/* * linux/arch/m68k/kernel/traps.c * * Copyright (C) 1993, 1994 by Hamish Macdonald * * 68040 fixes by Michael Rausch * 68040 fixes by Martin Apel * 68040 fixes and writeback by Richard Zidlicky * 68060 fixes by Roman Hodek * 68060 fixes by Jesper Skov * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. */ /* * Sets up all exception vectors */ #include <linux/sched.h> #include <linux/signal.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/user.h> #include <linux/string.h> #include <linux/linkage.h> #include <linux/init.h> #include <linux/ptrace.h> #include <linux/kallsyms.h> #include <asm/setup.h> #include <asm/fpu.h> #include <asm/system.h> #include <asm/uaccess.h> #include <asm/traps.h> #include <asm/pgalloc.h> #include <asm/machdep.h> #include <asm/siginfo.h> /* assembler routines */ asmlinkage void system_call(void); asmlinkage void buserr(void); asmlinkage void trap(void); asmlinkage void nmihandler(void); #ifdef CONFIG_M68KFPU_EMU asmlinkage void fpu_emu(void); #endif e_vector vectors[256] = { [VEC_BUSERR] = buserr, [VEC_SYS] = system_call, }; /* nmi handler for the Amiga */ asm(".text\n" __ALIGN_STR "\n" "nmihandler: rte"); /* * this must be called very early as the kernel might * use some instruction that are emulated on the 060 */ void __init base_trap_init(void) { if(MACH_IS_SUN3X) { extern e_vector *sun3x_prom_vbr; __asm__ volatile ("movec %%vbr, %0" : "=r" (sun3x_prom_vbr)); } /* setup the exception vector table */ __asm__ volatile ("movec %0,%%vbr" : : "r" ((void*)vectors)); if (CPU_IS_060) { /* set up ISP entry points */ asmlinkage void unimp_vec(void) asm ("_060_isp_unimp"); vectors[VEC_UNIMPII] = unimp_vec; } } void __init trap_init (void) { int i; for (i = VEC_SPUR; i <= VEC_INT7; i++) vectors[i] = bad_inthandler; for (i = 0; i < VEC_USER; i++) if (!vectors[i]) vectors[i] = trap; for (i = VEC_USER; i < 256; i++) vectors[i] = bad_inthandler; #ifdef CONFIG_M68KFPU_EMU if (FPU_IS_EMU) vectors[VEC_LINE11] = fpu_emu; #endif if (CPU_IS_040 && !FPU_IS_EMU) { /* set up FPSP entry points */ asmlinkage void dz_vec(void) asm ("dz"); asmlinkage void inex_vec(void) asm ("inex"); asmlinkage void ovfl_vec(void) asm ("ovfl"); asmlinkage void unfl_vec(void) asm ("unfl"); asmlinkage void snan_vec(void) asm ("snan"); asmlinkage void operr_vec(void) asm ("operr"); asmlinkage void bsun_vec(void) asm ("bsun"); asmlinkage void fline_vec(void) asm ("fline"); asmlinkage void unsupp_vec(void) asm ("unsupp"); vectors[VEC_FPDIVZ] = dz_vec; vectors[VEC_FPIR] = inex_vec; vectors[VEC_FPOVER] = ovfl_vec; vectors[VEC_FPUNDER] = unfl_vec; vectors[VEC_FPNAN] = snan_vec; vectors[VEC_FPOE] = operr_vec; vectors[VEC_FPBRUC] = bsun_vec; vectors[VEC_LINE11] = fline_vec; vectors[VEC_FPUNSUP] = unsupp_vec; } if (CPU_IS_060 && !FPU_IS_EMU) { /* set up IFPSP entry points */ asmlinkage void snan_vec6(void) asm ("_060_fpsp_snan"); asmlinkage void operr_vec6(void) asm ("_060_fpsp_operr"); asmlinkage void ovfl_vec6(void) asm ("_060_fpsp_ovfl"); asmlinkage void unfl_vec6(void) asm ("_060_fpsp_unfl"); asmlinkage void dz_vec6(void) asm ("_060_fpsp_dz"); asmlinkage void inex_vec6(void) asm ("_060_fpsp_inex"); asmlinkage void fline_vec6(void) asm ("_060_fpsp_fline"); asmlinkage void unsupp_vec6(void) asm ("_060_fpsp_unsupp"); asmlinkage void effadd_vec6(void) asm ("_060_fpsp_effadd"); vectors[VEC_FPNAN] = snan_vec6; vectors[VEC_FPOE] = operr_vec6; vectors[VEC_FPOVER] = ovfl_vec6; vectors[VEC_FPUNDER] = unfl_vec6; vectors[VEC_FPDIVZ] = dz_vec6; vectors[VEC_FPIR] = inex_vec6; vectors[VEC_LINE11] = fline_vec6; vectors[VEC_FPUNSUP] = unsupp_vec6; vectors[VEC_UNIMPEA] = effadd_vec6; } /* if