/* * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd. * http://www.samsung.com * * Common Codes for EXYNOS * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common.h" unsigned int gic_bank_offset __read_mostly; static const char name_exynos4210[] = "EXYNOS4210"; static const char name_exynos4212[] = "EXYNOS4212"; static const char name_exynos4412[] = "EXYNOS4412"; static struct cpu_table cpu_ids[] __initdata = { { .idcode = EXYNOS4210_CPU_ID, .idmask = EXYNOS4_CPU_MASK, .map_io = exynos4_map_io, .init_clocks = exynos4_init_clocks, .init_uarts = exynos4_init_uarts, .init = exynos_init, .name = name_exynos4210, }, { .idcode = EXYNOS4212_CPU_ID, .idmask = EXYNOS4_CPU_MASK, .map_io = exynos4_map_io, .init_clocks = exynos4_init_clocks, .init_uarts = exynos4_init_uarts, .init = exynos_init, .name = name_exynos4212, }, { .idcode = EXYNOS4412_CPU_ID, .idmask = EXYNOS4_CPU_MASK, .map_io = exynos4_map_io, .init_clocks = exynos4_init_clocks, .init_uarts = exynos4_init_uarts, .init = exynos_init, .name = name_exynos4412, }, }; /* Initial IO mappings */ static struct map_desc exynos_iodesc[] __initdata = { { .virtual = (unsigned long)S5P_VA_CHIPID, .pfn = __phys_to_pfn(EXYNOS4_PA_CHIPID), .length = SZ_4K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S3C_VA_SYS, .pfn = __phys_to_pfn(EXYNOS4_PA_SYSCON), .length = SZ_64K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S3C_VA_TIMER, .pfn = __phys_to_pfn(EXYNOS4_PA_TIMER), .length = SZ_16K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S3C_VA_WATCHDOG, .pfn = __phys_to_pfn(EXYNOS4_PA_WATCHDOG), .length = SZ_4K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S5P_VA_SROMC, .pfn = __phys_to_pfn(EXYNOS4_PA_SROMC), .length = SZ_4K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S5P_VA_SYSTIMER, .pfn = __phys_to_pfn(EXYNOS4_PA_SYSTIMER), .length = SZ_4K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S5P_VA_PMU, .pfn = __phys_to_pfn(EXYNOS4_PA_PMU), .length = SZ_64K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S5P_VA_COMBINER_BASE, .pfn = __phys_to_pfn(EXYNOS4_PA_COMBINER), .length = SZ_4K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S5P_VA_GIC_CPU, .pfn = __phys_to_pfn(EXYNOS4_PA_GIC_CPU), .length = SZ_64K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S5P_VA_GIC_DIST, .pfn = __phys_to_pfn(EXYNOS4_PA_GIC_DIST), .length = SZ_64K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S3C_VA_UART, .pfn = __phys_to_pfn(EXYNOS4_PA_UART), .length = SZ_512K, .type = MT_DEVICE, }, }; static struct map_desc exynos4_iodesc[] __initdata = { { .virtual = (unsigned long)S5P_VA_CMU, .pfn = __phys_to_pfn(EXYNOS4_PA_CMU), .length = SZ_128K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S5P_VA_COREPERI_BASE, .pfn = __phys_to_pfn(EXYNOS4_PA_COREPERI), .length = SZ_8K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S5P_VA_L2CC, .pfn = __phys_to_pfn(EXYNOS4_PA_L2CC), .length = SZ_4K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S5P_VA_GPIO1, .pfn = __phys_to_pfn(EXYNOS4_PA_GPIO1), .length = SZ_4K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S5P_VA_GPIO2, .pfn = __phys_to_pfn(EXYNOS4_PA_GPIO2), .length = SZ_4K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S5P_VA_GPIO3, .pfn = __phys_to_pfn(EXYNOS4_PA_GPIO3), .length = SZ_256, .type = MT_DEVICE, }, { .virtual = (unsigned long)S5P_VA_DMC0, .pfn = __phys_to_pfn(EXYNOS4_PA_DMC0), .length = SZ_4K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S5P_VA_SROMC, .pfn = __phys_to_pfn(EXYNOS4_PA_SROMC), .length = SZ_4K, .type = MT_DEVICE, }, { .virtual = (unsigned long)S3C_VA_USB_HSPHY, .pfn = __phys_to_pfn(EXYNOS4_PA_HSPHY), .length = SZ_4K, .type = MT_DEVICE, }, }; static struct map_desc exynos4_iodesc0[] __initdata = { { .virtual = (unsigned long)S5P_VA_SYSRAM, .pfn = __phys_to_pfn(EXYNOS4_PA_SYSRAM0), .length = SZ_4K, .type = MT_DEVICE, }, }; static struct map_desc exynos4_iodesc1[] __initdata = { { .virtual = (unsigned long)S5P_VA_SYSRAM, .pfn = __phys_to_pfn(EXYNOS4_PA_SYSRAM1), .length = SZ_4K, .type = MT_DEVICE, }, }; static void exynos_idle(void) { if (!need_resched()) cpu_do_idle(); local_irq_enable(); } void exynos4_restart(char mode, const char *cmd) { __raw_writel(0x1, S5P_SWRESET); } /* * exynos_map_io * * register the standard cpu IO areas */ void __init exynos_init_io(struct map_desc *mach_desc, int size) { /* initialize the io descriptors we need for initialization */ iotable_init(exynos_iodesc, ARRAY_SIZE(exynos_iodesc)); if (mach_desc) iotable_init(mach_desc, size); /* detect cpu id and rev. */ s5p_init_cpu(S5P_VA_CHIPID); s3c_init_cpu(samsung_cpu_id, cpu_ids, ARRAY_SIZE(cpu_ids)); } void __init exynos4_map_io(void) { iotable_init(exynos4_iodesc, ARRAY_SIZE(exynos4_iodesc)); if (soc_is_exynos4210() && samsung_rev() == EXYNOS4210_REV_0) iotable_init(exynos4_iodesc0, ARRAY_SIZE(exynos4_iodesc0)); else iotable_init(exynos4_iodesc1, ARRAY_SIZE(exynos4_iodesc1)); /* initialize device information early */ exynos4_default_sdhci0(); exynos4_default_sdhci1(); exynos4_default_sdhci2(); exynos4_default_sdhci3(); s3c_adc_setname("samsung-adc-v3"); s3c_fimc_setname(0, "exynos4-fimc"); s3c_fimc_setname(1, "exynos4-fimc"); s3c_fimc_setname(2, "exynos4-fimc"); s3c_fimc_setname(3, "exynos4-fimc"); /* The I2C bus controllers are directly compatible with s3c2440 */ s3c_i2c0_setname("s3c2440-i2c"); s3c_i2c1_setname("s3c2440-i2c"); s3c_i2c2_setname("s3c2440-i2c"); s5p_fb_setname(0, "exynos4-fb"); s5p_hdmi_setname("exynos4-hdmi"); } void __init exynos4_init_clocks(int xtal) { printk(KERN_DEBUG "%s: initializing clocks\n", __func__); s3c24xx_register_baseclocks(xtal); s5p_register_clocks(xtal); if (soc_is_exynos4210()) exynos4210_register_clocks(); else if (soc_is_exynos4212() || soc_is_exynos4412()) exynos4212_register_clocks(); exynos4_register_clocks(); exynos4_setup_clocks(); } #define COMBINER_ENABLE_SET 0x0 #define COMBINER_ENABLE_CLEAR 0x4 #define COMBINER_INT_STATUS 0xC static DEFINE_SPINLOCK(irq_controller_lock); struct combiner_chip_data { unsigned int irq_offset; unsigned int irq_mask; void __iomem *base; }; static struct combiner_chip_data combiner_data[MAX_COMBINER_NR]; static inline void __iomem *combiner_base(struct irq_data *data) { struct combiner_chip_data *combiner_data = irq_data_get_irq_chip_data(data); return combiner_data->base; } static void combiner_mask_irq(struct irq_data *data) { u32 mask = 1 << (data->irq % 32); __raw_writel(mask, combiner_base(data) + COMBINER_ENABLE_CLEAR); } static void combiner_unmask_irq(struct irq_data *data) { u32 mask = 1 << (data->irq % 32); __raw_writel(mask, combiner_base(data) + COMBINER_ENABLE_SET); } static void combiner_handle_cascade_irq(unsigned int irq, struct irq_desc *desc) { struct combiner_chip_data *chip_data = irq_get_handler_data(irq); struct irq_chip *chip = irq_get_chip(irq); unsigned int cascade_irq, combiner_irq; unsigned long status; chained_irq_enter(chip, desc); spin_lock(&irq_controller_lock); status = __raw_readl(chip_data->base + COMBINER_INT_STATUS); spin_unlock(&irq_controller_lock); status &= chip_data->irq_mask; if (status == 0) goto out; combiner_irq = __ffs(status); cascade_irq = combiner_irq + (chip_data->irq_offset & ~31); if (unlikely(cascade_irq >= NR_IRQS)) do_bad_IRQ(cascade_irq, desc); else generic_handle_irq(cascade_irq); out: chained_irq_exit(chip, desc); } static struct irq_chip combiner_chip = { .name = "COMBINER", .irq_mask = combiner_mask_irq, .irq_unmask = combiner_unmask_irq, }; static void __init combiner_cascade_irq(unsigned int combiner_nr, unsigned int irq) { if (combiner_nr >= MAX_COMBINER_NR) BUG(); if (irq_set_handler_data(irq, &combiner_data[combiner_nr]) != 0) BUG(); irq_set_chained_handler(irq, combiner_handle_cascade_irq); } static void __init combiner_init(unsigned int combiner_nr, void __iomem *base, unsigned int irq_start) { unsigned int i; if (combiner_nr >= MAX_COMBINER_NR) BUG(); combiner_data[combiner_nr].base = base; combiner_data[combiner_nr].irq_offset = irq_start; combiner_data[combiner_nr].irq_mask = 0xff << ((combiner_nr % 4) << 3); /* Disable all interrupts */ __raw_writel(combiner_data[combiner_nr].irq_mask, base + COMBINER_ENABLE_CLEAR); /* Setup the Linux IRQ subsystem */ for (i = irq_start; i < combiner_data[combiner_nr].irq_offset + MAX_IRQ_IN_COMBINER; i++) { irq_set_chip_and_handler(i, &combiner_chip, handle_level_irq); irq_set_chip_data(i, &combiner_data[combiner_nr]); set_irq_flags(i, IRQF_VALID | IRQF_PROBE); } } static void exynos4_gic_irq_fix_base(struct irq_data *d) { struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d); gic_data->cpu_base = S5P_VA_GIC_CPU + (gic_bank_offset * smp_processor_id()); gic_data->dist_base = S5P_VA_GIC_DIST + (gic_bank_offset * smp_processor_id()); } void __init exynos4_init_irq(void) { int irq; gic_bank_offset = soc_is_exynos4412() ? 0x4000 : 0x8000; gic_init(0, IRQ_PPI(0), S5P_VA_GIC_DIST, S5P_VA_GIC_CPU); gic_arch_extn.irq_eoi = exynos4_gic_irq_fix_base; gic_arch_extn.irq_unmask = exynos4_gic_irq_fix_base; gic_arch_extn.irq_mask = exynos4_gic_irq_fix_base; for (irq = 0; irq < MAX_COMBINER_NR; irq++) { combiner_init(irq, (void __iomem *)S5P_VA_COMBINER(irq), COMBINER_IRQ(irq, 0)); combiner_cascade_irq(irq, IRQ_SPI(irq)); } /* * The parameters of s5p_init_irq() are for VIC init. * Theses parameters should be NULL and 0 because EXYNOS4 * uses GIC instead of VIC. */ s5p_init_irq(NULL, 