summaryrefslogtreecommitdiffstats
path: root/mm
AgeCommit message (Collapse)Author
2012-12-11Merge tag 'char-misc-3.8-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc Pull Char/Misc driver merge from Greg Kroah-Hartman: "Here is the "big" char/misc driver patches for 3.8-rc1. I'm starting to put random driver subsystems that I had previously sent you through the driver-core tree in this tree, as it makes more sense to do so. Nothing major here, the various __dev* removals, some mei driver updates, and other random driver-specific things from the different maintainers and developers. Note, some MFD drivers got added through this tree, and they are also coming in through the "real" MFD tree as well, due to some major mis-communication between me and the different developers. If you have any merge conflicts, take the ones from the MFD tree, not these ones, sorry about that. All of this has been in linux-next for a while. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>" Fix up trivial conflict in drivers/mmc/host/Kconfig due to new drivers having been added (both at the end, as usual..) * tag 'char-misc-3.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (84 commits) MAINTAINERS: remove drivers/staging/hv/ misc/st_kim: Free resources in the error path of probe() drivers/char: for hpet, add count checking, and ~0UL instead of -1 w1-gpio: Simplify & get rid of defines w1-gpio: Pinctrl-fy extcon: remove use of __devexit_p extcon: remove use of __devinit extcon: remove use of __devexit drivers: uio: Only allocate new private data when probing device tree node drivers: uio_dmem_genirq: Allow partial success when opening device drivers: uio_dmem_genirq: Don't use DMA_ERROR_CODE to indicate unmapped regions drivers: uio_dmem_genirq: Don't mix address spaces for dynamic region vaddr uio: remove use of __devexit uio: remove use of __devinitdata uio: remove use of __devinit uio: remove use of __devexit_p char: remove use of __devexit char: remove use of __devinitconst char: remove use of __devinitdata char: remove use of __devinit ...
2012-12-11mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalableIngo Molnar
rmap_walk_anon() and try_to_unmap_anon() appears to be too careful about locking the anon vma: while it needs protection against anon vma list modifications, it does not need exclusive access to the list itself. Transforming this exclusive lock to a read-locked rwsem removes a global lock from the hot path of page-migration intense threaded workloads which can cause pathological performance like this: 96.43% process 0 [kernel.kallsyms] [k] perf_trace_sched_switch | --- perf_trace_sched_switch __schedule schedule schedule_preempt_disabled __mutex_lock_common.isra.6 __mutex_lock_slowpath mutex_lock | |--50.61%-- rmap_walk | move_to_new_page | migrate_pages | migrate_misplaced_page | __do_numa_page.isra.69 | handle_pte_fault | handle_mm_fault | __do_page_fault | do_page_fault | page_fault | __memset_sse2 | | | --100.00%-- worker_thread | | | --100.00%-- start_thread | --49.39%-- page_lock_anon_vma try_to_unmap_anon try_to_unmap migrate_pages migrate_misplaced_page __do_numa_page.isra.69 handle_pte_fault handle_mm_fault __do_page_fault do_page_fault page_fault __memset_sse2 | --100.00%-- worker_thread start_thread With this change applied the profile is now nicely flat and there's no anon-vma related scheduling/blocking. Rename anon_vma_[un]lock() => anon_vma_[un]lock_write(), to make it clearer that it's an exclusive write-lock in that case - suggested by Rik van Riel. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Turner <pjt@google.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm/rmap: Convert the struct anon_vma::mutex to an rwsemIngo Molnar
Convert the struct anon_vma::mutex to an rwsem, which will help in solving a page-migration scalability problem. (Addressed in a separate patch.) The conversion is simple and straightforward: in every case where we mutex_lock()ed we'll now down_write(). Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Turner <pjt@google.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: migrate: Account a transhuge page properly when rate limitingMel Gorman
If there is excessive migration due to NUMA balancing it gets rate limited. It does this by counting the number of pages it has migrated recently but counts a transhuge page as 1 page. Account for it properly. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: Account for failed allocations and isolations as migration failuresMel Gorman