running on an amiga, make the NMI interrupt do nothing */ if (MACH_IS_AMIGA) { vectors[VEC_INT7] = nmihandler; } } static const char *vec_names[] = { [VEC_RESETSP] = "RESET SP", [VEC_RESETPC] = "RESET PC", [VEC_BUSERR] = "BUS ERROR", [VEC_ADDRERR] = "ADDRESS ERROR", [VEC_ILLEGAL] = "ILLEGAL INSTRUCTION", [VEC_ZERODIV] = "ZERO DIVIDE", [VEC_CHK] = "CHK", [VEC_TRAP] = "TRAPcc", [VEC_PRIV] = "PRIVILEGE VIOLATION", [VEC_TRACE] = "TRACE", [VEC_LINE10] = "LINE 1010", [VEC_LINE11] = "LINE 1111", [VEC_RESV12] = "UNASSIGNED RESERVED 12", [VEC_COPROC] = "COPROCESSOR PROTOCOL VIOLATION", [VEC_FORMAT] = "FORMAT ERROR", [VEC_UNINT] = "UNINITIALIZED INTERRUPT", [VEC_RESV16] = "UNASSIGNED RESERVED 16", [VEC_RESV17] = "UNASSIGNED RESERVED 17", [VEC_RESV18] = "UNASSIGNED RESERVED 18", [VEC_RESV19] = "UNASSIGNED RESERVED 19", [VEC_RESV20] = "UNASSIGNED RESERVED 20", [VEC_RESV21] = "UNASSIGNED RESERVED 21", [VEC_RESV22] = "UNASSIGNED RESERVED 22", [VEC_RESV23] = "UNASSIGNED RESERVED 23", [VEC_SPUR] = "SPURIOUS INTERRUPT", [VEC_INT1] = "LEVEL 1 INT", [VEC_INT2] = "LEVEL 2 INT", [VEC_INT3] = "LEVEL 3 INT", [VEC_INT4] = "LEVEL 4 INT", [VEC_INT5] = "LEVEL 5 INT", [VEC_INT6] = "LEVEL 6 INT", [VEC_INT7] = "LEVEL 7 INT", [VEC_SYS] = "SYSCALL", [VEC_TRAP1] = "TRAP #1", [VEC_TRAP2] = "TRAP #2", [VEC_TRAP3] = "TRAP #3", [VEC_TRAP4] = "TRAP #4", [VEC_TRAP5] = "TRAP #5", [VEC_TRAP6] = "TRAP #6", [VEC_TRAP7] = "TRAP #7", [VEC_TRAP8] = "TRAP #8", [VEC_TRAP9] = "TRAP #9", [VEC_TRAP10] = "TRAP #10", [VEC_TRAP11] = "TRAP #11", [VEC_TRAP12] = "TRAP #12", [VEC_TRAP13] = "TRAP #13", [VEC_TRAP14] = "TRAP #14", [VEC_TRAP15] = "TRAP #15", [VEC_FPBRUC] = "FPCP BSUN", [VEC_FPIR] = "FPCP INEXACT", [VEC_FPDIVZ] = "FPCP DIV BY 0", [VEC_FPUNDER] = "FPCP UNDERFLOW", [VEC_FPOE] = "FPCP OPERAND ERROR", [VEC_FPOVER] = "FPCP OVERFLOW", [VEC_FPNAN] = "FPCP SNAN", [VEC_FPUNSUP] = "FPCP UNSUPPORTED OPERATION", [VEC_MMUCFG] = "MMU CONFIGURATION ERROR", [VEC_MMUILL] = "MMU ILLEGAL OPERATION ERROR", [VEC_MMUACC] = "MMU ACCESS LEVEL VIOLATION ERROR", [VEC_RESV59] = "UNASSIGNED RESERVED 59", [VEC_UNIMPEA] = "UNASSIGNED RESERVED 60", [VEC_UNIMPII] = "UNASSIGNED RESERVED 61", [VEC_RESV62] = "UNASSIGNED RESERVED 62", [VEC_RESV63] = "UNASSIGNED RESERVED 63", }; static const char *space_names[] = { [0] = "Space 0", [USER_DATA] = "User Data", [USER_PROGRAM] = "User Program", #ifndef CONFIG_SUN3 [3] = "Space 3", #else [FC_CONTROL] = "Control", #endif [4] = "Space 4", [SUPER_DATA] = "Super Data", [SUPER_PROGRAM] = "Super Program", [CPU_SPACE] = "CPU" }; void die_if_kernel(char *,struct pt_regs *,int); asmlinkage int do_page_fault(struct pt_regs *regs, unsigned long address, unsigned long error_code); int send_fault_sig(struct pt_regs *regs); asmlinkage void trap_c(struct frame *fp); #if defined (CONFIG_M68060) static inline void access_error060 (struct frame *fp) { unsigned long fslw = fp->un.fmt4.pc; /* is really FSLW for access error */ #ifdef DEBUG printk("fslw=%#lx, fa=%#lx\n", fslw, fp->un.fmt4.effaddr); #endif if (fslw & MMU060_BPE) { /* branch prediction error -> clear branch cache */ __asm__ __volatile__ ("movec %/cacr,%/d0\n\t" "orl #0x00400000,%/d0\n\t" "movec %/d0,%/cacr" : : : "d0" ); /* return if there's no other error */ if (!(fslw & MMU060_ERR_BITS) && !(fslw & MMU060_SEE)) return; } if (fslw & (MMU060_DESC_ERR | MMU060_WP | MMU060_SP)) { unsigned long errorcode; unsigned long addr = fp->un.fmt4.effaddr; if (fslw & MMU060_MA) addr = (addr + PAGE_SIZE - 1) & PAGE_MASK; errorcode = 1; if (fslw & MMU060_DESC_ERR) { __flush_tlb040_one(addr); errorcode = 0; } if (fslw & MMU060_W) errorcode |= 2; #ifdef DEBUG printk("errorcode = %d\n", errorcode ); #endif do_page_fault(&fp->ptregs, addr, errorcode); } else if (fslw & (MMU060_SEE)){ /* Software Emulation Error. * fault during mem_read/mem_write in ifpsp060/os.S */ send_fault_sig(&fp->ptregs); } else if (!