/* * * Glue Code for optimized 586 assembler version of AES * * Copyright (c) 2002, Dr Brian Gladman <>, Worcester, UK. * All rights reserved. * * LICENSE TERMS * * The free distribution and use of this software in both source and binary * form is allowed (with or without changes) provided that: * * 1. distributions of this source code include the above copyright * notice, this list of conditions and the following disclaimer; * * 2. distributions in binary form include the above copyright * notice, this list of conditions and the following disclaimer * in the documentation and/or other associated materials; * * 3. the copyright holder's name is not used to endorse products * built using this software without specific written permission. * * ALTERNATIVELY, provided that this notice is retained in full, this product * may be distributed under the terms of the GNU General Public License (GPL), * in which case the provisions of the GPL apply INSTEAD OF those given above. * * DISCLAIMER * * This software is provided 'as is' with no explicit or implied warranties * in respect of its properties, including, but not limited to, correctness * and/or fitness for purpose. * * Copyright (c) 2003, Adam J. Richter (conversion to * 2.5 API). * Copyright (c) 2003, 2004 Fruhwirth Clemens * Copyright (c) 2004 Red Hat, Inc., James Morris * */ #include #include #include #include #include #include #include asmlinkage void aes_enc_blk(const u8 *src, u8 *dst, void *ctx); asmlinkage void aes_dec_blk(const u8 *src, u8 *dst, void *ctx); #define AES_MIN_KEY_SIZE 16 #define AES_MAX_KEY_SIZE 32 #define AES_BLOCK_SIZE 16 #define AES_KS_LENGTH 4 * AES_BLOCK_SIZE #define RC_LENGTH 29 struct aes_ctx { u32 ekey[AES_KS_LENGTH]; u32 rounds; u32 dkey[AES_KS_LENGTH]; }; #define WPOLY 0x011b #define bytes2word(b0, b1, b2, b3) \ (((u32)(b3) << 24) | ((u32)(b2) << 16) | ((u32)(b1) << 8) | (b0)) /* define the finite field multiplies required for Rijndael */ #define f2(x) ((x) ? pow[log[x] + 0x19] : 0) #define f3(x) ((x) ? pow[log[x] + 0x01] : 0) #define f9(x) ((x) ? pow[log[x] + 0xc7] : 0) #define fb(x) ((x) ? pow[log[x] + 0x68] : 0) #define fd(x) ((x) ? pow[log[x] + 0xee] : 0) #define fe(x) ((x) ? pow[log[x] + 0xdf] : 0) #define fi(x) ((x) ? pow[255 - log[x]]: 0) static inline u32 upr(u32 x, int n) { return (x << 8 * n) | (x >> (32 - 8 * n)); } static inline u8 bval(u32 x, int n) { return x >> 8 * n; } /* The forward and inverse affine transformations used in the S-box */ #define fwd_affine(x) \ (w = (u32)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(u8)(w^(w>>8))) #define inv_affine(x) \ (w = (u32)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(u8)(w^(w>>8))) static u32 rcon_tab[RC_LENGTH]; u32 ft_tab[4][256]; u32 fl_tab[4][256]; static u32 ls_tab[4][256]; static u32 im_tab[4][256]; u32 il_tab[4][256]; u32 it_tab[4][256]; static void gen_tabs(void) { u32 i, w; u8 pow[512], log[256]; /* * log and power tables for GF(2^8) finite field with * WPOLY as modular polynomial - the simplest primitive * root is 0x03, used here to generate the tables. */ i = 