Subject says it all. Allocation failures and a failure to isolate should be accounted as a migration failure. This is partially another difference between base page and transhuge page migration. A base page migration makes multiple attempts for these conditions before it would be accounted for as a failure. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: Add THP migration for the NUMA working set scanning fault case ↵Mel Gorman
build fix Commit "Add THP migration for the NUMA working set scanning fault case" breaks the build because HPAGE_PMD_SHIFT and HPAGE_PMD_MASK defined to explode without CONFIG_TRANSPARENT_HUGEPAGE: mm/migrate.c: In function 'migrate_misplaced_transhuge_page_put': mm/migrate.c:1549: error: call to '__build_bug_failed' declared with attribute error: BUILD_BUG failed mm/migrate.c:1564: error: call to '__build_bug_failed' declared with attribute error: BUILD_BUG failed mm/migrate.c:1566: error: call to '__build_bug_failed' declared with attribute error: BUILD_BUG failed mm/migrate.c:1573: error: call to '__build_bug_failed' declared with attribute error: BUILD_BUG failed mm/migrate.c:1606: error: call to '__build_bug_failed' declared with attribute error: BUILD_BUG failed mm/migrate.c:1648: error: call to '__build_bug_failed' declared with attribute error: BUILD_BUG failed CONFIG_NUMA_BALANCING allows compilation without enabling transparent hugepages, so define the dummy function for such a configuration and only define migrate_misplaced_transhuge_page_put() when transparent hugepages are enabled. Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: Add THP migration for the NUMA working set scanning fault case.Mel Gorman
Note: This is very heavily based on a patch from Peter Zijlstra with fixes from Ingo Molnar, Hugh Dickins and Johannes Weiner. That patch put a lot of migration logic into mm/huge_memory.c where it does not belong. This version puts tries to share some of the migration logic with migrate_misplaced_page. However, it should be noted that now migrate.c is doing more with the pagetable manipulation than is preferred. The end result is barely recognisable so as before, the signed-offs had to be removed but will be re-added if the original authors are ok with it. Add THP migration for the NUMA working set scanning fault case. It uses the page lock to serialize. No migration pte dance is necessary because the pte is already unmapped when we decide to migrate. [dhillf@gmail.com: Fix memory leak on isolation failure] [dhillf@gmail.com: Fix transfer of last_nid information] Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: sched: numa: Control enabling and disabling of NUMA balancingMel Gorman
This patch adds Kconfig options and kernel parameters to allow the enabling and disabling of automatic NUMA balancing. The existance of such a switch was and is very important when debugging problems related to transparent hugepages and we should have the same for automatic NUMA placement. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrateMel Gorman
The PTE scanning rate and fault rates are two of the biggest sources of system CPU overhead with automatic NUMA placement. Ideally a proper policy would detect if a workload was properly placed, schedule and adjust the PTE scanning rate accordingly. We do not track the necessary information to do that but we at least know if we migrated or not. This patch scans slower if a page was not migrated as the result of a NUMA hinting fault up to sysctl_numa_balancing_scan_period_max which is now higher than the previous default. Once every minute it will reset the scanner in case of phase changes. This is hilariously crude and the numbers are arbitrary. Workloads will converge quite slowly in comparison to what a proper policy should be able to do. On the plus side, we will chew up less CPU for workloads that have no need for automatic balancing. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: Use a two-stage filter to restrict pages being migrated for ↵Mel Gorman
unlikely task<->node relationships Note: This two-stage filter was taken directly from the sched/numa patch "sched, numa, mm: Add the scanning page fault machinery" but is only a partial extraction. As the end result is not necessarily recognisable, the signed-offs-by had to be removed. Will be added back if requested. While it is desirable that all threads in a process run on its home node, this is not always possible or necessary. There may be more threads than exist within the node or the node might over-subscribed with unrelated processes. This can cause a situation whereby a page gets migrated off its home node because the threads clearing pte_numa were running off-node. This patch uses page->last_nid to build a two-stage filter before pages get migrated to avoid problems with short or unlikely task<->node relationships. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: migrate: Set last_nid on newly allocated pageHillf Danton
