/* * linux/arch/arm/mach-omap2/timer.c * * OMAP2 GP timer support. * * Copyright (C) 2009 Nokia Corporation * * Update to use new clocksource/clockevent layers * Author: Kevin Hilman, MontaVista Software, Inc. * Copyright (C) 2007 MontaVista Software, Inc. * * Original driver: * Copyright (C) 2005 Nokia Corporation * Author: Paul Mundt * Juha Yrjölä * OMAP Dual-mode timer framework support by Timo Teras * * Some parts based off of TI's 24xx code: * * Copyright (C) 2004-2009 Texas Instruments, Inc. * * Roughly modelled after the OMAP1 MPU timer code. * Added OMAP4 support - Santosh Shilimkar * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "omap_hwmod.h" #include "omap_device.h" #include #include #include "omap-pm.h" #include "soc.h" #include "common.h" #include "powerdomain.h" /* Parent clocks, eventually these will come from the clock framework */ #define OMAP2_MPU_SOURCE "sys_ck" #define OMAP3_MPU_SOURCE OMAP2_MPU_SOURCE #define OMAP4_MPU_SOURCE "sys_clkin_ck" #define OMAP5_MPU_SOURCE "sys_clkin" #define OMAP2_32K_SOURCE "func_32k_ck" #define OMAP3_32K_SOURCE "omap_32k_fck" #define OMAP4_32K_SOURCE "sys_32k_ck" #define REALTIME_COUNTER_BASE 0x48243200 #define INCREMENTER_NUMERATOR_OFFSET 0x10 #define INCREMENTER_DENUMERATOR_RELOAD_OFFSET 0x14 #define NUMERATOR_DENUMERATOR_MASK 0xfffff000 /* Clockevent code */ static struct omap_dm_timer clkev; static struct clock_event_device clockevent_gpt; static irqreturn_t omap2_gp_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = &clockevent_gpt; __omap_dm_timer_write_status(&clkev, OMAP_TIMER_INT_OVERFLOW); evt->event_handler(evt); return IRQ_HANDLED; } static struct irqaction omap2_gp_timer_irq = { .name = "gp_timer", .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL, .handler = omap2_gp_timer_interrupt, }; static int omap2_gp_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { __omap_dm_timer_load_start(&clkev, OMAP_TIMER_CTRL_ST, 0xffffffff - cycles, OMAP_TIMER_POSTED); return 0; } static void omap2_gp_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { u32 period; __omap_dm_timer_stop(&clkev, OMAP_TIMER_POSTED, clkev.rate); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: period = clkev.rate / HZ; period -= 1; /* Looks like we need to first set the load value separately */ __omap_dm_timer_write(&clkev, OMAP_TIMER_LOAD_REG, 0xffffffff - period, OMAP_TIMER_POSTED); __omap_dm_timer_load_start(&clkev, OMAP_TIMER_CTRL_AR | OMAP_TIMER_CTRL_ST, 0xffffffff - period, OMAP_TIMER_POSTED); break; case CLOCK_EVT_MODE_ONESHOT: break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_RESUME: break; } } static struct clock_event_device clockevent_gpt = { .name = "gp_timer", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .rating = 300, .set_next_event = omap2_gp_timer_set_next_event, .set_mode = omap2_gp_timer_set_mode, }; static struct property device_disabled = { .name = "status", .length = sizeof("disabled"), .value = "disabled", }; static struct of_device_id omap_timer_match[] __initdata = { { .compatible = "ti,omap2-timer", }, { } }; /** * omap_get_timer_dt - get a timer using device-tree * @match - device-tree match structure for matching a device type * @property - optional timer property to match * * Helper function to get a timer during early boot using device-tree for use * as kernel system timer. Optionally, the property argument can be used to * select a timer with a specific property. Once a timer is found then mark * the timer node in device-tree as disabled, to prevent the kernel from * registering this timer as a platform