0); } struct sysdev_class exynos4_sysclass = { .name = "exynos4-core", }; static struct sys_device exynos4_sysdev = { .cls = &exynos4_sysclass, }; static int __init exynos4_core_init(void) { return sysdev_class_register(&exynos4_sysclass); } core_initcall(exynos4_core_init); #ifdef CONFIG_CACHE_L2X0 static int __init exynos4_l2x0_cache_init(void) { /* TAG, Data Latency Control: 2cycle */ __raw_writel(0x110, S5P_VA_L2CC + L2X0_TAG_LATENCY_CTRL); if (soc_is_exynos4210()) __raw_writel(0x110, S5P_VA_L2CC + L2X0_DATA_LATENCY_CTRL); else if (soc_is_exynos4212() || soc_is_exynos4412()) __raw_writel(0x120, S5P_VA_L2CC + L2X0_DATA_LATENCY_CTRL); /* L2X0 Prefetch Control */ __raw_writel(0x30000007, S5P_VA_L2CC + L2X0_PREFETCH_CTRL); /* L2X0 Power Control */ __raw_writel(L2X0_DYNAMIC_CLK_GATING_EN | L2X0_STNDBY_MODE_EN, S5P_VA_L2CC + L2X0_POWER_CTRL); l2x0_init(S5P_VA_L2CC, 0x7C470001, 0xC200ffff); return 0; } early_initcall(exynos4_l2x0_cache_init); #endif int __init exynos_init(void) { printk(KERN_INFO "EXYNOS: Initializing architecture\n"); /* set idle function */ pm_idle = exynos_idle; return sysdev_register(&exynos4_sysdev); } static struct s3c24xx_uart_clksrc exynos4_serial_clocks[] = { [0] = { .name = "uclk1", .divisor = 1, .min_baud = 0, .max_baud = 0, }, }; /* uart registration process */ void __init exynos4_init_uarts(struct s3c2410_uartcfg *cfg, int no) { struct s3c2410_uartcfg *tcfg = cfg; u32 ucnt; for (ucnt = 0; ucnt < no; ucnt++, tcfg++) { if (!tcfg->clocks) { tcfg->has_fracval = 1; tcfg->clocks = exynos4_serial_clocks; tcfg->clocks_size = ARRAY_SIZE(exynos4_serial_clocks); } tcfg->flags |= NO_NEED_CHECK_CLKSRC; } s3c24xx_init_uartdevs("s5pv210-uart", s5p_uart_resources, cfg, no); } static DEFINE_SPINLOCK(eint_lock); static unsigned int eint0_15_data[16]; static unsigned int exynos4_get_irq_nr(unsigned int number) { u32 ret = 0; switch (number) { case 0 ... 3: ret = (number + IRQ_EINT0); break; case 4 ... 7: ret = (number + (IRQ_EINT4 - 4)); break; case 8 ... 15: ret = (number + (IRQ_EINT8 - 8)); break; default: printk(KERN_ERR "number available : %d\n", number); } return ret; } static inline void exynos4_irq_eint_mask(struct irq_data *data) { u32 mask; spin_lock(&eint_lock); mask = __raw_readl(S5P_EINT_MASK(EINT_REG_NR(data->irq))); mask |= eint_irq_to_bit(data->irq); __raw_writel(mask, S5P_EINT_MASK(EINT_REG_NR(data->irq))); spin_unlock(&eint_lock); } static void exynos4_irq_eint_unmask(struct irq_data *data) { u32 mask; spin_lock(&eint_lock); mask = __raw_readl(S5P_EINT_MASK(EINT_REG_NR(data->irq))); mask &= ~(eint_irq_to_bit(data->irq)); __raw_writel(mask, S5P_EINT_MASK(EINT_REG_NR(data->irq))); spin_unlock(&eint_lock); } static inline void exynos4_irq_eint_ack(struct irq_data *data) { __raw_writel(eint_irq_to_bit(data->irq), S5P_EINT_PEND(EINT_REG_NR(data->irq))); } static void exynos4_irq_eint_maskack(struct irq_data *data) { exynos4_irq_eint_mask(data); exynos4_irq_eint_ack(data); } static int exynos4_irq_eint_set_type(struct irq_data *data, unsigned int type) { int offs = EINT_OFFSET(data->irq); int shift; u32 ctrl, mask; u32 newvalue = 0; switch (type) { case