read. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Corrado Zoccolo <czoccolo@gmail.com> Reported-by: Alan Curry <pacman@kosh.dhis.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Rik van Riel <riel@redhat.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-11Merge branch 'x86/urgent' into core/memblockH. Peter Anvin
Reason for merge: Forward-port urgent change to arch/x86/mm/srat_64.c to the memblock tree. Resolved Conflicts: arch/x86/mm/srat_64.c Originally-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-10-08Merge commit 'v2.6.36-rc7' into core/memblockIngo Molnar
Merge reason: Update from -rc3 to -rc7. Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-10-07mm: alloc_large_system_hash() printk overflow on 16TB bootRobin Holt
During boot of a 16TB system, the following is printed: Dentry cache hash table entries: -2147483648 (order: 22, 17179869184 bytes) Signed-off-by: Robin Holt <holt@sgi.com> Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09mm: page allocator: drain per-cpu lists after direct reclaim allocation failsMel Gorman
When under significant memory pressure, a process enters direct reclaim and immediately afterwards tries to allocate a page. If it fails and no further progress is made, it's possible the system will go OOM. However, on systems with large amounts of memory, it's possible that a significant number of pages are on per-cpu lists and inaccessible to the calling process. This leads to a process entering direct reclaim more often than it should increasing the pressure on the system and compounding the problem. This patch notes that if direct reclaim is making progress but allocations are still failing that the system is already under heavy pressure. In this case, it drains the per-cpu lists and tries the allocation a second time before continuing. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09mm: page allocator: calculate a better estimate of NR_FREE_PAGES when memory ↵Christoph Lameter
is low and kswapd is awake Ordinarily watermark checks are based on the vmstat NR_FREE_PAGES as it is cheaper than scanning a number of lists. To avoid synchronization overhead, counter deltas are maintained on a per-cpu basis and drained both periodically and when the delta is above a threshold. On large CPU systems, the difference between the estimated and real value of NR_FREE_PAGES can be very high. If NR_FREE_PAGES is much higher than number of real free page in buddy, the VM can allocate pages below min watermark, at worst reducing the real number of pages to zero. Even if the OOM killer kills some victim for freeing memory, it may not free memory if the exit path requires a new page resulting in livelock. This patch introduces a zone_page_state_snapshot() function (courtesy of Christoph) that takes a slightly more accurate view of an arbitrary vmstat counter. It is used to read NR_FREE_PAGES while kswapd is awake to avoid the watermark being accidentally broken. The estimate is not perfect and may result in cache line bounces but is expected to be lighter than the IPI calls necessary to continually drain the per-cpu counters while kswapd is awake. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09mm: page allocator: update free page counters after pages are placed on the ↵Mel Gorman
free list When allocating a page, the system uses NR_FREE_PAGES counters to determine if watermarks would remain intact after the allocation was made. This check is made without interrupts disabled or the zone lock held and so is race-prone by nature. Unfortunately, when pages are being freed in batch, the counters are updated before the pages are added on the list. During this window, the counters are misleading as the pages do not exist yet. When under significant pressure on systems with large numbers of CPUs, it's possible for processes to make progress even though they should have been stalled. This is particularly problematic if a number of the processes are using GFP_ATOMIC as the min watermark can be accidentally breached and in extreme cases, the system can livelock. This patch updates the counters after the pages have been added to the list. This makes the allocator more cautious with respect to preserving the watermarks and mitigates livelock possibilities. [akpm@linux-foundation.org: avoid modifying incoming args] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-31Merge commit 'v2.6.36-rc3' into x86/memblockIngo Molnar
Conflicts: arch/x86/kernel/trampoline.c mm/memblock.c Merge reason: Resolve the conflicts, update to latest upstream. Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-08-27x86: Use memblock to replace early_resYinghai Lu
1. replace find_e820_area with memblock_find_in_range 2. replace reserve_early with memblock_x86_reserve_range 3. replace free_early with memblock_x86_free_range. 4. NO_BOOTMEM will switch to use memblock too. 5. use _e820, _early wrap in the patch, in following patch, will replace them all 6. because memblock_x86_free_range support partial free, we can remove some special care 7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill() so adjust some calling later in setup.c::setup_arch() -- corruption_check and mptable_update -v2: Move reserve_brk() early Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range() that could happen We have more then 128 RAM entry in E820 tables, and memblock_x86_fill() could use memblock_find_in_range() to find a new place for memblock.memory.region array. and We don't need to use extend_brk() after fill_memblock_area() So move reserve_brk() early before fill_memblock_area(). -v3: Move find_smp_config early To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable in right place. -v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in memblock.reserved already.. use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later. -v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit active_region for 32bit does include high pages need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped() -v6: Use current_limit instead -v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L -v8: Set memblock_can_resize early to handle EFI with more RAM entries -v9: update after kmemleak changes in mainline Suggested-by: David S. Miller <davem@davemloft.net> Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-27memblock: Add find_memory_core_early()Yinghai Lu