device and so no one else can use it. */ static struct device_node * __init omap_get_timer_dt(struct of_device_id *match, const char *property) { struct device_node *np; for_each_matching_node(np, match) { if (!of_device_is_available(np)) continue; if (property && !of_get_property(np, property, NULL)) continue; of_add_property(np, &device_disabled); return np; } return NULL; } /** * omap_dmtimer_init - initialisation function when device tree is used * * For secure OMAP3 devices, timers with device type "timer-secure" cannot * be used by the kernel as they are reserved. Therefore, to prevent the * kernel registering these devices remove them dynamically from the device * tree on boot. */ static void __init omap_dmtimer_init(void) { struct device_node *np; if (!cpu_is_omap34xx()) return; /* If we are a secure device, remove any secure timer nodes */ if ((omap_type() != OMAP2_DEVICE_TYPE_GP)) { np = omap_get_timer_dt(omap_timer_match, "ti,timer-secure"); if (np) of_node_put(np); } } /** * omap_dm_timer_get_errata - get errata flags for a timer * * Get the timer errata flags that are specific to the OMAP device being used. */ static u32 __init omap_dm_timer_get_errata(void) { if (cpu_is_omap24xx()) return 0; return OMAP_TIMER_ERRATA_I103_I767; } static int __init omap_dm_timer_init_one(struct omap_dm_timer *timer, int gptimer_id, const char *fck_source, const char *property, int posted) { char name[10]; /* 10 = sizeof("gptXX_Xck0") */ const char *oh_name; struct device_node *np; struct omap_hwmod *oh; struct resource irq, mem; int r = 0; if (of_have_populated_dt()) { np = omap_get_timer_dt(omap_timer_match, property); if (!np) return -ENODEV; of_property_read_string_index(np, "ti,hwmods", 0, &oh_name); if (!oh_name) return -ENODEV; timer->irq = irq_of_parse_and_map(np, 0); if (!timer->irq) return -ENXIO; timer->io_base = of_iomap(np, 0); of_node_put(np); } else { if (omap_dm_timer_reserve_systimer(gptimer_id)) return -ENODEV; sprintf(name, "timer%d", gptimer_id); oh_name = name; } oh = omap_hwmod_lookup(oh_name); if (!oh) return -ENODEV; if (!of_have_populated_dt()) { r = omap_hwmod_get_resource_byname(oh, IORESOURCE_IRQ, NULL, &irq); if (r) return -ENXIO; timer->irq = irq.start; r = omap_hwmod_get_resource_byname(oh, IORESOURCE_MEM, NULL, &mem); if (r) return -ENXIO; /* Static mapping, never released */ timer->io_base = ioremap(mem.start, mem.end - mem.start); } if (!timer->io_base) return -ENXIO; /* After the dmtimer is using hwmod these clocks won't be needed */ timer->fclk = clk_get(NULL, omap_hwmod_get_main_clk(oh)); if (IS_ERR(timer->fclk)) return -ENODEV; /* FIXME: Need to remove hard-coded test on timer ID */ if (gptimer_id != 12) { struct clk *src; src = clk_get(NULL, fck_source); if (IS_ERR(src)) { r = -EINVAL; } else { r = clk_set_parent(timer->fclk, src); if (IS_ERR_VALUE(r)) pr_warn("%s: %s cannot set source\n", __func__, oh->name); clk_put(src); } } omap_hwmod_setup_one(oh_name); omap_hwmod_enable(oh); __omap_dm_timer_init_regs(timer); if (posted) __omap_dm_timer_enable_posted(timer); /* Check that the intended posted configuration matches the actual */ if (posted != timer->posted) return -EINVAL; timer->rate = clk_get_rate(timer->fclk); timer->reserved = 1; return r; } static void __init omap2_gp_clockevent_init(int gptimer_id, const char *fck_source, const char *property) { int res; clkev.errata = omap_dm_timer_get_errata(); /* * For clock-event timers we never read the timer counter and * so we are not impacted by errata i103 and i767. Therefore, * we can safely ignore this errata for