(fslw & (MMU060_RE|MMU060_WE)) || send_fault_sig(&fp->ptregs) > 0) { printk("pc=%#lx, fa=%#lx\n", fp->ptregs.pc, fp->un.fmt4.effaddr); printk( "68060 access error, fslw=%lx\n", fslw ); trap_c( fp ); } } #endif /* CONFIG_M68060 */ #if defined (CONFIG_M68040) static inline unsigned long probe040(int iswrite, unsigned long addr, int wbs) { unsigned long mmusr; mm_segment_t old_fs = get_fs(); set_fs(MAKE_MM_SEG(wbs)); if (iswrite) asm volatile (".chip 68040; ptestw (%0); .chip 68k" : : "a" (addr)); else asm volatile (".chip 68040; ptestr (%0); .chip 68k" : : "a" (addr)); asm volatile (".chip 68040; movec %%mmusr,%0; .chip 68k" : "=r" (mmusr)); set_fs(old_fs); return mmusr; } static inline int do_040writeback1(unsigned short wbs, unsigned long wba, unsigned long wbd) { int res = 0; mm_segment_t old_fs = get_fs(); /* set_fs can not be moved, otherwise put_user() may oops */ set_fs(MAKE_MM_SEG(wbs)); switch (wbs & WBSIZ_040) { case BA_SIZE_BYTE: res = put_user(wbd & 0xff, (char __user *)wba); break; case BA_SIZE_WORD: res = put_user(wbd & 0xffff, (short __user *)wba); break; case BA_SIZE_LONG: res = put_user(wbd, (int __user *)wba); break; } /* set_fs can not be moved, otherwise put_user() may oops */ set_fs(old_fs); #ifdef DEBUG printk("do_040writeback1, res=%d\n",res); #endif return res; } /* after an exception in a writeback the stack frame corresponding * to that exception is discarded, set a few bits in the old frame * to simulate what it should look like */ static inline void fix_xframe040(struct frame *fp, unsigned long wba, unsigned short wbs) { fp->un.fmt7.faddr = wba; fp->un.fmt7.ssw = wbs & 0xff; if (wba != current->thread.faddr) fp->un.fmt7.ssw |= MA_040; } static inline void do_040writebacks(struct frame *fp) { int res = 0; #if 0 if (fp->un.fmt7.wb1s & WBV_040) printk("access_error040: cannot handle 1st writeback. oops.\n"); #endif if ((fp->un.fmt7.wb2s & WBV_040) && !(fp->un.fmt7.wb2s & WBTT_040)) { res = do_040writeback1(fp->un.fmt7.wb2s, fp->un.fmt7.wb2a, fp->un.fmt7.wb2d); if (res) fix_xframe040(fp, fp->un.fmt7.wb2a, fp->un.fmt7.wb2s); else fp->un.fmt7.wb2s = 0; } /* do the 2nd wb only if the first one was successful (except for a kernel wb) */ if (fp->un.fmt7.wb3s & WBV_040 && (!res || fp->un.fmt7.wb3s & 4)) { res = do_040writeback1(fp->un.fmt7.wb3s, fp->un.fmt7.wb3a, fp->un.fmt7.wb3d); if (res) { fix_xframe040(fp, fp->un.fmt7.wb3a, fp->un.fmt7.wb3s); fp->un.fmt7.wb2s = fp->un.fmt7.wb3s; fp->un.fmt7.wb3s &= (~WBV_040); fp->un.fmt7.wb2a = fp->un.fmt7.wb3a; fp->un.fmt7.wb2d = fp->un.fmt7.wb3d; } else fp->un.fmt7.wb3s = 0; } if (res) send_fault_sig(&fp->ptregs); } /* * called from sigreturn(), must ensure userspace code didn't * manipulate exception frame to circumvent protection, then complete * pending writebacks * we just clear TM2 to turn it into an userspace access */ asmlinkage void berr_040cleanup(struct frame *fp) { fp->un.fmt7.wb2s &= ~4; fp->un.fmt7.wb3s &= ~4; do_040writebacks(fp); } static inline void access_error040(struct frame *fp) { unsigned short ssw = fp->un.fmt7.ssw; unsigned long mmusr; #ifdef DEBUG printk("ssw=%#x, fa=%#lx\n", ssw, fp->un.fmt7.faddr); printk("wb1s=%#x, wb2s=%#x, wb3s=%#x\n", fp->un.fmt7.wb1s, fp->un.fmt7.wb2s, fp->un.fmt7.wb3s); printk ("wb2a=%lx, wb3a=%lx, wb2d=%lx, wb3d=%lx\n", fp->un.fmt7.wb2a, fp->un.fmt7.wb3a, fp->un.fmt7.wb2d, fp->un.fmt7.wb3d); #endif if (ssw & ATC_040) { unsigned long addr = fp->un.fmt7.faddr; unsigned long errorcode; /* * The MMU status has to be determined AFTER the address * has been corrected if there was a misaligned access (MA). */ if (ssw & MA_040) addr = (addr + 7) & -8; /* MMU error, get the MMUSR info for this access */ mmusr = probe040(!