According to node range in early_node_map[] with __memblock_find_in_range to find free range. Will be used by memblock_x86_find_in_range_node() memblock_x86_find_in_range_node will be used to find right buffer for NODE_DATA Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-09vmscan: kill prev_priority completelyKOSAKI Motohiro
Since 2.6.28 zone->prev_priority is unused. Then it can be removed safely. It reduce stack usage slightly. Now I have to say that I'm sorry. 2 years ago, I thought prev_priority can be integrate again, it's useful. but four (or more) times trying haven't got good performance number. Thus I give up such approach. The rest of this changelog is notes on prev_priority and why it existed in the first place and why it might be not necessary any more. This information is based heavily on discussions between Andrew Morton, Rik van Riel and Kosaki Motohiro who is heavily quotes from. Historically prev_priority was important because it determined when the VM would start unmapping PTE pages. i.e. there are no balances of note within the VM, Anon vs File and Mapped vs Unmapped. Without prev_priority, there is a potential risk of unnecessarily increasing minor faults as a large amount of read activity of use-once pages could push mapped pages to the end of the LRU and get unmapped. There is no proof this is still a problem but currently it is not considered to be. Active files are not deactivated if the active file list is smaller than the inactive list reducing the liklihood that file-mapped pages are being pushed off the LRU and referenced executable pages are kept on the active list to avoid them getting pushed out by read activity. Even if it is a problem, prev_priority prev_priority wouldn't works nowadays. First of all, current vmscan still a lot of UP centric code. it expose some weakness on some dozens CPUs machine. I think we need more and more improvement. The problem is, current vmscan mix up per-system-pressure, per-zone-pressure and per-task-pressure a bit. example, prev_priority try to boost priority to other concurrent priority. but if the another task have mempolicy restriction, it is unnecessary, but also makes wrong big latency and exceeding reclaim. per-task based priority + prev_priority adjustment make the emulation of per-system pressure. but it have two issue 1) too rough and brutal emulation 2) we need per-zone pressure, not per-system. Another example, currently DEF_PRIORITY is 12. it mean the lru rotate about 2 cycle (1/4096 + 1/2048 + 1/1024 + .. + 1) before invoking OOM-Killer. but if 10,0000 thrreads enter DEF_PRIORITY reclaim at the same time, the system have higher memory pressure than priority==0 (1/4096*10,000 > 2). prev_priority can't solve such multithreads workload issue. In other word, prev_priority concept assume the sysmtem don't have lots threads." Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Chris Mason <chris.mason@oracle.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michael Rubin <mrubin@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09mm: rename try_set_zone_oom() to try_set_zonelist_oom()Minchan Kim
We have been used naming try_set_zone_oom and clear_zonelist_oom. The role of functions is to lock of zonelist for preventing parallel OOM. So clear_zonelist_oom makes sense but try_set_zone_oome is rather awkward and unmatched with clear_zonelist_oom. Let's change it with try_set_zonelist_oom. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09oom: avoid oom killer for lowmem allocationsDavid Rientjes
If memory has been depleted in lowmem zones even with the protection afforded to it by /proc/sys/vm/lowmem_reserve_ratio, it is unlikely that killing current users will help. The memory is either reclaimable (or migratable) already, in which case we should not invoke the oom killer at all, or it is pinned by an application for I/O. Killing such an application may leave the hardware in an unspecified state and there is no guarantee that it will be able to make a timely exit. Lowmem allocations are now failed in oom conditions when __GFP_NOFAIL is not used so that the task can perhaps recover or try again later. Previously, the heuristic provided some protection for those tasks with CAP_SYS_RAWIO, but this is no longer necessary since we will not be killing tasks for the purposes of ISA allocations. high_zoneidx is gfp_zone(gfp_flags), meaning that ZONE_NORMAL will be the default for all allocations that are not __GFP_DMA, __GFP_DMA32, __GFP_HIGHMEM, and __GFP_MOVABLE on kernels configured to support those flags. Testing for high_zoneidx being less than ZONE_NORMAL will only return true for allocations that have either __GFP_DMA or __GFP_DMA32. Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>