/* * process.c: handle interruption inject for guests. * Copyright (c) 2005, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307 USA. * * Shaofan Li (Susue Li) <susie.li@intel.com> * Xiaoyan Feng (Fleming Feng) <fleming.feng@intel.com> * Xuefei Xu (Anthony Xu) (Anthony.xu@intel.com) * Xiantao Zhang (xiantao.zhang@intel.com) */ #include "vcpu.h" #include <asm/pal.h> #include <asm/sal.h> #include <asm/fpswa.h> #include <asm/kregs.h> #include <asm/tlb.h> fpswa_interface_t *vmm_fpswa_interface; #define IA64_VHPT_TRANS_VECTOR 0x0000 #define IA64_INST_TLB_VECTOR 0x0400 #define IA64_DATA_TLB_VECTOR 0x0800 #define IA64_ALT_INST_TLB_VECTOR 0x0c00 #define IA64_ALT_DATA_TLB_VECTOR 0x1000 #define IA64_DATA_NESTED_TLB_VECTOR 0x1400 #define IA64_INST_KEY_MISS_VECTOR 0x1800 #define IA64_DATA_KEY_MISS_VECTOR 0x1c00 #define IA64_DIRTY_BIT_VECTOR 0x2000 #define IA64_INST_ACCESS_BIT_VECTOR 0x2400 #define IA64_DATA_ACCESS_BIT_VECTOR 0x2800 #define IA64_BREAK_VECTOR 0x2c00 #define IA64_EXTINT_VECTOR 0x3000 #define IA64_PAGE_NOT_PRESENT_VECTOR 0x5000 #define IA64_KEY_PERMISSION_VECTOR 0x5100 #define IA64_INST_ACCESS_RIGHTS_VECTOR 0x5200 #define IA64_DATA_ACCESS_RIGHTS_VECTOR 0x5300 #define IA64_GENEX_VECTOR 0x5400 #define IA64_DISABLED_FPREG_VECTOR 0x5500 #define IA64_NAT_CONSUMPTION_VECTOR 0x5600 #define IA64_SPECULATION_VECTOR 0x5700 /* UNUSED */ #define IA64_DEBUG_VECTOR 0x5900 #define IA64_UNALIGNED_REF_VECTOR 0x5a00 #define IA64_UNSUPPORTED_DATA_REF_VECTOR 0x5b00 #define IA64_FP_FAULT_VECTOR 0x5c00 #define IA64_FP_TRAP_VECTOR 0x5d00 #define IA64_LOWERPRIV_TRANSFER_TRAP_VECTOR 0x5e00 #define IA64_TAKEN_BRANCH_TRAP_VECTOR 0x5f00 #define IA64_SINGLE_STEP_TRAP_VECTOR 0x6000 /* SDM vol2 5.5 - IVA based interruption handling */ #define INITIAL_PSR_VALUE_AT_INTERRUPTION (IA64_PSR_UP | IA64_PSR_MFL |\ IA64_PSR_MFH | IA64_PSR_PK | IA64_PSR_DT | \ IA64_PSR_RT | IA64_PSR_MC|IA64_PSR_IT) #define DOMN_PAL_REQUEST 0x110000 #define DOMN_SAL_REQUEST 0x110001 static u64 vec2off[68] = {0x0, 0x400, 0x800, 0xc00, 0x1000, 0x1400, 0x1800, 0x1c00, 0x2000, 0x2400, 0x2800, 0x2c00, 0x3000, 0x3400, 0x3800, 0x3c00, 0x4000, 0x4400, 0x4800, 0x4c00, 0x5000, 0x5100, 0x5200, 0x5300, 0x5400, 0x5500, 0x5600, 0x5700, 0x5800, 0x5900, 0x5a00, 0x5b00, 0x5c00, 0x5d00, 0x5e00, 0x5f00, 0x6000, 0x6100, 0x6200, 0x6300, 0x6400, 0x6500, 0x6600, 0x6700, 0x6800, 0x6900, 0x6a00, 0x6b00, 0x6c00, 0x6d00, 0x6e00, 0x6f00, 0x7000, 0x7100, 0x7200, 0x7300, 0x7400, 0x7500, 0x7600, 0x7700, 0x7800, 0x7900, 0x7a00, 0x7b00, 0x7c00, 0x7d00, 0x7e00, 0x7f00 }; static void collect_interruption(struct kvm_vcpu *vcpu) { u64 ipsr; u64 vdcr; u64 vifs; unsigned long vpsr; struct kvm_pt_regs *regs = vcpu_regs(vcpu); vpsr = vcpu_get_psr(vcpu); vcpu_bsw0(vcpu); if (vpsr & IA64_PSR_IC) { /* Sync mpsr id/da/dd/ss/ed bits to vipsr * since after guest do rfi, we still want these bits on in * mpsr */ ipsr = regs->cr_ipsr; vpsr = vpsr | (ipsr & (IA64_PSR_ID | IA64_PSR_DA | IA64_PSR_DD | IA64_PSR_SS | IA64_PSR_ED)); vcpu_set_ipsr(vcpu, vpsr); /* Currently, for trap, we do not advance IIP to next * instruction. That's because we assume caller already * set up IIP correctly */ vcpu_set_iip(vcpu , regs->cr_iip); /* set vifs.v to zero */ vifs = VCPU(vcpu, ifs); vifs &= ~IA64_IFS_V; vcpu_set_ifs(vcpu, vifs); vcpu_set_iipa(vcpu, VMX(vcpu, cr_iipa)); } vdcr = VCPU(vcpu, dcr); /* Set guest psr * up/mfl/mfh/pk/dt/rt/mc/it keeps unchanged * be: set to the value of dcr.be * pp: set to the value of dcr.pp */ vpsr &= INITIAL_PSR_VALUE_AT_INTERRUPTION; vpsr |= (vdcr & IA64_DCR_BE); /* VDCR pp bit position is different from VPSR pp bit */ if (vdcr & IA64_DCR_PP) { vpsr |= IA64_PSR_PP; } else { vpsr &= ~IA64_PSR_PP;; } vcpu_set_psr(vcpu, vpsr); } void inject_guest_interruption(struct kvm_vcpu *vcpu, u64 vec) { u64 viva; struct kvm_pt_regs *regs; union ia64_isr pt_isr; regs = vcpu_regs(vcpu); /* clear cr.isr.ir (incomplete register frame)*/ pt_isr.val = VMX(vcpu, cr_isr); pt_isr.ir = 0; VMX(vcpu, cr_isr) = pt_isr.val; collect_interruption(vcpu); viva = vcpu_get_iva(vcpu); regs->cr_iip = viva + vec; } static u64 vcpu_get_itir_on_fault(struct kvm_vcpu *vcpu, u64 ifa) { union ia64_rr rr, rr1; rr.val = vcpu_get_rr(vcpu, ifa); rr1.val = 0; rr1.ps = rr.ps; rr1.rid = rr.rid; return (rr1.val); } /* * Set vIFA & vITIR & vIHA, when vPSR.ic =1 * Parameter: * set_ifa: if true, set vIFA * set_itir: if true, set vITIR * set_iha: if true, set vIHA */ void set_ifa_itir_iha(struct kvm_vcpu *vcpu, u64 vadr, int set_ifa, int set_itir, int set_iha) { long vpsr; u64 value; vpsr = VCPU(vcpu, vpsr); /* Vol2, Table 8-1 */ if (vpsr & IA64_PSR_IC) { if (set_ifa) vcpu_set_ifa(vcpu, vadr); if (set_itir) { value = vcpu_get_itir_on_fault(vcpu, vadr); vcpu_set_itir(vcpu, value); } if (set_iha) { value = vcpu_thash(vcpu, vadr); vcpu_set_iha(vcpu, value); } } } /* * Data TLB Fault * @ Data TLB vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void dtlb_fault(struct kvm_vcpu *vcpu, u64 vadr) { /* If vPSR.ic, IFA, ITIR, IHA */ set_ifa_itir_iha(vcpu, vadr, 1, 1, 1); inject_guest_interruption(vcpu, IA64_DATA_TLB_VECTOR); } /* * Instruction TLB Fault * @ Instruction TLB vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void itlb_fault(struct kvm_vcpu *vcpu, u64 vadr) { /* If vPSR.ic, IFA, ITIR, IHA */ set_ifa_itir_iha(vcpu, vadr, 1, 1, 1); inject_guest_interruption(vcpu, IA64_INST_TLB_VECTOR); } /* * Data Nested TLB Fault * @ Data Nested TLB Vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void nested_dtlb(struct kvm_vcpu *vcpu) { inject_guest_interruption(vcpu, IA64_DATA_NESTED_TLB_VECTOR); } /* * Alternate Data TLB Fault * @ Alternate Data TLB vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void alt_dtlb(struct kvm_vcpu *vcpu, u64 vadr) { set_ifa_itir_iha(vcpu, vadr, 1, 1, 