/* * Processor capabilities determination functions. * * Copyright (C) xxxx the Anonymous * Copyright (C) 1994 - 2006 Ralf Baechle * Copyright (C) 2003, 2004 Maciej W. Rozycki * Copyright (C) 2001, 2004 MIPS Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Not all of the MIPS CPUs have the "wait" instruction available. Moreover, * the implementation of the "wait" feature differs between CPU families. This * points to the function that implements CPU specific wait. * The wait instruction stops the pipeline and reduces the power consumption of * the CPU very much. */ void (*cpu_wait)(void); EXPORT_SYMBOL(cpu_wait); static void r3081_wait(void) { unsigned long cfg = read_c0_conf(); write_c0_conf(cfg | R30XX_CONF_HALT); } static void r39xx_wait(void) { local_irq_disable(); if (!need_resched()) write_c0_conf(read_c0_conf() | TX39_CONF_HALT); local_irq_enable(); } extern void r4k_wait(void); /* * This variant is preferable as it allows testing need_resched and going to * sleep depending on the outcome atomically. Unfortunately the "It is * implementation-dependent whether the pipeline restarts when a non-enabled * interrupt is requested" restriction in the MIPS32/MIPS64 architecture makes * using this version a gamble. */ void r4k_wait_irqoff(void) { local_irq_disable(); if (!need_resched()) __asm__(" .set push \n" " .set mips3 \n" " wait \n" " .set pop \n"); local_irq_enable(); __asm__(" .globl __pastwait \n" "__pastwait: \n"); return; } /* * The RM7000 variant has to handle erratum 38. The workaround is to not * have any pending stores when the WAIT instruction is executed. */ static void rm7k_wait_irqoff(void) { local_irq_disable(); if (!need_resched()) __asm__( " .set push \n" " .set mips3 \n" " .set noat \n" " mfc0 $1, $12 \n" " sync \n" " mtc0 $1, $12 # stalls until W stage \n" " wait \n" " mtc0 $1, $12 # stalls until W stage \n" " .set pop \n"); local_irq_enable(); } /* * The Au1xxx wait is available only if using 32khz counter or * external timer source, but specifically not CP0 Counter. * alchemy/common/time.c may override cpu_wait! */ static void au1k_wait(void) { __asm__(" .set mips3 \n" " cache 0x14, 0(%0) \n" " cache 0x14, 32(%0) \n" " sync \n" " nop \n" " wait \n" " nop \n" " nop \n" " nop \n" " nop \n" " .set mips0 \n" : : "r" (au1k_wait)); } static int __initdata nowait; static int __init wait_disable(char *s) { nowait = 1; return 1; } __setup("nowait", wait_disable); void __init check_wait(void) { struct cpuinfo_mips *c = ¤t_cpu_data; if (nowait) { printk("Wait instruction disabled.\n"); return; } switch (c->cputype) { case CPU_R3081: case CPU_R3081E: cpu_wait = r3081_wait; break; case CPU_TX3927: cpu_wait = r39xx_wait; break; case CPU_R4200: /* case CPU_R4300: */ case CPU_R4600: case CPU_R4640: case CPU_R4650: case CPU_R4700: case CPU_R5000: case CPU_R5500: case CPU_NEVADA: case CPU_4KC: case CPU_4KEC: case CPU_4KSC: case CPU_5KC: case CPU_25KF: case CPU_PR4450: case CPU_BCM3302: case CPU_BCM6338: case CPU_BCM6348: case CPU_BCM6358: case CPU_CAVIUM_OCTEON: cpu_wait = r4k_wait; break; case CPU_RM7000: cpu_wait = rm7k_wait_irqoff; break; case CPU_24K: case CPU_34K: case CPU_1004K: cpu_wait = r4k_wait; if (read_c0_config7() & MIPS_CONF7_WII) cpu_wait = r4k_wait_irqoff; break; case CPU_74K: cpu_wait = r4k_wait; if ((c->processor_id & 0xff) >= PRID_REV_ENCODE_332(2, 1, 0)) cpu_wait = r4k_wait_irqoff; break; case CPU_TX49XX: cpu_wait = r4k_wait_irqoff; break; case CPU_ALCHEMY: cpu_wait = au1k_wait; break; case CPU_20KC: /* * WAIT on Rev1.0 has E1, E2, E3 and E16. * WAIT on Rev2.0 and Rev3.0 has E16. * Rev3.1 WAIT is nop, why bother */ if ((c->processor_id & 0xff) <= 0x64) break; /* * Another rev is incremeting c0_count at a reduced clock * rate while in WAIT mode. So we basically have the choice * between using the cp0 timer as clocksource or avoiding * the WAIT instruction. Until more details are known, * disable the use of WAIT for 20Kc entirely. cpu_wait = r4k_wait; */ break; case CPU_RM9000: if ((c->processor_id & 0x00ff) >= 0x40) cpu_wait = r4k_wait; break; default: break; } } static inline void check_errata(void) { struct cpuinfo_mips *c = ¤t_cpu_data; switch (c->cputype) { case CPU_34K: /* * Erratum "RPS May Cause Incorrect Instruction Execution" * This code only handles VPE0, any SMP/SMTC/RTOS code * making use of VPE1 will be responsable for that VPE. */ if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2) write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS); break; default: break; } } void __init check_bugs32(void) { check_errata(); } /* * Probe whether cpu has config register by trying to play with * alternate cache bit and see whether it matters. * It's used by cpu_probe to distinguish between R3000A and R3081. */ static inline int cpu_has_confreg(void) { #ifdef CONFIG_CPU_R3000 extern unsigned long r3k_cache_size(unsigned long); unsigned long size1, size2; unsigned long cfg = read_c0_conf(); size1 = r3k_cache_size(ST0_ISC); write_c0_conf(cfg ^ R30XX_CONF_AC); size2 = r3k_cache_size(ST0_ISC); write_c0_conf(cfg); return size1 != size2; #else return 0; #endif } /* * Get the FPU Implementation/Revision. */ static inline unsigned long cpu_get_fpu_id(void) { unsigned long tmp, fpu_id; tmp = read_c0_status(); __enable_fpu(); fpu_id = read_32bit_cp1_register(CP1_REVISION); write_c0_status(tmp); return fpu_id; } /* * Check the CPU has an FPU the official way. */ static inline int __cpu_has_fpu(void) { return ((cpu_get_fpu_id() & 0xff00) != FPIR_IMP_NONE); } static inline void cpu_probe_vmbits(struct cpuinfo_mips *c) { #ifdef __NEED_VMBITS_PROBE write_c0_entryhi(0x3ffffffffffff000ULL); back_to_back_c0_hazard(); c->vmbits = fls64(read_c0_entryhi() & 0x3ffffffffffff000ULL); #endif } #define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \ | MIPS_CPU_COUNTER) static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu) { switch (c->processor_id & 0xff00) { case PRID_IMP_R2000: c->cputype = CPU_R2000; __cpu_name[cpu] = "R2000"; c->isa_level = MIPS_CPU_ISA_I; c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE | MIPS_CPU_NOFPUEX; if (__cpu_has_fpu()) c->options |= MIPS_CPU_FPU; c->tlbsize = 64; break; case PRID_IMP_R3000: if ((c->processor_id & 0xff) == PRID_REV_R3000A) { if (cpu_has_confreg()) { c->cputype = CPU_R3081E; __cpu_name[cpu] = "R3081"; } else { c->cputype = CPU_R3000A; __cpu_name[cpu] = "R3000A"; } break; } else { c->cputype = CPU_R3000; __cpu_name[cpu] = "R3000"; } c->isa_level = MIPS_CPU_ISA_I; c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE | MIPS_CPU_NOFPUEX; if (__cpu_has_fpu()) c->options |= MIPS_CPU_FPU; c->tlbsize = 64; break; case PRID_IMP_R4000: if (read_c0_config() & CONF_SC) { if ((c->processor_id & 0xff) >= PRID_REV_R4400) { c->cputype = CPU_R4400PC; __cpu_name[cpu] = "R4400PC"; } else { c->cputype = CPU_R4000PC; __cpu_name[cpu] = "R4000PC"; } } else { if ((c->processor_id & 0xff) >= PRID_REV_R4400) { c->cputype = CPU_R4400SC; __cpu_name[cpu] = "R4400SC"; } else { c->cputype = CPU_R4000SC; __cpu_name[cpu] = "R4000SC"; } } c->isa_level = MIPS_CPU_ISA_III; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_WATCH | MIPS_CPU_VCE | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_VR41XX: switch (c->processor_id & 0xf0) { case PRID_REV_VR4111: c->cputype = CPU_VR4111; __cpu_name[cpu] = "NEC VR4111"; break; case PRID_REV_VR4121: c->cputype = CPU_VR4121; __cpu_name[cpu] = "NEC VR4121"; break; case PRID_REV_VR4122: if ((c->processor_id & 0xf) < 0x3) { c->cputype = CPU_VR4122; __cpu_name[cpu] = "NEC VR4122"; } else { c->cputype = CPU_VR4181A; __cpu_name[cpu] = "NEC VR4181A"; } break; case PRID_REV_VR4130: if ((c->processor_id & 0xf) < 0x4) { c->cputype = CPU_VR4131; __cpu_name[cpu] = "NEC VR4131"; } else { c->cputype = CPU_VR4133; __cpu_name[cpu] = "NEC VR4133"; } break; default: printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n"); c->cputype = CPU_VR41XX; __cpu_name[cpu] = "NEC Vr41xx"; break; } c->isa_level = MIPS_CPU_ISA_III; c->options = R4K_OPTS; c->tlbsize = 32; break; case PRID_IMP_R4300: c->cputype = CPU_R4300; __cpu_name[cpu] = "R4300"; c->isa_level = MIPS_CPU_ISA_III; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; c->tlbsize = 32; break; case PRID_IMP_R4600: c->cputype = CPU_R4600; __cpu_name[cpu] = "R4600"; c->isa_level = MIPS_CPU_ISA_III; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; c->tlbsize = 48; break; #if 0 case PRID_IMP_R4650: /* * This processor doesn't have an MMU, so it's not * "real easy" to run Linux on it. It is left purely * for documentation. Commented out because it shares * it's c0_prid id number with the TX3900. */ c->cputype = CPU_R4650; __cpu_name[cpu] = "R4650"; c->isa_level = MIPS_CPU_ISA_III; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC; c->tlbsize = 48; break; #endif case PRID_IMP_TX39: c->isa_level = MIPS_CPU_ISA_I; c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE; if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) { c->cputype = CPU_TX3927; __cpu_name[cpu] = "TX3927"; c->tlbsize = 64; } else { switch (c->processor_id & 0xff) { case PRID_REV_TX3912: c->cputype = CPU_TX3912; __cpu_name[cpu] = "TX3912"; c->tlbsize = 32; break; case PRID_REV_TX3922: c->cputype = CPU_TX3922; __cpu_name[cpu] = "TX3922"; c->tlbsize = 64; break; } } break; case PRID_IMP_R4700: c->cputype = CPU_R4700; __cpu_name[cpu] = "R4700"; c->isa_level = MIPS_CPU_ISA_III; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_TX49: c->cputype = CPU_TX49XX; __cpu_name[cpu] = "R49XX"; c->isa_level = MIPS_CPU_ISA_III; c->options = R4K_OPTS | MIPS_CPU_LLSC; if (!(c->processor_id & 0x08)) c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR; c->tlbsize = 48; break; case PRID_IMP_R5000: c->cputype = CPU_R5000; __cpu_name[cpu] = "R5000"; c->isa_level = MIPS_CPU_ISA_IV; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_R5432: c->cputype = CPU_R5432; __cpu_name[cpu] = "R5432"; c->isa_level = MIPS_CPU_ISA_IV; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_WATCH | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_R5500: c->cputype = CPU_R5500; __cpu_name[cpu] = "R5500"; c->isa_level = MIPS_CPU_ISA_IV; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_WATCH | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_NEVADA: c->cputype = CPU_NEVADA; __cpu_name[cpu] = "Nevada"; c->isa_level = MIPS_CPU_ISA_IV; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_DIVEC | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_R6000: c->cputype = CPU_R6000; __cpu_name[cpu] = "R6000"; c->isa_level = MIPS_CPU_ISA_II; c->options = MIPS_CPU_TLB | MIPS_CPU_FPU | MIPS_CPU_LLSC; c->tlbsize = 32; break; case PRID_IMP_R6000A: c->cputype = CPU_R6000A; __cpu_name[cpu] = "R6000A"; c->isa_level = MIPS_CPU_ISA_II; c->options = MIPS_CPU_TLB | MIPS_CPU_FPU | MIPS_CPU_LLSC; c->tlbsize = 32; break; case PRID_IMP_RM7000: c->cputype = CPU_RM7000; __cpu_name[cpu] = "RM7000"; c->isa_level = MIPS_CPU_ISA_IV; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; /* * Undocumented RM7000: Bit 29 in the info register of * the RM7000 v2.0 indicates if the TLB has 48 or 64 * entries. * * 29 1 => 64 entry JTLB * 0 => 48 entry JTLB */ c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48; break; case PRID_IMP_RM9000: c->cputype = CPU_RM9000; __cpu_name[cpu] = "RM9000"; c->isa_level = MIPS_CPU_ISA_IV; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; /* * Bit 29 in the info register of the RM9000 * indicates if the TLB has 48 or 64 entries. * * 29 1 => 64 entry JTLB * 0 => 48 entry JTLB */ c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48; break; case PRID_IMP_R8000: c->cputype = CPU_R8000; __cpu_name[cpu] = "RM8000"; c->isa_level = MIPS_CPU_ISA_IV; c->options = MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; c->tlbsize = 384; /* has weird TLB: 3-way x 128 */ break; case PRID_IMP_R10000: c->cputype = CPU_R10000; __cpu_name[cpu] = "R10000"; c->isa_level = MIPS_CPU_ISA_IV; c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_COUNTER | MIPS_CPU_WATCH | MIPS_CPU_LLSC; c->tlbsize = 64; break; case PRID_IMP_R12000: c->cputype = CPU_R12000; __cpu_name[cpu] = "R12000"; c->isa_level = MIPS_CPU_ISA_IV; c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_COUNTER | MIPS_CPU_WATCH | MIPS_CPU_LLSC; c->tlbsize = 64; break; case PRID_IMP_R14000: c->cputype = CPU_R14000; __cpu_name[cpu] = "R14000"; c->isa_level = MIPS_CPU_ISA_IV; c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_COUNTER | MIPS_CPU_WATCH | MIPS_CPU_LLSC; c->tlbsize = 64; break; case PRID_IMP_LOONGSON2: c->cputype = CPU_LOONGSON2; __cpu_name[cpu] = "ICT Loongson-2"; c->isa_level = MIPS_CPU_ISA_III; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC | MIPS_CPU_32FPR; c->tlbsize = 64; break; } } static char unknown_isa[] __cpuinitdata = KERN_ERR \ "Unsupported ISA type, c0.config0: %d."; static inline unsigned int decode_config0(struct cpuinfo_mips *c) { unsigned int config0; int isa; config0 = read_c0_config(); if (((config0 & MIPS_CONF_MT) >> 7) == 1) c->options |= MIPS_CPU_TLB; isa = (config0 & MIPS_CONF_AT) >> 13; switch (isa) { case 0: switch ((config0 & MIPS_CONF_AR) >> 10) { case 0: c->isa_level = MIPS_CPU_ISA_M32R1; break; case 1: c->isa_level = MIPS_CPU_ISA_M32R2; break; default: goto unknown; } break; case 2: switch ((config0 & MIPS_CONF_AR) >> 10) { case 0: c->isa_level = MIPS_CPU_ISA_M64R1; break; case 1: c->isa_level = MIPS_CPU_ISA_M64R2; break; default: goto unknown; } break; default: goto unknown; } return config0 & MIPS_CONF_M; unknown: panic(unknown_isa, config0); } static inline unsigned int decode_config1(struct cpuinfo_mips *c) { unsigned int config1; config1 = read_c0_config1(); if (config1 & MIPS_CONF1_MD) c->ases |= MIPS_ASE_MDMX; if (config1 & MIPS_CONF1_WR) c->options |= MIPS_CPU_WATCH; if (config1 & MIPS_CONF1_CA) c->ases |= MIPS_ASE_MIPS16; if (config1 & MIPS_CONF1_EP) c->options |= MIPS_CPU_EJTAG; if (config1 & MIPS_CONF1_FP) { c->options |= MIPS_CPU_FPU; c->options |= MIPS_CPU_32FPR; } if (cpu_has_tlb) c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1; return config1 & MIPS_CONF_M; } static inline unsigned int decode_config2(struct cpuinfo_mips *c) { unsigned int config2; config2 = read_c0_config2(); if (config2 & MIPS_CONF2_SL) c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT; return config2 & MIPS_CONF_M; } static inline unsigned int decode_config3(struct cpuinfo_mips *c) { unsigned int config3; config3 = read_c0_config3(); if (config3 & MIPS_CONF3_SM) c->ases |= MIPS_ASE_SMARTMIPS; if (config3 & MIPS_CONF3_DSP) c->ases |= MIPS_ASE_DSP; if (config3 & MIPS_CONF3_VINT) c->options |= MIPS_CPU_VINT; if (config3 & MIPS_CONF3_VEIC) c->options |= MIPS_CPU_VEIC; if (config3 & MIPS_CONF3_MT) c->ases |= MIPS_ASE_MIPSMT; if (config3 & MIPS_CONF3_ULRI) c->options |= MIPS_CPU_ULRI; return config3 & MIPS_CONF_M; } static void __cpuinit decode_configs(struct cpuinfo_mips *c) { int ok; /* MIPS32 or MIPS64 compliant CPU. */ c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER | MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK; c->scache.flags = MIPS_CACHE_NOT_PRESENT; ok = decode_config0(c); /* Read Config registers. */ BUG_ON(!ok); /* Arch spec violation! */ if (ok) ok = decode_config1(c); if (ok) ok = decode_config2(c); if (ok) ok = decode_config3(c); mips_probe_watch_registers(c); } static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & 0xff00) { case PRID_IMP_4KC: c->cputype = CPU_4KC; __cpu_name[cpu] = "MIPS 4Kc"; break; case PRID_IMP_4KEC: c->cputype = CPU_4KEC; __cpu_name[cpu] = "MIPS 4KEc"; break; case PRID_IMP_4KECR2: c->cputype = CPU_4KEC; __cpu_name[cpu] = "MIPS 4KEc"; break; case PRID_IMP_4KSC: case PRID_IMP_4KSD: c->cputype = CPU_4KSC; __cpu_name[cpu] = "MIPS 4KSc"; break; case PRID_IMP_5KC: c->cputype = CPU_5KC; __cpu_name[cpu] = "MIPS 5Kc"; break; case PRID_IMP_20KC: c->cputype = CPU_20KC; __cpu_name[cpu] = "MIPS 20Kc"; break; case PRID_IMP_24K: case PRID_IMP_24KE: c->cputype = CPU_24K; __cpu_name[cpu] = "MIPS 24Kc"; break; case PRID_IMP_25KF: c->cputype = CPU_25KF; __cpu_name[cpu] = "MIPS 25Kc"; break; case PRID_IMP_34K: c->cputype = CPU_34K; __cpu_name[cpu] = "MIPS 34Kc"; break; case PRID_IMP_74K: c->cputype = CPU_74K; __cpu_name[cpu] = "MIPS 74Kc"; break; case PRID_IMP_1004K: c->cputype = CPU_1004K; __cpu_name[cpu] = "MIPS 1004Kc"; break; } spram_config(); } static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & 0xff00) { case PRID_IMP_AU1_REV1: case PRID_IMP_AU1_REV2: c->cputype = CPU_ALCHEMY; switch ((c->processor_id >> 24) & 0xff) { case 0: __cpu_name[cpu] = "Au1000"; break; case 1: __cpu_name[cpu] = "Au1500"; break; case 2: __cpu_name[cpu] = "Au1100"; break; case 3: __cpu_name[cpu] = "Au1550"; break; case 4: __cpu_name[cpu] = "Au1200"; if ((c->processor_id & 0xff) == 2) __cpu_name[cpu] = "Au1250"; break; case 5: __cpu_name[cpu] = "Au1210"; break; default: __cpu_name[cpu] = "Au1xxx"; break; } break; } } static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & 0xff00) { case PRID_IMP_SB1: c->cputype = CPU_SB1; __cpu_name[cpu] = "SiByte SB1"; /* FPU in pass1 is known to have issues. */ if ((c->processor_id & 0xff) < 0x02) c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR); break; case PRID_IMP_SB1A: c->cputype = CPU_SB1A; __cpu_name[cpu] = "SiByte SB1A"; break; } } static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & 0xff00) { case PRID_IMP_SR71000: c->cputype = CPU_SR71000; __cpu_name[cpu] = "Sandcraft SR71000"; c->scache.ways = 8; c->tlbsize = 64; break; } } static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & 0xff00) { case PRID_IMP_PR4450: c->cputype = CPU_PR4450; __cpu_name[cpu] = "Philips PR4450"; c->isa_level = MIPS_CPU_ISA_M32R1; break; } } static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & 0xff00) { case PRID_IMP_BCM3302: /* same as PRID_IMP_BCM6338 */ c->cputype = CPU_BCM3302; __cpu_name[cpu] = "Broadcom BCM3302"; break; case PRID_IMP_BCM4710: c->cputype = CPU_BCM4710; __cpu_name[cpu] = "Broadcom BCM4710"; break; case PRID_IMP_BCM6345: c->cputype = CPU_BCM6345; __cpu_name[cpu] = "Broadcom BCM6345"; break; case PRID_IMP_BCM6348: c->cputype = CPU_BCM6348; __cpu_name[cpu] = "Broadcom BCM6348"; break; case PRID_IMP_BCM4350: switch (c->processor_id & 0xf0) { case PRID_REV_BCM6358: c->cputype = CPU_BCM6358; __cpu_name[cpu] = "Broadcom BCM6358"; break; default: c->cputype = CPU_UNKNOWN; break; } break; } } static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & 0xff00) { case PRID_IMP_CAVIUM_CN38XX: case PRID_IMP_CAVIUM_CN31XX: case PRID_IMP_CAVIUM_CN30XX: case PRID_IMP_CAVIUM_CN58XX: case PRID_IMP_CAVIUM_CN56XX: case PRID_IMP_CAVIUM_CN50XX: case PRID_IMP_CAVIUM_CN52XX: c->cputype = CPU_CAVIUM_OCTEON; __cpu_name[cpu] = "Cavium Octeon"; break; default: printk(KERN_INFO "Unknown Octeon chip!\n"); c->cputype = CPU_UNKNOWN; break; } } const char *__cpu_name[NR_CPUS]; __cpuinit void cpu_probe(void) { struct cpuinfo_mips *c = ¤t_cpu_data; unsigned int cpu = smp_processor_id(); c->processor_id = PRID_IMP_UNKNOWN; c->fpu_id = FPIR_IMP_NONE; c->cputype = CPU_UNKNOWN; c->processor_id = read_c0_prid(); switch (c->processor_id & 0xff0000) { case PRID_COMP_LEGACY: cpu_probe_legacy(c, cpu); break; case PRID_COMP_MIPS: cpu_probe_mips(c, cpu); break; case PRID_COMP_ALCHEMY: cpu_probe_alchemy(c, cpu); break; case PRID_COMP_SIBYTE: cpu_probe_sibyte(c, cpu); break; case PRID_COMP_BROADCOM: cpu_probe_broadcom(c, cpu); break; case PRID_COMP_SANDCRAFT: cpu_probe_sandcraft(c, cpu); break; case PRID_COMP_NXP: cpu_probe_nxp(c, cpu); break; case PRID_COMP_CAVIUM: cpu_probe_cavium(c, cpu); break; } BUG_ON(!__cpu_name[cpu]); BUG_ON(c->cputype == CPU_UNKNOWN); /* * Platform code can force the cpu type to optimize code * generation. In that case be sure the cpu type is correctly * manually setup otherwise it could trigger some nasty bugs. */ BUG_ON(current_cpu_type() != c->cputype); if (c->options & MIPS_CPU_FPU) { c->fpu_id = cpu_get_fpu_id(); if (c->isa_level == MIPS_CPU_ISA_M32R1 || c->isa_level == MIPS_CPU_ISA_M32R2 || c->isa_level == MIPS_CPU_ISA_M64R1 || c->isa_level == MIPS_CPU_ISA_M64R2) { if (c->fpu_id & MIPS_FPIR_3D) c->ases |= MIPS_ASE_MIPS3D; } } if (cpu_has_mips_r2) c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1; else c->srsets = 1; cpu_probe_vmbits(c); } __cpuinit void cpu_report(void) { struct cpuinfo_mips *c = ¤t_cpu_data; printk(KERN_INFO "CPU revision is: %08x (%s)\n", c->processor_id, cpu_name_string()); if (c->options & MIPS_CPU_FPU) printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id); }