Pass last_nid from misplaced page to newly allocated migration target page. Signed-off-by: Hillf Danton <dhillf@gmail.com> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: split_huge_page: Transfer last_nid on tail pageHillf Danton
Pass last_nid from head page to tail page. Signed-off-by: Hillf Danton <dhillf@gmail.com> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: Introduce last_nid to the page frameMel Gorman
This patch introduces a last_nid field to the page struct. This is used to build a two-stage filter in the next patch that is aimed at mitigating a problem whereby pages migrate to the wrong node when referenced by a process that was running off its home node. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: Rate limit setting of pte_numa if node is saturatedMel Gorman
If there are a large number of NUMA hinting faults and all of them are resulting in migrations it may indicate that memory is just bouncing uselessly around. NUMA balancing cost is likely exceeding any benefit from locality. Rate limit the PTE updates if the node is migration rate-limited. As noted in the comments, this distorts the NUMA faulting statistics. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: Rate limit the amount of memory that is migrated between nodesMel Gorman
NOTE: This is very heavily based on similar logic in autonuma. It should be signed off by Andrea but because there was no standalone patch and it's sufficiently different from what he did that the signed-off is omitted. Will be added back if requested. If a large number of pages are misplaced then the memory bus can be saturated just migrating pages between nodes. This patch rate-limits the amount of memory that can be migrating between nodes. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: Structures for Migrate On Fault per NUMA migration rate limitingAndrea Arcangeli
This defines the per-node data used by Migrate On Fault in order to rate limit the migration. The rate limiting is applied independently to each destination node. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: Migrate pages handled during a pmd_numa hinting faultMel Gorman
To say that the PMD handling code was incorrectly transferred from autonuma is an understatement. The intention was to handle a PMDs worth of pages in the same fault and effectively batch the taking of the PTL and page migration. The copied version instead has the impact of clearing a number of pte_numa PTE entries and whether any page migration takes place depends on racing. This just happens to work in some cases. This patch handles pte_numa faults in batch when a pmd_numa fault is handled. The pages are migrated if they are currently misplaced. Essentially this is making an assumption that NUMA locality is on a PMD boundary but that could be addressed by only setting pmd_numa if all the pages within that PMD are on the same node if necessary. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: Migrate on reference policyMel Gorman
This is the simplest possible policy that still does something of note. When a pte_numa is faulted, it is moved immediately. Any replacement policy must at least do better than this and in all likelihood this policy regresses normal workloads. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: numa: Add pte updates, hinting and migration statsMel Gorman
It is tricky to quantify the basic cost of automatic NUMA placement in a meaningful manner. This patch adds some vmstats that can be used as part of a basic costing model. u = basic unit = sizeof(void *) Ca = cost of struct page access = sizeof(struct page) / u Cpte = Cost PTE access = Ca Cupdate = Cost PTE update = (2 * Cpte) + (2 * Wlock) where Cpte is incurred twice for a read and a write and Wlock is a constant representing the cost of taking or releasing a lock Cnumahint = Cost of a minor page fault = some high constant e.g. 1000 Cpagerw = Cost to read or write a full page = Ca + PAGE_SIZE/u Ci = Cost of page isolation = Ca + Wi where Wi is a constant that should reflect the approximate cost of the locking operation Cpagecopy = Cpagerw + (Cpagerw * Wnuma) + Ci + (Ci * Wnuma) where Wnuma is the approximate NUMA factor. 1 is local. 