/* * Copyright (C) 2000,2001,2002,2003,2004 Broadcom Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * These are the routines that handle all the low level interrupt stuff. * Actions handled here are: initialization of the interrupt map, requesting of * interrupt lines by handlers, dispatching if interrupts to handlers, probing * for interrupt lines */ static void end_bcm1480_irq(unsigned int irq); static void enable_bcm1480_irq(unsigned int irq); static void disable_bcm1480_irq(unsigned int irq); static void ack_bcm1480_irq(unsigned int irq); #ifdef CONFIG_SMP static void bcm1480_set_affinity(unsigned int irq, cpumask_t mask); #endif #ifdef CONFIG_PCI extern unsigned long ht_eoi_space; #endif #ifdef CONFIG_KGDB #include extern void breakpoint(void); static int kgdb_irq; #ifdef CONFIG_GDB_CONSOLE extern void register_gdb_console(void); #endif /* kgdb is on when configured. Pass "nokgdb" kernel arg to turn it off */ static int kgdb_flag = 1; static int __init nokgdb(char *str) { kgdb_flag = 0; return 1; } __setup("nokgdb", nokgdb); /* Default to UART1 */ int kgdb_port = 1; #ifdef CONFIG_SERIAL_SB1250_DUART extern char sb1250_duart_present[]; #endif #endif static struct irq_chip bcm1480_irq_type = { .name = "BCM1480-IMR", .ack = ack_bcm1480_irq, .mask = disable_bcm1480_irq, .mask_ack = ack_bcm1480_irq, .unmask = enable_bcm1480_irq, .end = end_bcm1480_irq, #ifdef CONFIG_SMP .set_affinity = bcm1480_set_affinity #endif }; /* Store the CPU id (not the logical number) */ int bcm1480_irq_owner[BCM1480_NR_IRQS]; DEFINE_SPINLOCK(bcm1480_imr_lock); void bcm1480_mask_irq(int cpu, int irq) { unsigned long flags, hl_spacing; u64 cur_ints; spin_lock_irqsave(&bcm1480_imr_lock, flags); hl_spacing = 0; if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) { hl_spacing = BCM1480_IMR_HL_SPACING; irq -= BCM1480_NR_IRQS_HALF; } cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing)); cur_ints |= (((u64) 1) << irq); ____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing)); spin_unlock_irqrestore(&bcm1480_imr_lock, flags); } void bcm1480_unmask_irq(int cpu, int irq) { unsigned long flags, hl_spacing; u64 cur_ints; spin_lock_irqsave(&bcm1480_imr_lock, flags); hl_spacing = 0; if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) { hl_spacing = BCM1480_IMR_HL_SPACING; irq -= BCM1480_NR_IRQS_HALF; } cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing)); cur_ints &= ~(((u64) 1) << irq); ____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing)); spin_unlock_irqrestore(&bcm1480_imr_lock, flags); } #ifdef CONFIG_SMP static void bcm1480_set_affinity(unsigned int irq, cpumask_t mask) { int i = 0, old_cpu, cpu, int_on, k; u64 cur_ints; struct irq_desc *desc = irq_desc + irq; unsigned long flags; unsigned int irq_dirty; if (cpus_weight(mask) != 1) { printk("attempted to set irq affinity for irq %d to multiple CPUs\n", irq); return; } i = first_cpu(mask); /* Convert logical CPU to physical CPU */ cpu = cpu_logical_map(i); /* Protect against other affinity changers and IMR manipulation */ spin_lock_irqsave(&desc->lock, flags); spin_lock(&bcm1480_imr_lock); /* Swizzle each CPU's IMR (but leave the IP selection alone) */ old_cpu = bcm1480_irq_owner[irq]; irq_dirty = irq; if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) { irq_dirty -= BCM1480_NR_IRQS_HALF; } for (k=0; k<2; k++) { /* Loop through high and low interrupt mask register */ cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING))); int_on = !