(ssw & RW_040), addr, ssw); #ifdef DEBUG printk("mmusr = %lx\n", mmusr); #endif errorcode = 1; if (!(mmusr & MMU_R_040)) { /* clear the invalid atc entry */ __flush_tlb040_one(addr); errorcode = 0; } /* despite what documentation seems to say, RMW * accesses have always both the LK and RW bits set */ if (!(ssw & RW_040) || (ssw & LK_040)) errorcode |= 2; if (do_page_fault(&fp->ptregs, addr, errorcode)) { #ifdef DEBUG printk("do_page_fault() !=0 \n"); #endif if (user_mode(&fp->ptregs)){ /* delay writebacks after signal delivery */ #ifdef DEBUG printk(".. was usermode - return\n"); #endif return; } /* disable writeback into user space from kernel * (if do_page_fault didn't fix the mapping, * the writeback won't do good) */ disable_wb: #ifdef DEBUG printk(".. disabling wb2\n"); #endif if (fp->un.fmt7.wb2a == fp->un.fmt7.faddr) fp->un.fmt7.wb2s &= ~WBV_040; if (fp->un.fmt7.wb3a == fp->un.fmt7.faddr) fp->un.fmt7.wb3s &= ~WBV_040; } } else { /* In case of a bus error we either kill the process or expect * the kernel to catch the fault, which then is also responsible * for cleaning up the mess. */ current->thread.signo = SIGBUS; current->thread.faddr = fp->un.fmt7.faddr; if (send_fault_sig(&fp->ptregs) >= 0) printk("68040 bus error (ssw=%x, faddr=%lx)\n", ssw, fp->un.fmt7.faddr); goto disable_wb; } do_040writebacks(fp); } #endif /* CONFIG_M68040 */ #if defined(CONFIG_SUN3) #include <asm/sun3mmu.h> extern int mmu_emu_handle_fault (unsigned long, int, int); /* sun3 version of bus_error030 */ static inline void bus_error030 (struct frame *fp) { unsigned char buserr_type = sun3_get_buserr (); unsigned long addr, errorcode; unsigned short ssw = fp->un.fmtb.ssw; extern unsigned long _sun3_map_test_start, _sun3_map_test_end; #ifdef DEBUG if (ssw & (FC | FB)) printk ("Instruction fault at %#010lx\n", ssw & FC ? fp->ptregs.format == 0xa ? fp->ptregs.pc + 2 : fp->un.fmtb.baddr - 2 : fp->ptregs.format == 0xa ? fp->ptregs.pc + 4 : fp->un.fmtb.baddr); if (ssw & DF) printk ("Data %s fault at %#010lx in %s (pc=%#lx)\n", ssw & RW ? "read" : "write", fp->un.fmtb.daddr, space_names[ssw & DFC], fp->ptregs.pc); #endif /* * Check if this page should be demand-mapped. This needs to go before * the testing for a bad kernel-space access (demand-mapping applies * to kernel accesses too). */ if ((ssw & DF) && (buserr_type & (SUN3_BUSERR_PROTERR | SUN3_BUSERR_INVALID))) { if (mmu_emu_handle_fault (fp->un.fmtb.daddr, ssw & RW, 0)) return; } /* Check for kernel-space pagefault (BAD). */ if (fp->ptregs.sr & PS_S) { /* kernel fault must be a data fault to user space */ if (! ((ssw & DF) && ((ssw & DFC) == USER_DATA))) { // try checking the kernel mappings before surrender if (mmu_emu_handle_fault (fp->un.fmtb.daddr, ssw & RW, 1)) return; /* instruction fault or kernel data fault! */ if (ssw & (FC | FB)) printk ("Instruction fault at %#010lx\n", fp->ptregs.pc); if (ssw & DF) { /* was this fault incurred testing bus mappings? */ if((fp->ptregs.pc >= (unsigned long)&_sun3_map_test_start) && (fp->ptregs.pc <= (unsigned long)&_sun3_map_test_end)) { send_fault_sig(&fp->ptregs); return; } printk ("Data %s fault at %#010lx in %s (pc=%#lx)\n", ssw & RW ? "read" : "write", fp->un.fmtb.daddr, space_names[ssw & DFC], fp->ptregs.pc); } printk ("BAD KERNEL BUSERR\n"); die_if_kernel("Oops", &fp->ptregs,0); force_sig(SIGKILL, current); return; } } else { /* user fault */ if (!