1.2 would imply that remote accesses are 20% more expensive Balancing cost = Cpte * numa_pte_updates + Cnumahint * numa_hint_faults + Ci * numa_pages_migrated + Cpagecopy * numa_pages_migrated Note that numa_pages_migrated is used as a measure of how many pages were isolated even though it would miss pages that failed to migrate. A vmstat counter could have been added for it but the isolation cost is pretty marginal in comparison to the overall cost so it seemed overkill. The ideal way to measure automatic placement benefit would be to count the number of remote accesses versus local accesses and do something like benefit = (remote_accesses_before - remove_access_after) * Wnuma but the information is not readily available. As a workload converges, the expection would be that the number of remote numa hints would reduce to 0. convergence = numa_hint_faults_local / numa_hint_faults where this is measured for the last N number of numa hints recorded. When the workload is fully converged the value is 1. This can measure if the placement policy is converging and how fast it is doing it. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: numa: Add fault driven placement and migrationPeter Zijlstra
NOTE: This patch is based on "sched, numa, mm: Add fault driven placement and migration policy" but as it throws away all the policy to just leave a basic foundation I had to drop the signed-offs-by. This patch creates a bare-bones method for setting PTEs pte_numa in the context of the scheduler that when faulted later will be faulted onto the node the CPU is running on. In itself this does nothing useful but any placement policy will fundamentally depend on receiving hints on placement from fault context and doing something intelligent about it. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: mempolicy: Hide MPOL_NOOP and MPOL_MF_LAZY from userspace for nowMel Gorman
The use of MPOL_NOOP and MPOL_MF_LAZY to allow an application to explicitly request lazy migration is a good idea but the actual API has not been well reviewed and once released we have to support it. For now this patch prevents an application using the services. This will need to be revisited. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: mempolicy: Implement change_prot_numa() in terms of change_protection()Mel Gorman
This patch converts change_prot_numa() to use change_protection(). As pte_numa and friends check the PTE bits directly it is necessary for change_protection() to use pmd_mknuma(). Hence the required modifications to change_protection() are a little clumsy but the end result is that most of the numa page table helpers are just one or two instructions. Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: mempolicy: Add MPOL_MF_LAZYLee Schermerhorn
NOTE: Once again there is a lot of patch stealing and the end result is sufficiently different that I had to drop the signed-offs. Will re-add if the original authors are ok with that. This patch adds another mbind() flag to request "lazy migration". The flag, MPOL_MF_LAZY, modifies MPOL_MF_MOVE* such that the selected pages are marked PROT_NONE. The pages will be migrated in the fault path on "first touch", if the policy dictates at that time. "Lazy Migration" will allow testing of migrate-on-fault via mbind(). Also allows applications to specify that only subsequently touched pages be migrated to obey new policy, instead of all pages in range. This can be useful for multi-threaded applications working on a large shared data area that is initialized by an initial thread resulting in all pages on one [or a few, if overflowed] nodes. After PROT_NONE, the pages in regions assigned to the worker threads will be automatically migrated local to the threads on 1st touch. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: mempolicy: Use _PAGE_NUMA to migrate pagesMel Gorman
Note: Based on "mm/mpol: Use special PROT_NONE to migrate pages" but sufficiently different that the signed-off-bys were dropped Combine our previous _PAGE_NUMA, mpol_misplaced and migrate_misplaced_page() pieces into an effective migrate on fault scheme. Note that (on x86) we rely on PROT_NONE pages being !present and avoid the TLB flush from try_to_unmap(TTU_MIGRATION). This greatly improves the page-migration performance. Based-on-work-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: migrate: Drop the misplaced pages reference count if the target node is fullMel Gorman
If we have to avoid migrating to a node that is nearly full, put page and return zero. Signed-off-by: Hillf Danton <dhillf@gmail.com> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: migrate: Introduce migrate_misplaced_page()Peter Zijlstra
Note: This was originally based on Peter's patch "mm/migrate: Introduce migrate_misplaced_page()" but borrows extremely heavily from Andrea's "autonuma: memory follows CPU algorithm and task/mm_autonuma stats collection". The end result is barely recognisable so signed-offs had to be dropped. If original authors are ok with it, I'll re-add the signed-off-bys. Add migrate_misplaced_page() which deals with migrating pages from faults. Based-on-work-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Based-on-work-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Based-on-work-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: mempolicy: Check for misplaced pageLee Schermerhorn