IRQ_TYPE_EDGE_RISING: newvalue = S5P_IRQ_TYPE_EDGE_RISING; break; case IRQ_TYPE_EDGE_FALLING: newvalue = S5P_IRQ_TYPE_EDGE_FALLING; break; case IRQ_TYPE_EDGE_BOTH: newvalue = S5P_IRQ_TYPE_EDGE_BOTH; break; case IRQ_TYPE_LEVEL_LOW: newvalue = S5P_IRQ_TYPE_LEVEL_LOW; break; case IRQ_TYPE_LEVEL_HIGH: newvalue = S5P_IRQ_TYPE_LEVEL_HIGH; break; default: printk(KERN_ERR "No such irq type %d", type); return -EINVAL; } shift = (offs & 0x7) * 4; mask = 0x7 << shift; spin_lock(&eint_lock); ctrl = __raw_readl(S5P_EINT_CON(EINT_REG_NR(data->irq))); ctrl &= ~mask; ctrl |= newvalue << shift; __raw_writel(ctrl, S5P_EINT_CON(EINT_REG_NR(data->irq))); spin_unlock(&eint_lock); switch (offs) { case 0 ... 7: s3c_gpio_cfgpin(EINT_GPIO_0(offs & 0x7), EINT_MODE); break; case 8 ... 15: s3c_gpio_cfgpin(EINT_GPIO_1(offs & 0x7), EINT_MODE); break; case 16 ... 23: s3c_gpio_cfgpin(EINT_GPIO_2(offs & 0x7), EINT_MODE); break; case 24 ... 31: s3c_gpio_cfgpin(EINT_GPIO_3(offs & 0x7), EINT_MODE); break; default: printk(KERN_ERR "No such irq number %d", offs); } return 0; } static struct irq_chip exynos4_irq_eint = { .name = "exynos4-eint", .irq_mask = exynos4_irq_eint_mask, .irq_unmask = exynos4_irq_eint_unmask, .irq_mask_ack = exynos4_irq_eint_maskack, .irq_ack = exynos4_irq_eint_ack, .irq_set_type = exynos4_irq_eint_set_type, #ifdef CONFIG_PM .irq_set_wake = s3c_irqext_wake, #endif }; /* * exynos4_irq_demux_eint * * This function demuxes the IRQ from from EINTs 16 to 31. * It is designed to be inlined into the specific handler * s5p_irq_demux_eintX_Y. * * Each EINT pend/mask registers handle eight of them. */ static inline void exynos4_irq_demux_eint(unsigned int start) { unsigned int irq; u32 status = __raw_readl(S5P_EINT_PEND(EINT_REG_NR(start))); u32 mask = __raw_readl(S5P_EINT_MASK(EINT_REG_NR(start))); status &= ~mask; status &= 0xff; while (status) { irq = fls(status) - 1; generic_handle_irq(irq + start); status &= ~(1 << irq); } } static void exynos4_irq_demux_eint16_31(unsigned int irq, struct irq_desc *desc) { struct irq_chip *chip = irq_get_chip(irq); chained_irq_enter(chip, desc); exynos4_irq_demux_eint(IRQ_EINT(16)); exynos4_irq_demux_eint(IRQ_EINT(24)); chained_irq_exit(chip, desc); } static void exynos4_irq_eint0_15(unsigned int irq, struct irq_desc *desc) { u32 *irq_data = irq_get_handler_data(irq); struct irq_chip *chip = irq_get_chip(irq); chained_irq_enter(chip, desc); chip->irq_mask(&desc->irq_data); if (chip->irq_ack) chip->irq_ack(&desc->irq_data); generic_handle_irq(*irq_data); chip->irq_unmask(&desc->irq_data); chained_irq_exit(chip, desc); } int __init exynos4_init_irq_eint(void) { int irq; for (irq = 0 ; irq <= 31 ; irq++) { irq_set_chip_and_handler(IRQ_EINT(irq), &exynos4_irq_eint, handle_level_irq); set_irq_flags(IRQ_EINT(irq), IRQF_VALID); } irq_set_chained_handler(IRQ_EINT16_31, exynos4_irq_demux_eint16_31); for (irq = 0 ; irq <= 15 ; irq++) { eint0_15_data[irq] = IRQ_EINT(irq); irq_set_handler_data(exynos4_get_irq_nr(irq), &eint0_15_data[irq]); irq_set_chained_handler(exynos4_get_irq_nr(irq), exynos4_irq_eint0_15); } return 0; } arch_initcall(exynos4_init_irq_eint);