(cur_ints & (((u64) 1) << irq_dirty)); if (int_on) { /* If it was on, mask it */ cur_ints |= (((u64) 1) << irq_dirty); ____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING))); } bcm1480_irq_owner[irq] = cpu; if (int_on) { /* unmask for the new CPU */ cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING))); cur_ints &= ~(((u64) 1) << irq_dirty); ____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING))); } } spin_unlock(&bcm1480_imr_lock); spin_unlock_irqrestore(&desc->lock, flags); } #endif /*****************************************************************************/ static void disable_bcm1480_irq(unsigned int irq) { bcm1480_mask_irq(bcm1480_irq_owner[irq], irq); } static void enable_bcm1480_irq(unsigned int irq) { bcm1480_unmask_irq(bcm1480_irq_owner[irq], irq); } static void ack_bcm1480_irq(unsigned int irq) { u64 pending; unsigned int irq_dirty; int k; /* * If the interrupt was an HT interrupt, now is the time to * clear it. NOTE: we assume the HT bridge was set up to * deliver the interrupts to all CPUs (which makes affinity * changing easier for us) */ irq_dirty = irq; if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) { irq_dirty -= BCM1480_NR_IRQS_HALF; } for (k=0; k<2; k++) { /* Loop through high and low LDT interrupts */ pending = __raw_readq(IOADDR(A_BCM1480_IMR_REGISTER(bcm1480_irq_owner[irq], R_BCM1480_IMR_LDT_INTERRUPT_H + (k*BCM1480_IMR_HL_SPACING)))); pending &= ((u64)1 << (irq_dirty)); if (pending) { #ifdef CONFIG_SMP int i; for (i=0; i= BCM1480_NR_IRQS) return -EINVAL; spin_lock_irqsave(&desc->lock, flags); /* Don't allow sharing at all for these */ if (desc->action != NULL) retval = -EBUSY; else { desc->action = &bcm1480_dummy_action; desc->depth = 0; } spin_unlock_irqrestore(&desc->lock, flags); return 0; } /* * init_IRQ is called early in the boot sequence from init/main.c. It * is responsible for setting up the interrupt mapper and installing the * handler that will be responsible for dispatching interrupts to the * "right" place. */ /* * For now, map all interrupts to IP[2]. We could save * some cycles by parceling out system interrupts to different * IP lines, but keep it simple for bringup. We'll also direct * all interrupts to a single CPU; we should probably route * PCI and LDT to one cpu and everything else to the other * to balance the load a bit. * * On the second cpu, everything is set to IP5, which is * ignored, EXCEPT the mailbox interrupt. That one is * set to IP[2] so it is handled. This is needed so we * can do cross-cpu function calls, as requred by SMP */ #define IMR_IP2_VAL K_BCM1480_INT_MAP_I0 #define IMR_IP3_VAL K_BCM1480_INT_MAP_I1 #define IMR_IP4_VAL K_BCM1480_INT_MAP_I2 #define IMR_IP5_VAL K_BCM1480_INT_MAP_I3 #define IMR_IP6_VAL K_BCM1480_INT_MAP_I4 void __init arch_init_irq(void) { unsigned int i, cpu; u64 tmp; unsigned int imask = STATUSF_IP4 | STATUSF_IP3 | STATUSF_IP2 | STATUSF_IP1 | STATUSF_IP0; /* Default everything to IP2 */ /* Start with _high registers which has no bit 0 interrupt source */ for (i = 1; i < BCM1480_NR_IRQS_HALF; i++) { /* was I0 */ for (cpu = 0; cpu < 4; cpu++) { __raw_writeq(IMR_IP2_VAL, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) + (i << 3))); } } /* Now do _low registers */ for (i = 0; i < BCM1480_NR_IRQS_HALF; i++) { for (cpu = 0; cpu < 4; cpu++) { __raw_writeq(IMR_IP2_VAL, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MAP_BASE_L) + (i << 3))); } } init_bcm1480_irqs(); /* * Map the high 16 bits of mailbox_0 registers to IP[3], for * inter-cpu messages */ /* Was I1 */ for (cpu = 0; cpu < 4; cpu++) { __raw_writeq(IMR_IP3_VAL, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) + (K_BCM1480_INT_MBOX_0_0 << 3))); } /* Clear the mailboxes. The firmware may leave them dirty */ for (cpu = 0; cpu < 