/* * linux/arch/parisc/kernel/time.c * * Copyright (C) 1991, 1992, 1995 Linus Torvalds * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org) * * 1994-07-02 Alan Modra * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime * 1998-12-20 Updated NTP code according to technical memorandum Jan '96 * "A Kernel Model for Precision Timekeeping" by Dave Mills */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include u64 jiffies_64 = INITIAL_JIFFIES; EXPORT_SYMBOL(jiffies_64); /* xtime and wall_jiffies keep wall-clock time */ extern unsigned long wall_jiffies; static long clocktick; /* timer cycles per tick */ static long halftick; #ifdef CONFIG_SMP extern void smp_do_timer(struct pt_regs *regs); #endif irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) { long now; long next_tick; int nticks; int cpu = smp_processor_id(); profile_tick(CPU_PROFILING, regs); now = mfctl(16); /* initialize next_tick to time at last clocktick */ next_tick = cpu_data[cpu].it_value; /* since time passes between the interrupt and the mfctl() * above, it is never true that last_tick + clocktick == now. If we * never miss a clocktick, we could set next_tick = last_tick + clocktick * but maybe we'll miss ticks, hence the loop. * * Variables are *signed*. */ nticks = 0; while((next_tick - now) < halftick) { next_tick += clocktick; nticks++; } mtctl(next_tick, 16); cpu_data[cpu].it_value = next_tick; while (nticks--) { #ifdef CONFIG_SMP smp_do_timer(regs); #else update_process_times(user_mode(regs)); #endif if (cpu == 0) { write_seqlock(&xtime_lock); do_timer(regs); write_sequnlock(&xtime_lock); } } #ifdef CONFIG_CHASSIS_LCD_LED /* Only schedule the led tasklet on cpu 0, and only if it * is enabled. */ if (cpu == 0 && !atomic_read(&led_tasklet.count)) tasklet_schedule(&led_tasklet); #endif /* check soft power switch status */ if (cpu == 0 && !atomic_read(&power_tasklet.count)) tasklet_schedule(&power_tasklet); return IRQ_HANDLED; } unsigned long profile_pc(struct pt_regs *regs) { unsigned long pc = instruction_pointer(regs); if (regs->gr[0] & PSW_N) pc -= 4; #ifdef CONFIG_SMP if (in_lock_functions(pc)) pc = regs->gr[2]; #endif return pc; } EXPORT_SYMBOL(profile_pc); /*** converted from ia64 ***/ /* * Return the number of micro-seconds that elapsed since the last * update to wall time (aka xtime aka wall_jiffies). The xtime_lock * must be at least read-locked when calling this routine. */ static inline unsigned long gettimeoffset (void) { #ifndef CONFIG_SMP /* * FIXME: This won't work on smp because jiffies are updated by cpu 0. * Once parisc-linux learns the cr16 difference between processors, * this could be made to work. */ long last_tick; long elapsed_cycles; /* it_value is the intended time of the next tick */ last_tick = cpu_data[smp_processor_id()].it_value; /* Subtract one tick and account for possible difference between * when we expected the tick and when it actually arrived. * (aka wall vs real) */ last_tick -= clocktick * (jiffies - wall_jiffies + 1); elapsed_cycles = mfctl(16) - last_tick; /* the precision of this math could be improved */ return elapsed_cycles / (PAGE0->mem_10msec / 10000); #else return 0; #endif } void do_gettimeofday (struct timeval *tv) { unsigned long flags, seq, usec, sec; do { seq = read_seqbegin_irqsave(&xtime_lock, flags); usec = gettimeoffset(); sec = xtime.tv_sec; usec += (xtime.tv_nsec / 1000); } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); while (usec >= 1000000) { usec -= 1000000; ++sec; } tv->tv_sec = sec; tv->tv_usec = usec; } EXPORT_SYMBOL(do_gettimeofday); int do_settimeofday (struct timespec *tv) { time_t wtm_sec, sec = tv->tv_sec; long wtm_nsec, nsec = tv->tv_nsec; if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) return -EINVAL; write_seqlock_irq(&xtime_lock); { /* * This is revolting. We need to set "xtime" * correctly. However, the value in this location is * the value at the most recent update of wall time. * Discover what correction gettimeofday would have * done, and then undo it! */ nsec -= gettimeoffset() * 1000; wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); set_normalized_timespec(&xtime, sec, nsec); set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); ntp_clear(); } write_sequnlock_irq(&xtime_lock); clock_was_set(); return 0; } EXPORT_SYMBOL(do_settimeofday); /* * XXX: We can do better than this. * Returns nanoseconds */ unsigned long long sched_clock(void) { return (unsigned long long)jiffies * (1000000000 / HZ); } void __init time_init(void) { unsigned long next_tick; static struct pdc_tod tod_data; clocktick = (100 * PAGE0->mem_10msec) / HZ; halftick = clocktick / 2; /* Setup clock interrupt timing */ next_tick = mfctl(16); next_tick += clocktick; cpu_data[smp_processor_id()].it_value = next_tick; /* kick off Itimer (CR16) */ mtctl(next_tick, 16); if(pdc_tod_read(&tod_data) == 0) { write_seqlock_irq(&xtime_lock); xtime.tv_sec = tod_data.tod_sec; xtime.tv_nsec = tod_data.tod_usec * 1000; set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); write_sequnlock_irq(&xtime_lock); } else { printk(KERN_ERR "Error reading tod clock\n"); xtime.tv_sec = 0; xtime.tv_nsec = 0; } }