This patch provides a new function to test whether a page resides on a node that is appropriate for the mempolicy for the vma and address where the page is supposed to be mapped. This involves looking up the node where the page belongs. So, the function returns that node so that it may be used to allocated the page without consulting the policy again. A subsequent patch will call this function from the fault path. Because of this, I don't want to go ahead and allocate the page, e.g., via alloc_page_vma() only to have to free it if it has the correct policy. So, I just mimic the alloc_page_vma() node computation logic--sort of. Note: we could use this function to implement a MPOL_MF_STRICT behavior when migrating pages to match mbind() mempolicy--e.g., to ensure that pages in an interleaved range are reinterleaved rather than left where they are when they reside on any page in the interleave nodemask. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> [ Added MPOL_F_LAZY to trigger migrate-on-fault; simplified code now that we don't have to bother with special crap for interleaved ] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: mempolicy: Add MPOL_NOOPLee Schermerhorn
This patch augments the MPOL_MF_LAZY feature by adding a "NOOP" policy to mbind(). When the NOOP policy is used with the 'MOVE and 'LAZY flags, mbind() will map the pages PROT_NONE so that they will be migrated on the next touch. This allows an application to prepare for a new phase of operation where different regions of shared storage will be assigned to worker threads, w/o changing policy. Note that we could just use "default" policy in this case. However, this also allows an application to request that pages be migrated, only if necessary, to follow any arbitrary policy that might currently apply to a range of pages, without knowing the policy, or without specifying multiple mbind()s for ranges with different policies. [ Bug in early version of mpol_parse_str() reported by Fengguang Wu. ] Bug-Reported-by: Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: mempolicy: Make MPOL_LOCAL a real policyPeter Zijlstra
Make MPOL_LOCAL a real and exposed policy such that applications that relied on the previous default behaviour can explicitly request it. Requested-by: Christoph Lameter <cl@linux.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11mm: numa: Create basic numa page hinting infrastructureMel Gorman
Note: This patch started as "mm/mpol: Create special PROT_NONE infrastructure" and preserves the basic idea but steals *very* heavily from "autonuma: numa hinting page faults entry points" for the actual fault handlers without the migration parts. The end result is barely recognisable as either patch so all Signed-off and Reviewed-bys are dropped. If Peter, Ingo and Andrea are ok with this version, I will re-add the signed-offs-by to reflect the history. In order to facilitate a lazy -- fault driven -- migration of pages, create a special transient PAGE_NUMA variant, we can then use the 'spurious' protection faults to drive our migrations from. The meaning of PAGE_NUMA depends on the architecture but on x86 it is effectively PROT_NONE. Actual PROT_NONE mappings will not generate these NUMA faults for the reason that the page fault code checks the permission on the VMA (and will throw a segmentation fault on actual PROT_NONE mappings), before it ever calls handle_mm_fault. [dhillf@gmail.com: Fix typo] Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: numa: split_huge_page: transfer the NUMA type from the pmd to the pteAndrea Arcangeli
When we split a transparent hugepage, transfer the NUMA type from the pmd to the pte if needed. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: numa: Support NUMA hinting page faults from gup/gup_fastAndrea Arcangeli
Introduce FOLL_NUMA to tell follow_page to check pte/pmd_numa. get_user_pages must use FOLL_NUMA, and it's safe to do so because it always invokes handle_mm_fault and retries the follow_page later. KVM secondary MMU page faults will trigger the NUMA hinting page faults through gup_fast -> get_user_pages -> follow_page -> handle_mm_fault. Other follow_page callers like KSM should not use FOLL_NUMA, or they would fail to get the pages if they use follow_page instead of get_user_pages. [ This patch was picked up from the AutoNUMA tree. ] Originally-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> [ ported to this tree. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: compaction: Add scanned and isolated counters for compactionMel Gorman