0; w = 1; do { pow[i] = (u8)w; pow[i + 255] = (u8)w; log[w] = (u8)i++; w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0); } while (w != 1); for(i = 0, w = 1; i < RC_LENGTH; ++i) { rcon_tab[i] = bytes2word(w, 0, 0, 0); w = f2(w); } for(i = 0; i < 256; ++i) { u8 b; b = fwd_affine(fi((u8)i)); w = bytes2word(f2(b), b, b, f3(b)); /* tables for a normal encryption round */ ft_tab[0][i] = w; ft_tab[1][i] = upr(w, 1); ft_tab[2][i] = upr(w, 2); ft_tab[3][i] = upr(w, 3); w = bytes2word(b, 0, 0, 0); /* * tables for last encryption round * (may also be used in the key schedule) */ fl_tab[0][i] = w; fl_tab[1][i] = upr(w, 1); fl_tab[2][i] = upr(w, 2); fl_tab[3][i] = upr(w, 3); /* * table for key schedule if fl_tab above is * not of the required form */ ls_tab[0][i] = w; ls_tab[1][i] = upr(w, 1); ls_tab[2][i] = upr(w, 2); ls_tab[3][i] = upr(w, 3); b = fi(inv_affine((u8)i)); w = bytes2word(fe(b), f9(b), fd(b), fb(b)); /* tables for the inverse mix column operation */ im_tab[0][b] = w; im_tab[1][b] = upr(w, 1); im_tab[2][b] = upr(w, 2); im_tab[3][b] = upr(w, 3); /* tables for a normal decryption round */ it_tab[0][i] = w; it_tab[1][i] = upr(w,1); it_tab[2][i] = upr(w,2); it_tab[3][i] = upr(w,3); w = bytes2word(b, 0, 0, 0); /* tables for last decryption round */ il_tab[0][i] = w; il_tab[1][i] = upr(w,1); il_tab[2][i] = upr(w,2); il_tab[3][i] = upr(w,3); } } #define four_tables(x,tab,vf,rf,c) \ ( tab[0][bval(vf(x,0,c),rf(0,c))] ^ \ tab[1][bval(vf(x,1,c),rf(1,c))] ^ \ tab[2][bval(vf(x,2,c),rf(2,c))] ^ \ tab[3][bval(vf(x,3,c),rf(3,c))] \ ) #define vf1(x,r,c) (x) #define rf1(r,c) (r) #define rf2(r,c) ((r-c)&3) #define inv_mcol(x) four_tables(x,im_tab,vf1,rf1,0) #define ls_box(x,c) four_tables(x,fl_tab,vf1,rf2,c) #define ff(x) inv_mcol(x) #define ke4(k,i) \ { \ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \ k[4*(i)+5] = ss[1] ^= ss[0]; \ k[4*(i)+6] = ss[2] ^= ss[1]; \ k[4*(i)+7] = ss[3] ^= ss[2]; \ } #define kel4(k,i) \ { \ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \ k[4*(i)+5] = ss[1] ^= ss[0]; \ k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ } #define ke6(k,i) \ { \ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ k[6*(i)+ 7] = ss[1] ^= ss[0]; \ k[6*(i)+ 8] = ss[2] ^= ss[1]; \ k[6*(i)+ 9] = ss[3] ^= ss[2]; \ k[6*(i)+10] = ss[4] ^= ss[3]; \ k[6*(i)+11] = ss[5] ^= ss[4]; \ } #define kel6(k,i) \ { \ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ k[6*(i)+ 7] = ss[1] ^= ss[0]; \ k[6*(i)+ 8] = ss[2] ^= ss[1]; \ k[6*(i)+ 9] = ss[3] ^= ss[2]; \ } #define ke8(k,i) \ { \ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ k[8*(i)+ 9] = ss[1] ^= ss[0]; \ k[8*(i)+10] = ss[2] ^= ss[1]; \ k[8*(i)+11] = ss[3] ^= ss[2]; \ k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \ k[8*(i)+13] = ss[5] ^= ss[4]; \ k[8*(i)+14] = ss[6] ^= ss[5]; \ k[8*(i)+15] = ss[7] ^= ss[6]; \ } #define kel8(k,i) \ { \ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ k[8*(i)+ 9] = ss[1] ^= ss[0]; \ k[8*(i)+10] = ss[2] ^= ss[1]; \ k[8*(i)+11] = ss[3] ^= ss[2]; \ } #define kdf4(k,i) \ { \ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \ ss[1] = ss[1] ^ ss[3]; \ ss[2] = ss[2] ^ ss[3]; \ ss[3] = ss[3]; \ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ ss[i % 4] ^= ss[4]; \ ss[4] ^= k[4*(i)]; \ k[4*(i)+4] = ff(ss[4]); \ ss[4] ^= k[4*(i)+1]; \ k[4*(i)+5] = ff(ss[4]); \ ss[4] ^= k[4*(i)+2]; \ k[4*(i)+6] = ff(ss[4]); \ ss[4] ^= k[4*(i)+3]; \ k[4*(i)+7] = ff(ss[4]); \ } #define kd4(k,i) \ { \ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ ss[i % 4] ^= ss[4]; \ ss[4] = ff(ss[4]); \ k[4*(i)+4] = ss[4] ^= k[4*(i)]; \ k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \ k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; \ k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \ } #define kdl4(k,i) \ { \ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ ss[i % 4] ^= ss[4]; \ k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \ k[4*(i)+5] = ss[1] ^ ss[3]; \ k[4*(i)+6] = ss[0]; \ k[4*(i)+7] = ss[1]; \ } #define kdf6(k,i) \ { \ ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ k[6*(i)+ 6] = ff(ss[0]); \ ss[1] ^= ss[0]; \ k[6*(i)+ 7] = ff(ss[1]); \ ss[2] ^= ss[1]; \ k[6*(i)+ 8] = ff(ss[2]); \ ss[3] ^= ss[2]; \ k[6*(i)+ 9] = ff(ss[3]); \ ss[4] ^= ss[3]; \ k[6*(i)+10] = ff(ss[4]); \ ss[5] ^= ss[4]; \ k[6*(i)+11] = ff(ss[5]); \ } #define kd6(k,i) \ { \ ss[6] = ls_box(ss[5],3) ^ rcon_tab[i]; \ ss[0] ^= ss[6]; ss[6] = ff(ss[6]); \ k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \ ss[1] ^= ss[0]; \ k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \ ss[2] ^= ss[1]; \ k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \ ss[3] ^= ss[2]; \ k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \ ss[4] ^= ss[3]; \ k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \ ss[5] ^= ss[4]; \ k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \ } #define kdl6(k,i) \ { \ ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ k[6*(i)+ 6] = ss[0]; \ ss[1] ^= ss[0]; \ k[6*(i)+ 7] = ss[1]; \ ss[2] ^= ss[1]; \ k[6*(i)+ 8] = ss[2]; \ ss[3] ^= ss[2]; \ k[6*(i)+ 9] = ss[3]; \ } #define kdf8(k,i) \ { \ ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ k[8*(i)+ 8] = ff(ss[0]); \ ss[1] ^= ss[0]; \ k[8*(i)+ 9] = ff(ss[1]); \ ss[2] ^= ss[1]; \ k[8*(i)+10] = ff(ss[2]); \ ss[3] ^= ss[2]; \ k[8*(i)+11] = ff(ss[3]); \ ss[4] ^= ls_box(ss[3],0); \ k[8*(i)+12] = ff(ss[4]); \ ss[5] ^= ss[4]; \ k[8*(i)+13] = ff(ss[5]); \ ss[6] ^= ss[5]; \ k[8*(i)+14] = ff(ss[6]); \ ss[7] ^= ss[6]; \ k[8*(i)+15] = ff(ss[7]); \ } #define kd8(k,i) \ { \ u32 __g = ls_box(ss[7],3) ^ rcon_tab[i]; \ ss[0] ^= __g; \ __g = ff(__g); \ k[8*(i)+ 8] = __g ^= k[8*(i)]; \ ss[1] ^= ss[0]; \ k[8*(i)+ 9] = __g ^= k[8*(i)+ 1]; \ ss[2] ^= ss[1]; \ k[8*(i)+10] = __g ^= k[8*(i)+ 2]; \ ss[3] ^= ss[2]; \ k[8*(i)+11] = __g ^= k[8*(i)+ 3]; \ __g = ls_box(ss[3],0); \ ss[4] ^= __g; \ __g = ff(__g); \ k[8*(i)+12] = __g ^= k[8*(i)+ 4]; \ ss[5] ^= ss[4]; \ k[8*(i)+13] = __g ^= k[8*(i)+ 5]; \ ss[6] ^= ss[5]; \ k[8*(i)+14] = __g ^= k[8*(i)+ 6]; \ ss[7] ^= ss[6]; \ k[8*(i)+15] = __g ^= k[8*(i)+ 7]; \ } #define kdl8(k,i) \ { \ ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ k[8*(i)+ 8] = ss[0]; \ ss[1] ^= ss[0]; \ k[8*(i)+ 9] = ss[1]; \ ss[2] ^= ss[1]; \ k[8*(i)+10] = ss[2]; \ ss[3] ^= ss[2]; \ k[8*(i)+11] = ss[3]; \ } static int aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags) { int i; u32 ss[8]; struct aes_ctx *ctx = ctx_arg; const __le32 *key = (const __le32 *)in_key; /* encryption schedule */ ctx->ekey[0] = ss[0] = le32_to_cpu(key[0]); ctx->ekey[1] = ss[1] = le32_to_cpu(key[1]); ctx->ekey[2] = ss[2] = le32_to_cpu(key[2]); ctx->ekey[3] = ss[3] = le32_to_cpu(key[3]); switch(key_len) { case 16: for (i = 0; i < 9; i++) ke4(ctx->ekey, i); kel4(ctx->ekey, 9); ctx->rounds = 10; break; case 24: ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]); ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]); for (i = 0; i < 7; i++) ke6(ctx->ekey, i); kel6(ctx->ekey, 7); ctx->rounds = 12; break; case 32: ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]); ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]); ctx->ekey[6] = ss[6] = le32_to_cpu(key[6]); ctx->ekey[7] = ss[7] = le32_to_cpu(key[7]); for (i = 0; i < 6; i++) ke8(ctx->ekey, i); kel8(ctx->ekey, 6); ctx->rounds = 14; break; default: *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } /* decryption schedule */ ctx->dkey[0] = ss[0] = le32_to_cpu(key[0]); ctx->dkey[1] = ss[1] = le32_to_cpu(key[1]); ctx->dkey[2] = ss[2] = le32_to_cpu(key[2]); ctx->dkey[3] = ss[3] = le32_to_cpu(key[3]); switch (key_len) { case 16: kdf4(ctx->dkey, 0); for (i = 1; i < 9; i++) kd4(ctx->dkey, i); kdl4(ctx->dkey, 9); break; case 24: ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4])); ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5])); kdf6(ctx->dkey, 0); for (i = 1; i < 7; i++) kd6(ctx->dkey, i); kdl6(ctx->dkey, 7); break; case 32: ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4])); ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5])); ctx->dkey[6] = ff(ss[6] = le32_to_cpu(key[6])); ctx->dkey[7] = ff(ss[7] = le32_to_cpu(key[7])); kdf8(ctx->dkey, 0); for (i = 1; i < 6; i++) kd8(ctx->dkey, i); kdl8(ctx->dkey, 6); break; } return 0; } static inline void aes_encrypt(void *ctx, u8 *dst, const u8 *src) { aes_enc_blk(src, dst, ctx); } static inline void aes_decrypt(void *ctx, u8 *dst, const u8 *src) { aes_dec_blk(src, dst, ctx); } static struct crypto_alg aes_alg = { .cra_name = "aes", .cra_driver_name = "aes-i586", .cra_priority = 200, .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aes_ctx), .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), .cra_u = { .cipher = { .cia_min_keysize = AES_MIN_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE, .cia_setkey = aes_set_key, .cia_encrypt = aes_encrypt, .cia_decrypt = aes_decrypt } } }; static int __init aes_init(void) { gen_tabs(); return crypto_register_alg(&aes_alg); } static void __exit aes_fini(void) { crypto_unregister_alg(&aes_alg); } module_init(aes_init); module_exit(aes_fini); MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, i586 asm optimized"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Fruhwirth Clemens, James Morris, Brian Gladman, Adam Richter"); MODULE_ALIAS("aes");