(ssw & (FC | FB)) && !(ssw & DF)) /* not an instruction fault or data fault! BAD */ panic ("USER BUSERR w/o instruction or data fault"); } /* First handle the data fault, if any. */ if (ssw & DF) { addr = fp->un.fmtb.daddr; // errorcode bit 0: 0 -> no page 1 -> protection fault // errorcode bit 1: 0 -> read fault 1 -> write fault // (buserr_type & SUN3_BUSERR_PROTERR) -> protection fault // (buserr_type & SUN3_BUSERR_INVALID) -> invalid page fault if (buserr_type & SUN3_BUSERR_PROTERR) errorcode = 0x01; else if (buserr_type & SUN3_BUSERR_INVALID) errorcode = 0x00; else { #ifdef DEBUG printk ("*** unexpected busfault type=%#04x\n", buserr_type); printk ("invalid %s access at %#lx from pc %#lx\n", !(ssw & RW) ? "write" : "read", addr, fp->ptregs.pc); #endif die_if_kernel ("Oops", &fp->ptregs, buserr_type); force_sig (SIGBUS, current); return; } //todo: wtf is RM bit? --m if (!(ssw & RW) || ssw & RM) errorcode |= 0x02; /* Handle page fault. */ do_page_fault (&fp->ptregs, addr, errorcode); /* Retry the data fault now. */ return; } /* Now handle the instruction fault. */ /* Get the fault address. */ if (fp->ptregs.format == 0xA) addr = fp->ptregs.pc + 4; else addr = fp->un.fmtb.baddr; if (ssw & FC) addr -= 2; if (buserr_type & SUN3_BUSERR_INVALID) { if (!mmu_emu_handle_fault (fp->un.fmtb.daddr, 1, 0)) do_page_fault (&fp->ptregs, addr, 0); } else { #ifdef DEBUG printk ("protection fault on insn access (segv).\n"); #endif force_sig (SIGSEGV, current); } } #else #if defined(CPU_M68020_OR_M68030) static inline void bus_error030 (struct frame *fp) { volatile unsigned short temp; unsigned short mmusr; unsigned long addr, errorcode; unsigned short ssw = fp->un.fmtb.ssw; #ifdef DEBUG unsigned long desc; printk ("pid = %x ", current->pid); printk ("SSW=%#06x ", ssw); if (ssw & (FC | FB)) printk ("Instruction fault at %#010lx\n", ssw & FC ? fp->ptregs.format == 0xa ? fp->ptregs.pc + 2 : fp->un.fmtb.baddr - 2 : fp->ptregs.format == 0xa ? fp->ptregs.pc + 4 : fp->un.fmtb.baddr); if (ssw & DF) printk ("Data %s fault at %#010lx in %s (pc=%#lx)\n", ssw & RW ? "read" : "write", fp->un.fmtb.daddr, space_names[ssw & DFC], fp->ptregs.pc); #endif /* ++andreas: If a data fault and an instruction fault happen at the same time map in both pages. */ /* First handle the data fault, if any. */ if (ssw & DF) { addr = fp->un.fmtb.daddr; #ifdef DEBUG asm volatile ("ptestr %3,%2@,#7,%0\n\t" "pmove %%psr,%1@" : "=a&" (desc) : "a" (&temp), "a" (addr), "d" (ssw)); #else asm volatile ("ptestr %2,%1@,#7\n\t" "pmove %%psr,%0@" : : "a" (&temp), "a" (addr), "d" (ssw)); #endif mmusr = temp; #ifdef DEBUG printk("mmusr is %#x for addr %#lx in task %p\n", mmusr, addr, current); printk("descriptor address is %#lx, contents %#lx\n", __va(desc), *(unsigned long *)__va(desc)); #endif errorcode = (mmusr & MMU_I) ? 0 : 1; if (!(ssw & RW) || (ssw & RM)) errorcode |= 2; if (mmusr & (MMU_I | MMU_WP)) { if (ssw & 4) { printk("Data %s fault at %#010lx in %s (pc=%#lx)\n", ssw & RW ? "read" : "write", fp->un.fmtb.daddr, space_names[ssw & DFC], fp->ptregs.pc); goto buserr; } /* Don't try to do anything further if an exception was handled. */ if (do_page_fault (&fp->ptregs, addr, errorcode) < 0) return; } else if (!(mmusr & MMU_I)) { /* probably a 020 cas fault */ if (!(ssw & RM) && send_fault_sig(&fp->ptregs) > 0) printk("unexpected bus error (%#x,%#x)\n", ssw, mmusr); } else if (mmusr & (MMU_B|MMU_L|MMU_S)) { printk("invalid %s access at %#lx from pc %#lx\n", !