0); inject_guest_interruption(vcpu, IA64_ALT_DATA_TLB_VECTOR); } /* * Data TLB Fault * @ Data TLB vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void alt_itlb(struct kvm_vcpu *vcpu, u64 vadr) { set_ifa_itir_iha(vcpu, vadr, 1, 1, 0); inject_guest_interruption(vcpu, IA64_ALT_INST_TLB_VECTOR); } /* Deal with: * VHPT Translation Vector */ static void _vhpt_fault(struct kvm_vcpu *vcpu, u64 vadr) { /* If vPSR.ic, IFA, ITIR, IHA*/ set_ifa_itir_iha(vcpu, vadr, 1, 1, 1); inject_guest_interruption(vcpu, IA64_VHPT_TRANS_VECTOR); } /* * VHPT Instruction Fault * @ VHPT Translation vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void ivhpt_fault(struct kvm_vcpu *vcpu, u64 vadr) { _vhpt_fault(vcpu, vadr); } /* * VHPT Data Fault * @ VHPT Translation vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void dvhpt_fault(struct kvm_vcpu *vcpu, u64 vadr) { _vhpt_fault(vcpu, vadr); } /* * Deal with: * General Exception vector */ void _general_exception(struct kvm_vcpu *vcpu) { inject_guest_interruption(vcpu, IA64_GENEX_VECTOR); } /* * Illegal Operation Fault * @ General Exception Vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void illegal_op(struct kvm_vcpu *vcpu) { _general_exception(vcpu); } /* * Illegal Dependency Fault * @ General Exception Vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void illegal_dep(struct kvm_vcpu *vcpu) { _general_exception(vcpu); } /* * Reserved Register/Field Fault * @ General Exception Vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void rsv_reg_field(struct kvm_vcpu *vcpu) { _general_exception(vcpu); } /* * Privileged Operation Fault * @ General Exception Vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void privilege_op(struct kvm_vcpu *vcpu) { _general_exception(vcpu); } /* * Unimplement Data Address Fault * @ General Exception Vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void unimpl_daddr(struct kvm_vcpu *vcpu) { _general_exception(vcpu); } /* * Privileged Register Fault * @ General Exception Vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void privilege_reg(struct kvm_vcpu *vcpu) { _general_exception(vcpu); } /* Deal with * Nat consumption vector * Parameter: * vaddr: Optional, if t == REGISTER */ static void _nat_consumption_fault(struct kvm_vcpu *vcpu, u64 vadr, enum tlb_miss_type t) { /* If vPSR.ic && t == DATA/INST, IFA */ if (t == DATA || t == INSTRUCTION) { /* IFA */ set_ifa_itir_iha(vcpu, vadr, 1, 0, 0); } inject_guest_interruption(vcpu, IA64_NAT_CONSUMPTION_VECTOR); } /* * Instruction Nat Page Consumption Fault * @ Nat Consumption Vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void inat_page_consumption(struct kvm_vcpu *vcpu, u64 vadr) { _nat_consumption_fault(vcpu, vadr, INSTRUCTION); } /* * Register Nat Consumption Fault * @ Nat Consumption Vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void rnat_consumption(struct kvm_vcpu *vcpu) { _nat_consumption_fault(vcpu, 0, REGISTER); } /* * Data Nat Page Consumption Fault * @ Nat Consumption Vector * Refer to SDM Vol2 Table 5-6 & 8-1 */ void dnat_page_consumption(struct kvm_vcpu *vcpu, u64 vadr) { _nat_consumption_fault(vcpu, vadr, DATA); } /* Deal with * Page not present vector */ static void __page_not_present(struct kvm_vcpu *vcpu, u64 vadr) { /* If vPSR.ic, IFA, ITIR */ set_ifa_itir_iha(vcpu, vadr, 1, 1, 0); inject_guest_interruption(vcpu, IA64_PAGE_NOT_PRESENT_VECTOR); } void data_page_not_present(struct kvm_vcpu *vcpu, u64 vadr) { __page_not_present(vcpu, vadr); } void inst_page_not_present(struct kvm_vcpu *vcpu, u64 vadr) { __page_not_present(vcpu, vadr); } /* Deal with * Data access rights vector */ void data_access_rights(struct kvm_vcpu *vcpu, u64 vadr) { /* If vPSR.ic, IFA, ITIR */ set_ifa_itir_iha(vcpu, vadr, 1, 1, 0); inject_guest_interruption(vcpu, IA64_DATA_ACCESS_RIGHTS_VECTOR); } fpswa_ret_t vmm_fp_emulate(int fp_fault, void *bundle, unsigned long *ipsr, unsigned long *fpsr, unsigned long *isr, unsigned long *pr, unsigned long *ifs, struct kvm_pt_regs *regs) { fp_state_t fp_state; fpswa_ret_t ret; struct kvm_vcpu *vcpu = current_vcpu; uint64_t old_rr7 = ia64_get_rr(7UL<<61); if (!vmm_fpswa_interface) return (fpswa_ret_t) {-1, 0, 0, 0}; memset(&fp_state, 0, sizeof(fp_state_t)); /* * compute fp_state. only FP registers f6 - f11 are used by the * vmm, so set those bits in the mask and set the low volatile * pointer to point to these registers. */ fp_state.bitmask_low64 = 0xfc0; /* bit6..bit11 */ fp_state.fp_state_low_volatile = (fp_state_low_volatile_t *) ®s->f6; /* * unsigned long (*EFI_FPSWA) ( * unsigned long trap_type, * void *Bundle, * unsigned long *pipsr, * unsigned long *pfsr, * unsigned long *pisr, * unsigned long *ppreds, * unsigned long *pifs, * void *fp_state); */ /*Call host fpswa interface directly to virtualize *guest fpswa request! */ ia64_set_rr(7UL << 61, vcpu->arch.host.rr[7]); ia64_srlz_d(); ret = (*vmm_fpswa_interface->fpswa) (fp_fault, bundle, ipsr, fpsr, isr, pr, ifs, &fp_state); ia64_set_rr(7UL << 61, old_rr7); ia64_srlz_d(); return ret; } /* * Handle floating-point assist faults and traps for domain. */ unsigned long vmm_handle_fpu_swa(int fp_fault, struct kvm_pt_regs *regs, unsigned long isr) { struct kvm_vcpu *v = current_vcpu; IA64_BUNDLE bundle; unsigned long fault_ip; fpswa_ret_t ret; fault_ip = regs->cr_iip; /* * When the FP trap occurs, the trapping instruction is completed. * If ipsr.ri == 0, there is the trapping instruction in previous * bundle. */ if (!fp_fault && (ia64_psr(regs)->ri == 0)) fault_ip -= 16; if (fetch_code(v, fault_ip, &bundle)) return -EAGAIN; if (!bundle.i64[0] && !bundle.i64[1]) return -EACCES; ret = vmm_fp_emulate(fp_fault, &bundle, ®s->cr_ipsr, ®s->ar_fpsr, &isr, ®s->pr, ®s->cr_ifs, regs); return ret.status; } void reflect_interruption(u64 ifa, u64 isr, u64 iim, u64 vec, struct kvm_pt_regs *regs) { u64 vector; int status ; struct kvm_vcpu *vcpu = current_vcpu; u64 vpsr = VCPU(vcpu, vpsr); vector = vec2off[vec]; if (!