/* * linux/arch/arm/mm/mmap.c */ #include <linux/fs.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/shm.h> #include <linux/sched.h> #include <linux/io.h> #include <linux/personality.h> #include <linux/random.h> #include <asm/cachetype.h> static inline unsigned long COLOUR_ALIGN_DOWN(unsigned long addr, unsigned long pgoff) { unsigned long base = addr & ~(SHMLBA-1); unsigned long off = (pgoff << PAGE_SHIFT) & (SHMLBA-1); if (base + off <= addr) return base + off; return base - off; } #define COLOUR_ALIGN(addr,pgoff) \ ((((addr)+SHMLBA-1)&~(SHMLBA-1)) + \ (((pgoff)<<PAGE_SHIFT) & (SHMLBA-1))) /* gap between mmap and stack */ #define MIN_GAP (128*1024*1024UL) #define MAX_GAP ((TASK_SIZE)/6*5) static int mmap_is_legacy(void) { if (current->personality & ADDR_COMPAT_LAYOUT) return 1; if (rlimit(RLIMIT_STACK) == RLIM_INFINITY) return 1; return sysctl_legacy_va_layout; } static unsigned long mmap_base(unsigned long rnd) { unsigned long gap = rlimit(RLIMIT_STACK); if (gap < MIN_GAP) gap = MIN_GAP; else if (gap > MAX_GAP) gap = MAX_GAP; return PAGE_ALIGN(TASK_SIZE - gap - rnd); } /* * We need to ensure that shared mappings are correctly aligned to * avoid aliasing issues with VIPT caches. We need to ensure that * a specific page of an object is always mapped at a multiple of * SHMLBA bytes. * * We unconditionally provide this function for all cases, however * in the VIVT case, we optimise out the alignment rules. */ unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; unsigned long start_addr; int do_align = 0; int aliasing = cache_is_vipt_aliasing(); /* * We only need to do colour alignment if either the I or D * caches alias. */ if (aliasing) do_align = filp || (flags & MAP_SHARED); /* * We enforce the MAP_FIXED case. */ if (flags & MAP_FIXED) { if (aliasing && flags & MAP_SHARED && (addr - (pgoff << PAGE_SHIFT)) & (SHMLBA - 1)) return -EINVAL; return addr; } if (len > TASK_SIZE) return -ENOMEM; if (addr) { if (do_align) addr = COLOUR_ALIGN(addr, pgoff); else addr = PAGE_ALIGN(addr); vma = find_vma(mm, addr); if (TASK_SIZE - len >= addr && (!vma || addr + len <= vma->vm_start)) return addr; } if (len > mm->cached_hole_size) { start_addr = addr = mm->free_area_cache; } else { start_addr = addr = mm->mmap_base; mm->cached_hole_size = 0; } full_search: if (do_align) addr = COLOUR_ALIGN(addr, pgoff); else addr = PAGE_ALIGN(addr); for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { /* At this point: (!vma || addr < vma->vm_end). */ if (TASK_SIZE - len < addr) { /* * Start a new search - just in case we missed * some holes. */ if (start_addr != TASK_UNMAPPED_BASE) { start_addr = addr = TASK_UNMAPPED_BASE; mm->cached_hole_size = 0; goto full_search; } return -ENOMEM; } if (!vma || addr + len <= vma->vm_start) { /* * Remember the place where we stopped the search: */ mm->free_area_cache = addr + len; return addr; } if (addr + mm->cached_hole_size < vma->vm_start) mm->cached_hole_size = vma->vm_start - addr; addr = vma->vm_end; if (do_align) addr = COLOUR_ALIGN(addr, pgoff); } } unsigned long arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, const unsigned long len, const unsigned long pgoff, const unsigned long flags) { struct vm_area_struct *vma; struct mm_struct *mm = current->mm; unsigned long addr = addr0; int do_align = 0; int aliasing = cache_is_vipt_aliasing(); /* * We only need to do colour alignment if either the I or D * caches alias. */ if (aliasing) do_align = filp || (flags & MAP_SHARED); /* requested length too big for entire address space */ if (len > TASK_SIZE) return -ENOMEM; if (flags & MAP_FIXED) { if (aliasing && flags & MAP_SHARED && (addr - (pgoff << PAGE_SHIFT)) & (SHMLBA - 1)) return -EINVAL; return addr; } /* requesting a specific address */ if (addr) { if (do_align) addr = COLOUR_ALIGN(addr, pgoff); else addr = PAGE_ALIGN(addr); vma = find_vma(mm, addr); if (TASK_SIZE - len >= addr && (!vma || addr + len <= vma->vm_start)) return addr; } /* check if free_area_cache is useful for us */ if (len <= mm->cached_hole_size) { mm->cached_hole_size = 0; mm->free_area_cache = mm->mmap_base; } /* either no address requested or can't fit in requested address hole */ addr = mm->free_area_cache; if (do_align) { unsigned long base = COLOUR_ALIGN_DOWN(addr - len, pgoff); addr = base + len; } /* make sure it can fit in the remaining address space */ if (addr > len) { vma = find_vma(mm, addr-len); if (!vma || addr <= vma->vm_start) /* remember the address as a hint for next time */ return (mm->free_area_cache = addr-len); } if (mm->mmap_base < len) goto bottomup; addr = mm->mmap_base - len; if (do_align) addr = COLOUR_ALIGN_DOWN(addr, pgoff); do { /* * Lookup failure means no vma is above this address, * else if new region fits below vma->vm_start, * return with success: */ vma = find_vma(mm, addr); if (!vma || addr+len <= vma->vm_start) /* remember the address as a hint for next time */ return (mm->free_area_cache = addr); /* remember the largest hole we saw so far */ if (addr + mm->cached_hole_size < vma->vm_start) mm->cached_hole_size = vma->vm_start - addr; /* try just below the current vma->vm_start */ addr = vma->vm_start - len; if (do_align) addr = COLOUR_ALIGN_DOWN(addr, pgoff); } while (len < vma->vm_start); bottomup: /* * A failed mmap() very likely causes application failure, * so fall back to the bottom-up function here. This scenario * can happen with large stack limits and large mmap() * allocations. */ mm->cached_hole_size = ~0UL; mm->free_area_cache = TASK_UNMAPPED_BASE; addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); /* * Restore the topdown base: */ mm->free_area_cache = mm->mmap_base; mm->cached_hole_size = ~0UL; return addr; } void arch_pick_mmap_layout(struct mm_struct *mm) { unsigned long random_factor = 0UL; /* 8 bits of randomness in 20 address space bits */ if ((current->flags & PF_RANDOMIZE) && !(current->personality & ADDR_NO_RANDOMIZE)) random_factor = (get_random_int() % (1 << 8)) << PAGE_SHIFT; if (mmap_is_legacy()) { mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; mm->get_unmapped_area = arch_get_unmapped_area; mm->unmap_area = arch_unmap_area; } else { mm->mmap_base = mmap_base(random_factor); mm->get_unmapped_area = arch_get_unmapped_area_topdown; mm->unmap_area = arch_unmap_area_topdown; } } /* * You really shouldn't be using read() or write() on /dev/mem. This * might go away in the future. */ int valid_phys_addr_range(unsigned long addr, size_t size) { if (addr < PHYS_OFFSET) return 0; if (addr + size > __pa(high_memory - 1) + 1) return 0; return 1; } /* * We don't use supersection mappings for mmap() on /dev/mem, which * means that we can't map the memory area above the 4G barrier into * userspace. */ int valid_mmap_phys_addr_range(unsigned long pfn, size_t size) { return !(pfn + (size >> PAGE_SHIFT) > 0x00100000); } #ifdef CONFIG_STRICT_DEVMEM #include <linux/ioport.h> /* * devmem_is_allowed() checks to see if /dev/mem access to a certain * address is valid. The argument is a physical page number. * We mimic x86 here by disallowing access to system RAM as well as * device-exclusive MMIO regions. This effectively disable read()/write() * on /dev/mem. */ int devmem_is_allowed(unsigned long pfn) { if (iomem_is_exclusive(pfn << PAGE_SHIFT)) return 0; if (!page_is_ram(pfn)) return 1; return 0; } #endif