clock-event timers. */ __omap_dm_timer_override_errata(&clkev, OMAP_TIMER_ERRATA_I103_I767); res = omap_dm_timer_init_one(&clkev, gptimer_id, fck_source, property, OMAP_TIMER_POSTED); BUG_ON(res); omap2_gp_timer_irq.dev_id = &clkev; setup_irq(clkev.irq, &omap2_gp_timer_irq); __omap_dm_timer_int_enable(&clkev, OMAP_TIMER_INT_OVERFLOW); clockevent_gpt.cpumask = cpu_possible_mask; clockevent_gpt.irq = omap_dm_timer_get_irq(&clkev); clockevents_config_and_register(&clockevent_gpt, clkev.rate, 3, /* Timer internal resynch latency */ 0xffffffff); pr_info("OMAP clockevent source: GPTIMER%d at %lu Hz\n", gptimer_id, clkev.rate); } /* Clocksource code */ static struct omap_dm_timer clksrc; static bool use_gptimer_clksrc; /* * clocksource */ static cycle_t clocksource_read_cycles(struct clocksource *cs) { return (cycle_t)__omap_dm_timer_read_counter(&clksrc, OMAP_TIMER_NONPOSTED); } static struct clocksource clocksource_gpt = { .name = "gp_timer", .rating = 300, .read = clocksource_read_cycles, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static u32 notrace dmtimer_read_sched_clock(void) { if (clksrc.reserved) return __omap_dm_timer_read_counter(&clksrc, OMAP_TIMER_NONPOSTED); return 0; } static struct of_device_id omap_counter_match[] __initdata = { { .compatible = "ti,omap-counter32k", }, { } }; /* Setup free-running counter for clocksource */ static int __init __maybe_unused omap2_sync32k_clocksource_init(void) { int ret; struct device_node *np = NULL; struct omap_hwmod *oh; void __iomem *vbase; const char *oh_name = "counter_32k"; /* * If device-tree is present, then search the DT blob * to see if the 32kHz counter is supported. */ if (of_have_populated_dt()) { np = omap_get_timer_dt(omap_counter_match, NULL); if (!np) return -ENODEV; of_property_read_string_index(np, "ti,hwmods", 0, &oh_name); if (!oh_name) return -ENODEV; } /* * First check hwmod data is available for sync32k counter */ oh = omap_hwmod_lookup(oh_name); if (!oh || oh->slaves_cnt == 0) return -ENODEV; omap_hwmod_setup_one(oh_name); if (np) { vbase = of_iomap(np, 0); of_node_put(np); } else { vbase = omap_hwmod_get_mpu_rt_va(oh); } if (!vbase) { pr_warn("%s: failed to get counter_32k resource\n", __func__); return -ENXIO; } ret = omap_hwmod_enable(oh); if (ret) { pr_warn("%s: failed to enable counter_32k module (%d)\n", __func__, ret); return ret; } ret = omap_init_clocksource_32k(vbase); if (ret) { pr_warn("%s: failed to initialize counter_32k as a clocksource (%d)\n", __func__, ret); omap_hwmod_idle(oh); } return ret; } static void __init omap2_gptimer_clocksource_init(int gptimer_id, const char *fck_source) { int res; clksrc.errata = omap_dm_timer_get_errata(); res = omap_dm_timer_init_one(&clksrc, gptimer_id, fck_source, NULL, OMAP_TIMER_NONPOSTED); BUG_ON(res); __omap_dm_timer_load_start(&clksrc, OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, 0, OMAP_TIMER_NONPOSTED); setup_sched_clock(dmtimer_read_sched_clock, 32, clksrc.rate); if (clocksource_register_hz(&clocksource_gpt, clksrc.rate)) pr_err("Could not register clocksource %s\n", clocksource_gpt.name); else pr_info("OMAP clocksource: GPTIMER%d at %lu Hz\n", gptimer_id, clksrc.rate); } #ifdef CONFIG_SOC_HAS_REALTIME_COUNTER /* * The realtime counter also called master counter, is a free-running * counter, which is related to real time. It produces the count used * by the CPU local timer peripherals in the MPU cluster. The timer counts * at a rate of 6.144 MHz. Because the device operates on different clocks * in different power modes, the master counter shifts operation