4; cpu++) { __raw_writeq(0xffffffffffffffffULL, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_0_CLR_CPU))); __raw_writeq(0xffffffffffffffffULL, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_1_CLR_CPU))); } /* Mask everything except the high 16 bit of mailbox_0 registers for all cpus */ tmp = ~((u64) 0) ^ ( (((u64) 1) << K_BCM1480_INT_MBOX_0_0)); for (cpu = 0; cpu < 4; cpu++) { __raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_H))); } tmp = ~((u64) 0); for (cpu = 0; cpu < 4; cpu++) { __raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_L))); } bcm1480_steal_irq(K_BCM1480_INT_MBOX_0_0); /* * Note that the timer interrupts are also mapped, but this is * done in bcm1480_time_init(). Also, the profiling driver * does its own management of IP7. */ #ifdef CONFIG_KGDB imask |= STATUSF_IP6; #endif /* Enable necessary IPs, disable the rest */ change_c0_status(ST0_IM, imask); #ifdef CONFIG_KGDB if (kgdb_flag) { kgdb_irq = K_BCM1480_INT_UART_0 + kgdb_port; #ifdef CONFIG_SERIAL_SB1250_DUART sb1250_duart_present[kgdb_port] = 0; #endif /* Setup uart 1 settings, mapper */ /* QQQ FIXME */ __raw_writeq(M_DUART_IMR_BRK, IO_SPACE_BASE + A_DUART_IMRREG(kgdb_port)); bcm1480_steal_irq(kgdb_irq); __raw_writeq(IMR_IP6_VAL, IO_SPACE_BASE + A_BCM1480_IMR_REGISTER(0, R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) + (kgdb_irq<<3)); bcm1480_unmask_irq(0, kgdb_irq); #ifdef CONFIG_GDB_CONSOLE register_gdb_console(); #endif printk("Waiting for GDB on UART port %d\n", kgdb_port); set_debug_traps(); breakpoint(); } #endif } #ifdef CONFIG_KGDB #include #define duart_out(reg, val) csr_out32(val, IOADDR(A_DUART_CHANREG(kgdb_port, reg))) #define duart_in(reg) csr_in32(IOADDR(A_DUART_CHANREG(kgdb_port, reg))) static void bcm1480_kgdb_interrupt(void) { /* * Clear break-change status (allow some time for the remote * host to stop the break, since we would see another * interrupt on the end-of-break too) */ kstat.irqs[smp_processor_id()][kgdb_irq]++; mdelay(500); duart_out(R_DUART_CMD, V_DUART_MISC_CMD_RESET_BREAK_INT | M_DUART_RX_EN | M_DUART_TX_EN); set_async_breakpoint(&get_irq_regs()->cp0_epc); } #endif /* CONFIG_KGDB */ extern void bcm1480_mailbox_interrupt(void); static inline void dispatch_ip4(void) { int cpu = smp_processor_id(); int irq = K_BCM1480_INT_TIMER_0 + cpu; /* Reset the timer */ __raw_writeq(M_SCD_TIMER_ENABLE|M_SCD_TIMER_MODE_CONTINUOUS, IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG))); do_IRQ(irq); } static inline void dispatch_ip2(void) { unsigned long long mask_h, mask_l; unsigned int cpu = smp_processor_id(); unsigned long base; /* * Default...we've hit an IP[2] interrupt, which means we've got to * check the 1480 interrupt registers to figure out what to do. Need * to detect which CPU we're on, now that smp_affinity is supported. */ base = A_BCM1480_IMR_MAPPER(cpu); mask_h = __raw_readq( IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_H)); mask_l = __raw_readq( IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_L)); if (mask_h) { if (mask_h ^ 1) do_IRQ(fls64(mask_h) - 1); else if (mask_l) do_IRQ(63 + fls64(mask_l)); } } asmlinkage void plat_irq_dispatch(void) { unsigned int pending; #ifdef CONFIG_SIBYTE_BCM1480_PROF /* Set compare to count to silence count/compare timer interrupts */ write_c0_compare(read_c0_count()); #endif pending = read_c0_cause() & read_c0_status(); #ifdef CONFIG_SIBYTE_BCM1480_PROF if (pending & CAUSEF_IP7) /* Cpu performance counter interrupt */ sbprof_cpu_intr(); else #endif if (pending & CAUSEF_IP4) dispatch_ip4(); #ifdef CONFIG_SMP else if (pending & CAUSEF_IP3) bcm1480_mailbox_interrupt(); #endif #ifdef CONFIG_KGDB else if (pending & CAUSEF_IP6) bcm1480_kgdb_interrupt(); /* KGDB (uart 1) */ #endif else if (pending & CAUSEF_IP2) dispatch_ip2(); }