(vpsr & IA64_PSR_IC) && (vector != IA64_DATA_NESTED_TLB_VECTOR)) { panic_vm(vcpu, "Interruption with vector :0x%lx occurs " "with psr.ic = 0\n", vector); return; } switch (vec) { case 32: /*IA64_FP_FAULT_VECTOR*/ status = vmm_handle_fpu_swa(1, regs, isr); if (!status) { vcpu_increment_iip(vcpu); return; } else if (-EAGAIN == status) return; break; case 33: /*IA64_FP_TRAP_VECTOR*/ status = vmm_handle_fpu_swa(0, regs, isr); if (!status) return ; break; } VCPU(vcpu, isr) = isr; VCPU(vcpu, iipa) = regs->cr_iip; if (vector == IA64_BREAK_VECTOR || vector == IA64_SPECULATION_VECTOR) VCPU(vcpu, iim) = iim; else set_ifa_itir_iha(vcpu, ifa, 1, 1, 1); inject_guest_interruption(vcpu, vector); } static unsigned long kvm_trans_pal_call_args(struct kvm_vcpu *vcpu, unsigned long arg) { struct thash_data *data; unsigned long gpa, poff; if (!is_physical_mode(vcpu)) { /* Depends on caller to provide the DTR or DTC mapping.*/ data = vtlb_lookup(vcpu, arg, D_TLB); if (data) gpa = data->page_flags & _PAGE_PPN_MASK; else { data = vhpt_lookup(arg); if (!data) return 0; gpa = data->gpaddr & _PAGE_PPN_MASK; } poff = arg & (PSIZE(data->ps) - 1); arg = PAGEALIGN(gpa, data->ps) | poff; } arg = kvm_gpa_to_mpa(arg << 1 >> 1); return (unsigned long)__va(arg); } static void set_pal_call_data(struct kvm_vcpu *vcpu) { struct exit_ctl_data *p = &vcpu->arch.exit_data; unsigned long gr28 = vcpu_get_gr(vcpu, 28); unsigned long gr29 = vcpu_get_gr(vcpu, 29); unsigned long gr30 = vcpu_get_gr(vcpu, 30); /*FIXME:For static and stacked convention, firmware * has put the parameters in gr28-gr31 before * break to vmm !!*/ switch (gr28) { case PAL_PERF_MON_INFO: case PAL_HALT_INFO: p->u.pal_data.gr29 = kvm_trans_pal_call_args(vcpu, gr29); p->u.pal_data.gr30 = vcpu_get_gr(vcpu, 30); break; case PAL_BRAND_INFO: p->u.pal_data.gr29 = gr29;; p->u.pal_data.gr30 = kvm_trans_pal_call_args(vcpu, gr30); break; default: p->u.pal_data.gr29 = gr29;; p->u.pal_data.gr30 = vcpu_get_gr(vcpu, 30); } p->u.pal_data.gr28 = gr28; p->u.pal_data.gr31 = vcpu_get_gr(vcpu, 31); p->exit_reason = EXIT_REASON_PAL_CALL; } static void get_pal_call_result(struct kvm_vcpu *vcpu) { struct exit_ctl_data *p = &vcpu->arch.exit_data; if (p->exit_reason == EXIT_REASON_PAL_CALL) { vcpu_set_gr(vcpu, 8, p->u.pal_data.ret.status, 0); vcpu_set_gr(vcpu, 9, p->u.pal_data.ret.v0, 0); vcpu_set_gr(vcpu, 10, p->u.pal_data.ret.v1, 0); vcpu_set_gr(vcpu, 11, p->u.pal_data.ret.v2, 0); } else panic_vm(vcpu, "Mis-set for exit reason!