Compaction already has tracepoints to count scanned and isolated pages but it requires that ftrace be enabled and if that information has to be written to disk then it can be disruptive. This patch adds vmstat counters for compaction called compact_migrate_scanned, compact_free_scanned and compact_isolated. With these counters, it is possible to define a basic cost model for compaction. This approximates of how much work compaction is doing and can be compared that with an oprofile showing TLB misses and see if the cost of compaction is being offset by THP for example. Minimally a compaction patch can be evaluated in terms of whether it increases or decreases cost. The basic cost model looks like this Fundamental unit u: a word sizeof(void *) Ca = cost of struct page access = sizeof(struct page) / u Cmc = Cost migrate page copy = (Ca + PAGE_SIZE/u) * 2 Cmf = Cost migrate failure = Ca * 2 Ci = Cost page isolation = (Ca + Wi) where Wi is a constant that should reflect the approximate cost of the locking operation. Csm = Cost migrate scanning = Ca Csf = Cost free scanning = Ca Overall cost = (Csm * compact_migrate_scanned) + (Csf * compact_free_scanned) + (Ci * compact_isolated) + (Cmc * pgmigrate_success) + (Cmf * pgmigrate_failed) Where the values are read from /proc/vmstat. This is very basic and ignores certain costs such as the allocation cost to do a migrate page copy but any improvement to the model would still use the same vmstat counters. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: migrate: Add a tracepoint for migrate_pagesMel Gorman
The pgmigrate_success and pgmigrate_fail vmstat counters tells the user about migration activity but not the type or the reason. This patch adds a tracepoint to identify the type of page migration and why the page is being migrated. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: compaction: Move migration fail/success stats to migrate.cMel Gorman
The compact_pages_moved and compact_pagemigrate_failed events are convenient for determining if compaction is active and to what degree migration is succeeding but it's at the wrong level. Other users of migration may also want to know if migration is working properly and this will be particularly true for any automated NUMA migration. This patch moves the counters down to migration with the new events called pgmigrate_success and pgmigrate_fail. The compact_blocks_moved counter is removed because while it was useful for debugging initially, it's worthless now as no meaningful conclusions can be drawn from its value. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: Optimize the TLB flush of sys_mprotect() and change_protection() usersIngo Molnar
Reuse the NUMA code's 'modified page protections' count that change_protection() computes and skip the TLB flush if there's no changes to a range that sys_mprotect() modifies. Given that mprotect() already optimizes the same-flags case I expected this optimization to dominantly trigger on CONFIG_NUMA_BALANCING=y kernels - but even with that feature disabled it triggers rather often. There's two reasons for that: 1) While sys_mprotect() already optimizes the same-flag case: if (newflags == oldflags) { *pprev = vma; return 0; } and this test works in many cases, but it is too sharp in some others, where it differentiates between protection values that the underlying PTE format makes no distinction about, such as PROT_EXEC == PROT_READ on x86. 2) Even where the pte format over vma flag changes necessiates a modification of the pagetables, there might be no pagetables yet to modify: they might not be instantiated yet. During a regular desktop bootup this optimization hits a couple of hundred times. During a Java test I measured thousands of hits. So this optimization improves sys_mprotect() in general, not just CONFIG_NUMA_BALANCING=y kernels. [ We could further increase the efficiency of this optimization if change_pte_range() and change_huge_pmd() was a bit smarter about recognizing exact-same-value protection masks - when the hardware can do that safely. This would probably further speed up mprotect(). ] Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-12-11mm: Count the number of pages affected in change_protection()Peter Zijlstra
This will be used for three kinds of purposes: - to optimize mprotect() - to speed up working set scanning for working set areas that have not been touched - to more accurately scan per real working set No change in functionality from this patch. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-12-11mm: Check if PTE is already allocated during page faultMel Gorman