between * clocks, adjusting the increment per clock in hardware accordingly to * maintain a constant count rate. */ static void __init realtime_counter_init(void) { void __iomem *base; static struct clk *sys_clk; unsigned long rate; unsigned int reg, num, den; base = ioremap(REALTIME_COUNTER_BASE, SZ_32); if (!base) { pr_err("%s: ioremap failed\n", __func__); return; } sys_clk = clk_get(NULL, OMAP5_MPU_SOURCE); if (IS_ERR(sys_clk)) { pr_err("%s: failed to get system clock handle\n", __func__); iounmap(base); return; } rate = clk_get_rate(sys_clk); /* Numerator/denumerator values refer TRM Realtime Counter section */ switch (rate) { case 1200000: num = 64; den = 125; break; case 1300000: num = 768; den = 1625; break; case 19200000: num = 8; den = 25; break; case 2600000: num = 384; den = 1625; break; case 2700000: num = 256; den = 1125; break; case 38400000: default: /* Program it for 38.4 MHz */ num = 4; den = 25; break; } /* Program numerator and denumerator registers */ reg = __raw_readl(base + INCREMENTER_NUMERATOR_OFFSET) & NUMERATOR_DENUMERATOR_MASK; reg |= num; __raw_writel(reg, base + INCREMENTER_NUMERATOR_OFFSET); reg = __raw_readl(base + INCREMENTER_NUMERATOR_OFFSET) & NUMERATOR_DENUMERATOR_MASK; reg |= den; __raw_writel(reg, base + INCREMENTER_DENUMERATOR_RELOAD_OFFSET); iounmap(base); } #else static inline void __init realtime_counter_init(void) {} #endif #define OMAP_SYS_GP_TIMER_INIT(name, clkev_nr, clkev_src, clkev_prop, \ clksrc_nr, clksrc_src) \ void __init omap##name##_gptimer_timer_init(void) \ { \ omap_dmtimer_init(); \ omap2_gp_clockevent_init((clkev_nr), clkev_src, clkev_prop); \ omap2_gptimer_clocksource_init((clksrc_nr), clksrc_src); \ } #define OMAP_SYS_32K_TIMER_INIT(name, clkev_nr, clkev_src, clkev_prop, \ clksrc_nr, clksrc_src) \ void __init omap##name##_sync32k_timer_init(void) \ { \ omap_dmtimer_init(); \ omap2_gp_clockevent_init((clkev_nr), clkev_src, clkev_prop); \ /* Enable the use of clocksource="gp_timer" kernel parameter */ \ if (use_gptimer_clksrc) \ omap2_gptimer_clocksource_init((clksrc_nr), clksrc_src);\ else \ omap2_sync32k_clocksource_init(); \ } #ifdef CONFIG_ARCH_OMAP2 OMAP_SYS_32K_TIMER_INIT(2, 1, OMAP2_32K_SOURCE, "ti,timer-alwon", 2, OMAP2_MPU_SOURCE); #endif /* CONFIG_ARCH_OMAP2 */ #ifdef CONFIG_ARCH_OMAP3 OMAP_SYS_32K_TIMER_INIT(3, 1, OMAP3_32K_SOURCE, "ti,timer-alwon", 2, OMAP3_MPU_SOURCE); OMAP_SYS_32K_TIMER_INIT(3_secure, 12, OMAP3_32K_SOURCE, "ti,timer-secure", 2, OMAP3_MPU_SOURCE); OMAP_SYS_GP_TIMER_INIT(3_gp, 1, OMAP3_MPU_SOURCE, "ti,timer-alwon", 2, OMAP3_MPU_SOURCE); #endif /* CONFIG_ARCH_OMAP3 */ #ifdef CONFIG_SOC_AM33XX OMAP_SYS_GP_TIMER_INIT(3_am33xx, 1, OMAP4_MPU_SOURCE, "ti,timer-alwon", 2, OMAP4_MPU_SOURCE); #endif /* CONFIG_SOC_AM33XX */ #ifdef CONFIG_ARCH_OMAP4 OMAP_SYS_32K_TIMER_INIT(4, 1, OMAP4_32K_SOURCE, "ti,timer-alwon", 2, OMAP4_MPU_SOURCE); #ifdef CONFIG_LOCAL_TIMERS static DEFINE_TWD_LOCAL_TIMER(twd_local_timer, OMAP44XX_LOCAL_TWD_BASE, 29); void __init omap4_local_timer_init(void) { omap4_sync32k_timer_init(); /* Local timers are not supprted on OMAP4430 ES1.0 */ if (omap_rev() != OMAP4430_REV_ES1_0) { int err; if (of_have_populated_dt()) { twd_local_timer_of_register(); return; } err = twd_local_timer_register(&twd_local_timer); if (err) pr_err("twd_local_timer_register failed %d\n", err); } } #else /* CONFIG_LOCAL_TIMERS */ void __init omap4_local_timer_init(void) { omap4_sync32k_timer_init(); } #endif /* CONFIG_LOCAL_TIMERS */ #endif /* CONFIG_ARCH_OMAP4 */ #ifdef CONFIG_SOC_OMAP5 OMAP_SYS_32K_TIMER_INIT(5, 