(ssw & RW) ? "write" : "read", addr, fp->ptregs.pc); die_if_kernel("Oops",&fp->ptregs,mmusr); force_sig(SIGSEGV, current); return; } else { #if 0 static volatile long tlong; #endif printk("weird %s access at %#lx from pc %#lx (ssw is %#x)\n", !(ssw & RW) ? "write" : "read", addr, fp->ptregs.pc, ssw); asm volatile ("ptestr #1,%1@,#0\n\t" "pmove %%psr,%0@" : /* no outputs */ : "a" (&temp), "a" (addr)); mmusr = temp; printk ("level 0 mmusr is %#x\n", mmusr); #if 0 asm volatile ("pmove %%tt0,%0@" : /* no outputs */ : "a" (&tlong)); printk("tt0 is %#lx, ", tlong); asm volatile ("pmove %%tt1,%0@" : /* no outputs */ : "a" (&tlong)); printk("tt1 is %#lx\n", tlong); #endif #ifdef DEBUG printk("Unknown SIGSEGV - 1\n"); #endif die_if_kernel("Oops",&fp->ptregs,mmusr); force_sig(SIGSEGV, current); return; } /* setup an ATC entry for the access about to be retried */ if (!(ssw & RW) || (ssw & RM)) asm volatile ("ploadw %1,%0@" : /* no outputs */ : "a" (addr), "d" (ssw)); else asm volatile ("ploadr %1,%0@" : /* no outputs */ : "a" (addr), "d" (ssw)); } /* Now handle the instruction fault. */ if (!(ssw & (FC|FB))) return; if (fp->ptregs.sr & PS_S) { printk("Instruction fault at %#010lx\n", fp->ptregs.pc); buserr: printk ("BAD KERNEL BUSERR\n"); die_if_kernel("Oops",&fp->ptregs,0); force_sig(SIGKILL, current); return; } /* get the fault address */ if (fp->ptregs.format == 10) addr = fp->ptregs.pc + 4; else addr = fp->un.fmtb.baddr; if (ssw & FC) addr -= 2; if ((ssw & DF) && ((addr ^ fp->un.fmtb.daddr) & PAGE_MASK) == 0) /* Insn fault on same page as data fault. But we should still create the ATC entry. */ goto create_atc_entry; #ifdef DEBUG asm volatile ("ptestr #1,%2@,#7,%0\n\t" "pmove %%psr,%1@" : "=a&" (desc) : "a" (&temp), "a" (addr)); #else asm volatile ("ptestr #1,%1@,#7\n\t" "pmove %%psr,%0@" : : "a" (&temp), "a" (addr)); #endif mmusr = temp; #ifdef DEBUG printk ("mmusr is %#x for addr %#lx in task %p\n", mmusr, addr, current); printk ("descriptor address is %#lx, contents %#lx\n", __va(desc), *(unsigned long *)__va(desc)); #endif if (mmusr & MMU_I) do_page_fault (&fp->ptregs, addr, 0); else if (mmusr & (MMU_B|MMU_L|MMU_S)) { printk ("invalid insn access at %#lx from pc %#lx\n", addr, fp->ptregs.pc); #ifdef DEBUG printk("Unknown SIGSEGV - 2\n"); #endif die_if_kernel("Oops",&fp->ptregs,mmusr); force_sig(SIGSEGV, current); return; } create_atc_entry: /* setup an ATC entry for the access about to be retried */ asm volatile ("ploadr #2,%0@" : /* no outputs */ : "a" (addr)); } #endif /* CPU_M68020_OR_M68030 */ #endif /* !CONFIG_SUN3 */ asmlinkage void buserr_c(struct frame *fp) { /* Only set esp0 if coming from user mode */ if (user_mode(&fp->ptregs)) current->thread.esp0 = (unsigned long) fp; #ifdef DEBUG printk ("*** Bus Error *** Format is %x\n", fp->ptregs.format); #endif switch (fp->ptregs.format) { #if defined (CONFIG_M68060) case 4: /* 68060 access error */ access_error060 (fp); break; #endif #if defined (CONFIG_M68040) case 0x7: /* 68040 access error */ access_error040 (fp); break; #endif #if defined (CPU_M68020_OR_M68030) case 0xa: case 0xb: bus_error030 (fp); break; #endif default: die_if_kernel("bad frame format",&fp->ptregs,0); #ifdef DEBUG printk("Unknown SIGSEGV - 4\n"); #endif force_sig(SIGSEGV, current); } } static int kstack_depth_to_print = 48; void show_trace(unsigned long *stack) { unsigned long *endstack; unsigned long addr; int i; printk("Call Trace:"); addr = (unsigned long)stack + THREAD_SIZE - 1; endstack = (unsigned long *)(addr & -THREAD_SIZE); i = 0; while (stack + 1 <= endstack) { addr = *stack++; /* * If the address is either in the text segment of the * kernel, or in the region which contains vmalloc'ed * memory, it *may* be the address of a calling * routine; if so, print it so that someone tracing * down the cause of the crash will be able to figure * out the call path that was taken. */ if (__kernel_text_address(addr)) { #ifndef CONFIG_KALLSYMS if (i % 5 == 0) printk("\n "); #endif printk(" [<%08lx>]", addr); print_symbol(" %s\n", addr); i++; } } printk("\n"); } void show_registers(struct pt_regs *regs) { struct frame *fp = (struct frame *)regs; mm_segment_t old_fs = get_fs(); u16 c, *cp; unsigned long addr; int i; print_modules(); printk("PC: [<%08lx>]",regs->pc); print_symbol(" %s", regs->pc); printk("\nSR: %04x SP: %p a2: %08lx\n", regs->sr, regs, regs->a2); printk("d0: %08lx d1: %08lx d2: %08lx d3: %08lx\n", regs->d0, regs->d1, regs->d2, regs->d3); printk("d4: %08lx d5: %08lx a0: %08lx a1: %08lx\n", regs->d4, regs->d5, regs->a0, regs->a1); printk("Process %s (pid: %d, task=%p)\n", current->comm, task_pid_nr(current), current); addr = (unsigned long)&fp->un; printk("Frame format=%X ", regs->format); switch (regs->format) { case 0x2: printk("instr addr=%08lx\n", fp->un.fmt2.iaddr); addr += sizeof(fp->un.fmt2); break; case 0x3: printk("eff addr=%08lx\n", fp->un.fmt3.effaddr); addr += sizeof(fp->un.fmt3); break; case 0x4: printk((CPU_IS_060 ? "fault addr=%08lx fslw=%08lx\n" : "eff addr=%08lx pc=%08lx\n"), fp->un.fmt4.effaddr, fp->un.fmt4.pc); addr += sizeof(fp->un.fmt4); break; case 0x7: printk("eff addr=%08lx ssw=%04x faddr=%08lx\n", fp->un.fmt7.effaddr, fp->un.fmt7.ssw, fp->un.fmt7.faddr); printk("wb 1 stat/addr/data: %04x %08lx %08lx\n", fp->un.fmt7.wb1s, fp->un.fmt7.wb1a, fp->un.fmt7.wb1dpd0); printk("wb 2 stat/addr/data: %04x %08lx %08lx\n", fp->un.fmt7.wb2s, fp->un.fmt7.wb2a, fp->un.fmt7.wb2d); printk("wb 3 stat/addr/data: %04x %08lx %08lx\n", fp->un.fmt7.wb3s, fp->un.fmt7.wb3a, fp->un.fmt7.wb3d); printk("push data: %08lx %08lx %08lx %08lx\n", fp->un.fmt7.wb1dpd0, fp->un.fmt7.pd1, fp->un.fmt7.pd2, fp->un.fmt7.pd3); addr += sizeof(fp->un.fmt7); break; case 0x9: printk("instr addr=%08lx\n", fp->un.fmt9.iaddr); addr += sizeof(fp->un.fmt9); break; case 0xa: printk("ssw=%04x isc=%04x isb=%04x daddr=%08lx dobuf=%08lx\n", fp->un.fmta.ssw, fp->un.fmta.isc, fp->un.fmta.isb, fp->un.fmta.daddr, fp->un.fmta.dobuf); addr += sizeof(fp->un.fmta); break; case 0xb: printk("ssw=%04x isc=%04x isb=%04x daddr=%08lx dobuf=%08lx\n", fp->un.fmtb.ssw, fp->un.fmtb.isc, fp->un.fmtb.isb, fp->un.fmtb.daddr, fp->un.fmtb.dobuf); printk("baddr=%08lx dibuf=%08lx ver=%x\n", fp->un.fmtb.baddr, fp->un.fmtb.dibuf, fp->un.fmtb.ver); addr += sizeof(fp->un.fmtb); break; default: printk("\n"); } show_stack(NULL, (unsigned long *)addr); printk("Code:"); set_fs(KERNEL_DS); cp = (u16 *)regs->pc; for (i = -8; i < 16; i++) { if (get_user(c, cp + i) && i >= 0) { printk(" Bad PC value."); break; } printk(i ? " %04x" : " <%04x>", c); } set_fs(old_fs); printk ("\n"); } void show_stack(struct task_struct *task, unsigned long *stack) { unsigned long *p; unsigned long *endstack; int i; if (!stack) { if (task) stack = (unsigned long *)task->thread.esp0; else stack = (unsigned long *)&stack; } endstack = (unsigned long *)(((unsigned long)stack + THREAD_SIZE - 1) & -THREAD_SIZE); printk("Stack from %08lx:", (unsigned long)stack); p = stack; for (i = 0; i < kstack_depth_to_print; i++) { if (p + 1 > endstack) break; if (i % 8 == 0) printk("\n "); printk(" %08lx", *p++); } printk("\n"); show_trace(stack); } /* * The architecture-independent backtrace generator */ void dump_stack(void) { unsigned long stack; show_trace(&stack); } EXPORT_SYMBOL(dump_stack); void bad_super_trap (struct frame *fp) { console_verbose(); if (fp->ptregs.vector < 4 * ARRAY_SIZE(vec_names)) printk ("*** %s *** FORMAT=%X\n", vec_names[(fp->ptregs.vector) >> 2], fp->ptregs.format); else printk ("*** Exception %d *** FORMAT=%X\n", (fp->ptregs.vector) >> 2, fp->ptregs.format); if (fp->ptregs.vector >> 2 == VEC_ADDRERR && CPU_IS_020_OR_030) { unsigned short ssw = fp->un.fmtb.ssw; printk ("SSW=%#06x ", ssw); if (ssw & RC) printk ("Pipe stage C instruction fault at %#010lx\n", (fp->ptregs.format) == 0xA ? fp->ptregs.pc + 2 : fp->un.fmtb.baddr - 2); if (ssw & RB) printk ("Pipe stage B instruction fault at %#010lx\n", (fp->ptregs.format) == 0xA ? fp->ptregs.pc + 4 : fp->un.fmtb.baddr); if (ssw & DF) printk ("Data %s fault at %#010lx in %s (pc=%#lx)\n", ssw & RW ? "read" : "write", fp->un.fmtb.daddr, space_names[ssw & DFC], fp->ptregs.pc); } printk ("Current process id is %d\n", task_pid_nr(current)); die_if_kernel("BAD KERNEL TRAP", &fp->ptregs, 0); } asmlinkage void trap_c(struct frame *fp) { int sig; siginfo_t info; if (fp->ptregs.sr & PS_S) { if ((fp->ptregs.vector >> 2) == VEC_TRACE) { /* traced a trapping instruction */ current->ptrace |= PT_DTRACE; } else bad_super_trap(fp); return; } /* send the appropriate signal to the user program */ switch ((fp->ptregs.vector) >> 2) { case VEC_ADDRERR: info.si_code = BUS_ADRALN; sig = SIGBUS; break; case VEC_ILLEGAL: case VEC_LINE10: case VEC_LINE11: info.si_code = ILL_ILLOPC; sig = SIGILL; break; case VEC_PRIV: info.si_code = ILL_PRVOPC; sig = SIGILL; break; case VEC_COPROC: info.si_code = ILL_COPROC; sig = SIGILL; break; case VEC_TRAP1: case VEC_TRAP2: case VEC_TRAP3: case VEC_TRAP4: case VEC_TRAP5: case VEC_TRAP6: case VEC_TRAP7: case VEC_TRAP8: case VEC_TRAP9: case VEC_TRAP10: case VEC_TRAP11: case VEC_TRAP12: case VEC_TRAP13: case VEC_TRAP14: info.si_code = ILL_ILLTRP; sig = SIGILL; break; case VEC_FPBRUC: case VEC_FPOE: case VEC_FPNAN: info.si_code = FPE_FLTINV; sig = SIGFPE; break; case VEC_FPIR: info.si_code = FPE_FLTRES; sig = SIGFPE; break; case VEC_FPDIVZ: info.si_code = FPE_FLTDIV; sig = SIGFPE; break; case VEC_FPUNDER: info.si_code = FPE_FLTUND; sig = SIGFPE; break; case VEC_FPOVER: info.si_code = FPE_FLTOVF; sig = SIGFPE; break; case VEC_ZERODIV: info.si_code = FPE_INTDIV; sig = SIGFPE; break; case VEC_CHK: case VEC_TRAP: info.si_code = FPE_INTOVF; sig = SIGFPE; break; case VEC_TRACE: /* ptrace single step */ info.si_code = TRAP_TRACE; sig = SIGTRAP; break; case VEC_TRAP15: /* breakpoint */ info.si_code = TRAP_BRKPT; sig = SIGTRAP; break; default: info.si_code = ILL_ILLOPC; sig = SIGILL; break; } info.si_signo = sig; info.si_errno = 0; switch (fp->ptregs.format) { default: info.si_addr = (void *) fp->ptregs.pc; break; case 2: info.si_addr = (void *) fp->un.fmt2.iaddr; break; case 7: info.si_addr = (void *) fp->un.fmt7.effaddr; break; case 9: info.si_addr = (void *) fp->un.fmt9.iaddr; break; case 10: info.si_addr = (void *) fp->un.fmta.daddr; break; case 11: info.si_addr = (void *) fp->un.fmtb.daddr; break; } force_sig_info (sig, &info, current); } void die_if_kernel (char *str, struct pt_regs *fp, int nr) { if (!(fp->sr & PS_S)) return; console_verbose(); printk("%s: %08x\n",str,nr); show_registers(fp); add_taint(TAINT_DIE); do_exit(SIGSEGV); } /* * This function is called if an error occur while accessing * user-space from the fpsp040 code. */ asmlinkage void fpsp040_die(void) { do_exit(SIGSEGV); } #ifdef CONFIG_M68KFPU_EMU asmlinkage void fpemu_signal(int signal, int code, void *addr) { siginfo_t info; info.si_signo = signal; info.si_errno = 0; info.si_code = code; info.si_addr = addr; force_sig_info(signal, &info, current); } #endif