With transparent hugepage support, handle_mm_fault() has to be careful that a normal PMD has been established before handling a PTE fault. To achieve this, it used __pte_alloc() directly instead of pte_alloc_map as pte_alloc_map is unsafe to run against a huge PMD. pte_offset_map() is called once it is known the PMD is safe. pte_alloc_map() is smart enough to check if a PTE is already present before calling __pte_alloc but this check was lost. As a consequence, PTEs may be allocated unnecessarily and the page table lock taken. Thi useless PTE does get cleaned up but it's a performance hit which is visible in page_test from aim9. This patch simply re-adds the check normally done by pte_alloc_map to check if the PTE needs to be allocated before taking the page table lock. The effect is noticable in page_test from aim9. AIM9 2.6.38-vanilla 2.6.38-checkptenone creat-clo 446.10 ( 0.00%) 424.47 (-5.10%) page_test 38.10 ( 0.00%) 42.04 ( 9.37%) brk_test 52.45 ( 0.00%) 51.57 (-1.71%) exec_test 382.00 ( 0.00%) 456.90 (16.39%) fork_test 60.11 ( 0.00%) 67.79 (11.34%) MMTests Statistics: duration Total Elapsed Time (seconds) 611.90 612.22 (While this affects 2.6.38, it is a performance rather than a functional bug and normally outside the rules -stable. While the big performance differences are to a microbench, the difference in fork and exec performance may be significant enough that -stable wants to consider the patch) Reported-by: Raz Ben Yehuda <raziebe@gmail.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Rik van Riel <riel@redhat.com> [ Picked this up from the AutoNUMA tree to help it upstream and to allow apples-to-apples performance comparisons. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-12-11mm: Only flush the TLB when clearing an accessible pteRik van Riel
If ptep_clear_flush() is called to clear a page table entry that is accessible anyway by the CPU, eg. a _PAGE_PROTNONE page table entry, there is no need to flush the TLB on remote CPUs. Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-vm3rkzevahelwhejx5uwm8ex@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-12-11mm,generic: only flush the local TLB in ptep_set_access_flagsRik van Riel
The function ptep_set_access_flags is only ever used to upgrade access permissions to a page. That means the only negative side effect of not flushing remote TLBs is that other CPUs may incur spurious page faults, if they happen to access the same address, and still have a PTE with the old permissions cached in their TLB. Having another CPU maybe incur a spurious page fault is faster than always incurring the cost of a remote TLB flush, so replace the remote TLB flush with a purely local one. This should be safe on every architecture that correctly implements flush_tlb_fix_spurious_fault() to actually invalidate the local TLB entry that caused a page fault, as well as on architectures where the hardware invalidates TLB entries that cause page faults. In the unlikely event that you are hitting what appears to be an infinite loop of page faults, and 'git bisect' took you to this changeset, your architecture needs to implement flush_tlb_fix_spurious_fault to actually flush the TLB entry. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Michel Lespinasse <walken@google.com> Cc: Ingo Molnar <mingo@kernel.org>
2012-12-11mm/sl[aou]b: Common alignment codeChristoph Lameter
Extract the code to do object alignment from the allocators. Do the alignment calculations in slab_common so that the __kmem_cache_create functions of the allocators do not have to deal with alignment. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-12-11slab: Use the new create_boot_cache function to simplify bootstrapChristoph Lameter
Simplify setup and reduce code in kmem_cache_init(). This allows us to get rid of initarray_cache as well as the manual setup code for the kmem_cache and kmem_cache_node arrays during bootstrap. We introduce a new bootstrap state "PARTIAL" for slab that signals the creation of a kmem_cache boot cache. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-12-11slub: Use statically allocated kmem_cache boot structure for bootstrapChristoph Lameter
Simplify bootstrap by statically allocated two kmem_cache structures. These are freed after bootup is complete. Allows us to no longer worry about calculations of sizes of kmem_cache structures during bootstrap. Reviewed-by: Glauber Costa <glommer@parallels.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-12-11mm, sl[au]b: create common functions for boot slab creationChristoph Lameter
Use a special function to create kmalloc caches and use that function in SLAB and SLUB. Acked-by: Joonsoo Kim <js1304@gmail.com> Reviewed-by: Glauber Costa <glommer@parallels.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-12-11slab: Simplify bootstrapChristoph Lameter