1, OMAP4_32K_SOURCE, "ti,timer-alwon", 2, OMAP5_MPU_SOURCE); void __init omap5_realtime_timer_init(void) { int err; omap5_sync32k_timer_init(); realtime_counter_init(); err = arch_timer_of_register(); if (err) pr_err("%s: arch_timer_register failed %d\n", __func__, err); } #endif /* CONFIG_SOC_OMAP5 */ /** * omap_timer_init - build and register timer device with an * associated timer hwmod * @oh: timer hwmod pointer to be used to build timer device * @user: parameter that can be passed from calling hwmod API * * Called by omap_hwmod_for_each_by_class to register each of the timer * devices present in the system. The number of timer devices is known * by parsing through the hwmod database for a given class name. At the * end of function call memory is allocated for timer device and it is * registered to the framework ready to be proved by the driver. */ static int __init omap_timer_init(struct omap_hwmod *oh, void *unused) { int id; int ret = 0; char *name = "omap_timer"; struct dmtimer_platform_data *pdata; struct platform_device *pdev; struct omap_timer_capability_dev_attr *timer_dev_attr; pr_debug("%s: %s\n", __func__, oh->name); /* on secure device, do not register secure timer */ timer_dev_attr = oh->dev_attr; if (omap_type() != OMAP2_DEVICE_TYPE_GP && timer_dev_attr) if (timer_dev_attr->timer_capability == OMAP_TIMER_SECURE) return ret; pdata = kzalloc(sizeof(*pdata), GFP_KERNEL); if (!pdata) { pr_err("%s: No memory for [%s]\n", __func__, oh->name); return -ENOMEM; } /* * Extract the IDs from name field in hwmod database * and use the same for constructing ids' for the * timer devices. In a way, we are avoiding usage of * static variable witin the function to do the same. * CAUTION: We have to be careful and make sure the * name in hwmod database does not change in which case * we might either make corresponding change here or * switch back static variable mechanism. */ sscanf(oh->name, "timer%2d", &id); if (timer_dev_attr) pdata->timer_capability = timer_dev_attr->timer_capability; pdata->timer_errata = omap_dm_timer_get_errata(); pdata->get_context_loss_count = omap_pm_get_dev_context_loss_count; pdev = omap_device_build(name, id, oh, pdata, sizeof(*pdata)); if (IS_ERR(pdev)) { pr_err("%s: Can't build omap_device for %s: %s.\n", __func__, name, oh->name); ret = -EINVAL; } kfree(pdata); return ret; } /** * omap2_dm_timer_init - top level regular device initialization * * Uses dedicated hwmod api to parse through hwmod database for * given class name and then build and register the timer device. */ static int __init omap2_dm_timer_init(void) { int ret; /* If dtb is there, the devices will be created dynamically */ if (of_have_populated_dt()) return -ENODEV; ret = omap_hwmod_for_each_by_class("timer", omap_timer_init, NULL); if (unlikely(ret)) { pr_err("%s: device registration failed.\n", __func__); return -EINVAL; } return 0; } omap_arch_initcall(omap2_dm_timer_init); /** * omap2_override_clocksource - clocksource override with user configuration * * Allows user to override default clocksource, using kernel parameter * clocksource="gp_timer" (For all OMAP2PLUS architectures) * * Note that, here we are using same standard kernel parameter "clocksource=", * and not introducing any OMAP specific interface. */ static int __init omap2_override_clocksource(char *str) { if (!str) return 0; /* * For OMAP architecture, we only have two options * - sync_32k (default) * - gp_timer (sys_clk based) */ if (!strcmp(str, "gp_timer")) use_gptimer_clksrc = true; return 0; } early_param("clocksource", omap2_override_clocksource);