\n"); } static void set_sal_call_data(struct kvm_vcpu *vcpu) { struct exit_ctl_data *p = &vcpu->arch.exit_data; p->u.sal_data.in0 = vcpu_get_gr(vcpu, 32); p->u.sal_data.in1 = vcpu_get_gr(vcpu, 33); p->u.sal_data.in2 = vcpu_get_gr(vcpu, 34); p->u.sal_data.in3 = vcpu_get_gr(vcpu, 35); p->u.sal_data.in4 = vcpu_get_gr(vcpu, 36); p->u.sal_data.in5 = vcpu_get_gr(vcpu, 37); p->u.sal_data.in6 = vcpu_get_gr(vcpu, 38); p->u.sal_data.in7 = vcpu_get_gr(vcpu, 39); p->exit_reason = EXIT_REASON_SAL_CALL; } static void get_sal_call_result(struct kvm_vcpu *vcpu) { struct exit_ctl_data *p = &vcpu->arch.exit_data; if (p->exit_reason == EXIT_REASON_SAL_CALL) { vcpu_set_gr(vcpu, 8, p->u.sal_data.ret.r8, 0); vcpu_set_gr(vcpu, 9, p->u.sal_data.ret.r9, 0); vcpu_set_gr(vcpu, 10, p->u.sal_data.ret.r10, 0); vcpu_set_gr(vcpu, 11, p->u.sal_data.ret.r11, 0); } else panic_vm(vcpu, "Mis-set for exit reason!\n"); } void kvm_ia64_handle_break(unsigned long ifa, struct kvm_pt_regs *regs, unsigned long isr, unsigned long iim) { struct kvm_vcpu *v = current_vcpu; if (ia64_psr(regs)->cpl == 0) { /* Allow hypercalls only when cpl = 0. */ if (iim == DOMN_PAL_REQUEST) { set_pal_call_data(v); vmm_transition(v); get_pal_call_result(v); vcpu_increment_iip(v); return; } else if (iim == DOMN_SAL_REQUEST) { set_sal_call_data(v); vmm_transition(v); get_sal_call_result(v); vcpu_increment_iip(v); return; } } reflect_interruption(ifa, isr, iim, 11, regs); } void check_pending_irq(struct kvm_vcpu *vcpu) { int mask, h_pending, h_inservice; u64 isr; unsigned long vpsr; struct kvm_pt_regs *regs = vcpu_regs(vcpu); h_pending = highest_pending_irq(vcpu); if (h_pending == NULL_VECTOR) { update_vhpi(vcpu, NULL_VECTOR); return; } h_inservice = highest_inservice_irq(vcpu); vpsr = VCPU(vcpu, vpsr); mask = irq_masked(vcpu, h_pending, h_inservice); if ((vpsr & IA64_PSR_I) && IRQ_NO_MASKED == mask) { isr = vpsr & IA64_PSR_RI; update_vhpi(vcpu, h_pending); reflect_interruption(0, isr, 0, 12, regs); /* EXT IRQ */ } else if (mask == IRQ_MASKED_BY_INSVC) { if (VCPU(vcpu, vhpi)) update_vhpi(vcpu, NULL_VECTOR); } else { /* masked by vpsr.i or vtpr.*/ update_vhpi(vcpu, h_pending); } } static void generate_exirq(struct kvm_vcpu *vcpu) { unsigned vpsr; uint64_t isr; struct kvm_pt_regs *regs = vcpu_regs(vcpu); vpsr = VCPU(vcpu, vpsr); isr = vpsr & IA64_PSR_RI; if (!(vpsr & IA64_PSR_IC)) panic_vm(vcpu, "Trying to inject one IRQ with psr.ic=0\n"); reflect_interruption(0, isr, 0, 12, regs); /* EXT IRQ */ } void vhpi_detection(struct kvm_vcpu *vcpu) { uint64_t threshold, vhpi; union ia64_tpr vtpr; struct ia64_psr vpsr; vpsr = *(struct ia64_psr *)&VCPU(vcpu, vpsr); vtpr.val = VCPU(vcpu, tpr); threshold = ((!vpsr.i) << 5) | (vtpr.mmi << 4) | vtpr.mic; vhpi = VCPU(vcpu, vhpi); if (vhpi > threshold) { /* interrupt actived*/ generate_exirq(vcpu); } } void leave_hypervisor_tail(void) { struct kvm_vcpu *v = current_vcpu; if (VMX(v, timer_check)) { VMX(v, timer_check) = 0; if (VMX(v, itc_check)) { if (vcpu_get_itc(v) > VCPU(v, itm)) { if (!