The nodelists field in kmem_cache is pointing to the first unused object in the array field when bootstrap is complete. A problem with the current approach is that the statically sized kmem_cache structure use on boot can only contain NR_CPUS entries. If the number of nodes plus the number of cpus is greater then we would overwrite memory following the kmem_cache_boot definition. Increase the size of the array field to ensure that also the node pointers fit into the array field. Once we do that we no longer need the kmem_cache_nodelists array and we can then also use that structure elsewhere. Acked-by: Glauber Costa <glommer@parallels.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-12-11slub: Use correct cpu_slab on dead cpuChristoph Lameter
Pass a kmem_cache_cpu pointer into unfreeze partials so that a different kmem_cache_cpu structure than the local one can be specified. Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-12-11mm: dmapool: use provided gfp flags for all dma_alloc_coherent() callsMarek Szyprowski
dmapool always calls dma_alloc_coherent() with GFP_ATOMIC flag, regardless the flags provided by the caller. This causes excessive pruning of emergency memory pools without any good reason. Additionaly, on ARM architecture any driver which is using dmapools will sooner or later trigger the following error: "ERROR: 256 KiB atomic DMA coherent pool is too small! Please increase it with coherent_pool= kernel parameter!". Increasing the coherent pool size usually doesn't help much and only delays such error, because all GFP_ATOMIC DMA allocations are always served from the special, very limited memory pool. This patch changes the dmapool code to correctly use gfp flags provided by the dmapool caller. Reported-by: Soeren Moch <smoch@web.de> Reported-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Tested-by: Andrew Lunn <andrew@lunn.ch> Tested-by: Soeren Moch <smoch@web.de> Cc: stable@vger.kernel.org
2012-12-10Revert "revert "Revert "mm: remove __GFP_NO_KSWAPD""" and associated damageLinus Torvalds
This reverts commits a50915394f1fc02c2861d3b7ce7014788aa5066e and d7c3b937bdf45f0b844400b7bf6fd3ed50bac604. This is a revert of a revert of a revert. In addition, it reverts the even older i915 change to stop using the __GFP_NO_KSWAPD flag due to the original commits in linux-next. It turns out that the original patch really was bogus, and that the original revert was the correct thing to do after all. We thought we had fixed the problem, and then reverted the revert, but the problem really is fundamental: waking up kswapd simply isn't the right thing to do, and direct reclaim sometimes simply _is_ the right thing to do. When certain allocations fail, we simply should try some direct reclaim, and if that fails, fail the allocation. That's the right thing to do for THP allocations, which can easily fail, and the GPU allocations want to do that too. So starting kswapd is sometimes simply wrong, and removing the flag that said "don't start kswapd" was a mistake. Let's hope we never revisit this mistake again - and certainly not this many times ;) Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-10Revert "mm: avoid waking kswapd for THP allocations when compaction is ↵Linus Torvalds
deferred or contended" This reverts commit 782fd30406ecb9d9b082816abe0c6008fc72a7b0. We are going to reinstate the __GFP_NO_KSWAPD flag that has been removed, the removal reverted, and then removed again. Making this commit a pointless fixup for a problem that was caused by the removal of __GFP_NO_KSWAPD flag. The thing is, we really don't want to wake up kswapd for THP allocations (because they fail quite commonly under any kind of memory pressure, including when there is tons of memory free), and these patches were just trying to fix up the underlying bug: the original removal of __GFP_NO_KSWAPD in commit c654345924f7 ("mm: remove __GFP_NO_KSWAPD") was simply bogus. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-08mm: vmscan: fix inappropriate zone congestion clearingJohannes Weiner
commit c702418f8a2f ("mm: vmscan: do not keep kswapd looping forever due to individual uncompactable zones") removed zone watermark checks from the compaction code in kswapd but left in the zone congestion clearing, which now happens unconditionally on higher order reclaim. This messes up the reclaim throttling logic for zones with dirty/writeback pages, where zones should only lose their congestion status when their watermarks have been restored. Remove the clearing from the zone compaction section entirely. The preliminary zone check and the reclaim loop in kswapd will clear it if the zone is considered balanced. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>