(VCPU(v, itv) & (1 << 16))) { vcpu_pend_interrupt(v, VCPU(v, itv) & 0xff); VMX(v, itc_check) = 0; } else { v->arch.timer_pending = 1; } VMX(v, last_itc) = VCPU(v, itm) + 1; } } } rmb(); if (v->arch.irq_new_pending) { v->arch.irq_new_pending = 0; VMX(v, irq_check) = 0; check_pending_irq(v); return; } if (VMX(v, irq_check)) { VMX(v, irq_check) = 0; vhpi_detection(v); } } static inline void handle_lds(struct kvm_pt_regs *regs) { regs->cr_ipsr |= IA64_PSR_ED; } void physical_tlb_miss(struct kvm_vcpu *vcpu, unsigned long vadr, int type) { unsigned long pte; union ia64_rr rr; rr.val = ia64_get_rr(vadr); pte = vadr & _PAGE_PPN_MASK; pte = pte | PHY_PAGE_WB; thash_vhpt_insert(vcpu, pte, (u64)(rr.ps << 2), vadr, type); return; } void kvm_page_fault(u64 vadr , u64 vec, struct kvm_pt_regs *regs) { unsigned long vpsr; int type; u64 vhpt_adr, gppa, pteval, rr, itir; union ia64_isr misr; union ia64_pta vpta; struct thash_data *data; struct kvm_vcpu *v = current_vcpu; vpsr = VCPU(v, vpsr); misr.val = VMX(v, cr_isr); type = vec; if (is_physical_mode(v) && (!(vadr << 1 >> 62))) { if (vec == 2) { if (__gpfn_is_io((vadr << 1) >> (PAGE_SHIFT + 1))) { emulate_io_inst(v, ((vadr << 1) >> 1), 4); return; } } physical_tlb_miss(v, vadr, type); return; } data = vtlb_lookup(v, vadr, type); if (data != 0) { if (type == D_TLB) { gppa = (vadr & ((1UL << data->ps) - 1)) + (data->ppn >> (data->ps - 12) << data->ps); if (__gpfn_is_io(gppa >> PAGE_SHIFT)) { if (data->pl >= ((regs->cr_ipsr >> IA64_PSR_CPL0_BIT) & 3)) emulate_io_inst(v, gppa, data->ma); else { vcpu_set_isr(v, misr.val); data_access_rights(v, vadr); } return ; } } thash_vhpt_insert(v, data->page_flags, data->itir, vadr, type); } else if (type == D_TLB) { if (misr.sp) { handle_lds(regs); return; } rr = vcpu_get_rr(v, vadr); itir = rr & (RR_RID_MASK | RR_PS_MASK); if (!vhpt_enabled(v, vadr, misr.rs ? RSE_REF : DATA_REF)) { if (vpsr & IA64_PSR_IC) { vcpu_set_isr(v, misr.val); alt_dtlb(v, vadr); } else { nested_dtlb(v); } return ; } vpta.val = vcpu_get_pta(v); /* avoid recursively walking (short format) VHPT */ vhpt_adr = vcpu_thash(v, vadr); if (!guest_vhpt_lookup(vhpt_adr, &pteval)) { /* VHPT successfully read. */ if (!(pteval & _PAGE_P)) { if (vpsr & IA64_PSR_IC) { vcpu_set_isr(v, misr.val); dtlb_fault(v, vadr); } else { nested_dtlb(v); } } else if ((pteval & _PAGE_MA_MASK) != _PAGE_MA_ST) { thash_purge_and_insert(v, pteval, itir, vadr, D_TLB); } else if (vpsr & IA64_PSR_IC) { vcpu_set_isr(v, misr.val); dtlb_fault(v, vadr); } else { nested_dtlb(v); } } else { /* Can't read VHPT. */ if (vpsr & IA64_PSR_IC) { vcpu_set_isr(v, misr.val); dvhpt_fault(v, vadr); } else { nested_dtlb(v); } } } else if (type == I_TLB) { if (!(vpsr & IA64_PSR_IC)) misr.ni = 1; if (!vhpt_enabled(v, vadr, INST_REF)) { vcpu_set_isr(v, misr.val); alt_itlb(v, vadr); return; } vpta.val = vcpu_get_pta(v); vhpt_adr = vcpu_thash(v, vadr); if (!guest_vhpt_lookup(vhpt_adr, &pteval)) { /* VHPT successfully read. */ if (pteval & _PAGE_P) { if ((pteval & _PAGE_MA_MASK) == _PAGE_MA_ST) { vcpu_set_isr(v, misr.val); itlb_fault(v, vadr); return ; } rr = vcpu_get_rr(v, vadr); itir = rr & (RR_RID_MASK | RR_PS_MASK); thash_purge_and_insert(v, pteval, itir, vadr, I_TLB); } else { vcpu_set_isr(v, misr.val); inst_page_not_present(v, vadr); } } else { vcpu_set_isr(v, misr.val); ivhpt_fault(v, vadr); } } } void kvm_vexirq(struct kvm_vcpu *vcpu) { u64 vpsr, isr; struct kvm_pt_regs *regs; regs = vcpu_regs(vcpu); vpsr = VCPU(vcpu, vpsr); isr = vpsr & IA64_PSR_RI; reflect_interruption(0, isr, 0, 12, regs); /*EXT IRQ*/ } void kvm_ia64_handle_irq(struct kvm_vcpu *v) { struct exit_ctl_data *p = &v->arch.exit_data; long psr; local_irq_save(psr); p->exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT; vmm_transition(v); local_irq_restore(psr); VMX(v, timer_check) = 1; } static void ptc_ga_remote_func(struct kvm_vcpu *v, int pos) { u64 oldrid, moldrid, oldpsbits, vaddr; struct kvm_ptc_g *p = &v->arch.ptc_g_data[pos]; vaddr = p->vaddr; oldrid = VMX(v, vrr[0]); VMX(v, vrr[0]) = p->rr; oldpsbits = VMX(v, psbits[0]); VMX(v, psbits[0]) = VMX(v, psbits[REGION_NUMBER(vaddr)]); moldrid = ia64_get_rr(0x0); ia64_set_rr(0x0, vrrtomrr(p->rr)); ia64_srlz_d(); vaddr = PAGEALIGN(vaddr, p->ps); thash_purge_entries_remote(v, vaddr, p->ps); VMX(v, vrr[0]) = oldrid; VMX(v, psbits[0]) = oldpsbits; ia64_set_rr(0x0, moldrid); ia64_dv_serialize_data(); } static void vcpu_do_resume(struct kvm_vcpu *vcpu) { /*Re-init VHPT and VTLB once from resume*/ vcpu->arch.vhpt.num = VHPT_NUM_ENTRIES; thash_init(&vcpu->arch.vhpt, VHPT_SHIFT); vcpu->arch.vtlb.num = VTLB_NUM_ENTRIES; thash_init(&vcpu->arch.vtlb, VTLB_SHIFT); ia64_set_pta(vcpu->arch.vhpt.pta.val); } static void vmm_sanity_check(struct kvm_vcpu *vcpu) { struct exit_ctl_data *p = &vcpu->arch.exit_data; if (!vmm_sanity && p->exit_reason != EXIT_REASON_DEBUG) { panic_vm(vcpu, "Failed to do vmm sanity check," "it maybe caused by crashed vmm!!\n\n"); } } static void kvm_do_resume_op(struct kvm_vcpu *vcpu) { vmm_sanity_check(vcpu); /*Guarantee vcpu runing on healthy vmm!*/ if (test_and_clear_bit(KVM_REQ_RESUME, &vcpu->requests)) { vcpu_do_resume(vcpu); return; } if (unlikely(test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))) { thash_purge_all(vcpu); return; } if (test_and_clear_bit(KVM_REQ_PTC_G, &vcpu->requests)) { while (vcpu->arch.ptc_g_count > 0) ptc_ga_remote_func(vcpu, --vcpu->arch.ptc_g_count); } } void vmm_transition(struct kvm_vcpu *vcpu) { ia64_call_vsa(PAL_VPS_SAVE, (unsigned long)vcpu->arch.vpd, 1, 0, 0, 0, 0, 0); vmm_trampoline(&vcpu->arch.guest, &vcpu->arch.host); ia64_call_vsa(PAL_VPS_RESTORE, (unsigned long)vcpu->arch.vpd, 1, 0, 0, 0, 0, 0); kvm_do_resume_op(vcpu); } void vmm_panic_handler(u64 vec) { struct kvm_vcpu *vcpu = current_vcpu; vmm_sanity = 0; panic_vm(vcpu, "Unexpected interruption occurs in VMM, vector:0x%lx\n", vec2off[vec]); }