/* * The file intends to implement PE based on the information from * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device. * All the PEs should be organized as hierarchy tree. The first level * of the tree will be associated to existing PHBs since the particular * PE is only meaningful in one PHB domain. * * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include static LIST_HEAD(eeh_phb_pe); /** * eeh_pe_alloc - Allocate PE * @phb: PCI controller * @type: PE type * * Allocate PE instance dynamically. */ static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type) { struct eeh_pe *pe; /* Allocate PHB PE */ pe = kzalloc(sizeof(struct eeh_pe), GFP_KERNEL); if (!pe) return NULL; /* Initialize PHB PE */ pe->type = type; pe->phb = phb; INIT_LIST_HEAD(&pe->child_list); INIT_LIST_HEAD(&pe->child); INIT_LIST_HEAD(&pe->edevs); return pe; } /** * eeh_phb_pe_create - Create PHB PE * @phb: PCI controller * * The function should be called while the PHB is detected during * system boot or PCI hotplug in order to create PHB PE. */ int eeh_phb_pe_create(struct pci_controller *phb) { struct eeh_pe *pe; /* Allocate PHB PE */ pe = eeh_pe_alloc(phb, EEH_PE_PHB); if (!pe) { pr_err("%s: out of memory!\n", __func__); return -ENOMEM; } /* Put it into the list */ eeh_lock(); list_add_tail(&pe->child, &eeh_phb_pe); eeh_unlock(); pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number); return 0; } /** * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB * @phb: PCI controller * * The overall PEs form hierarchy tree. The first layer of the * hierarchy tree is composed of PHB PEs. The function is used * to retrieve the corresponding PHB PE according to the given PHB. */ struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb) { struct eeh_pe *pe; list_for_each_entry(pe, &eeh_phb_pe, child) { /* * Actually, we needn't check the type since * the PE for PHB has been determined when that * was created. */ if ((pe->type & EEH_PE_PHB) && pe->phb == phb) return pe; } return NULL; } /** * eeh_pe_next - Retrieve the next PE in the tree * @pe: current PE * @root: root PE * * The function is used to retrieve the next PE in the * hierarchy PE tree. */ static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root) { struct list_head *next = pe->child_list.next; if (next == &pe->child_list) { while (1) { if (pe == root) return NULL; next = pe->child.next; if (next != &pe->parent->child_list) break; pe = pe->parent; } } return list_entry(next, struct eeh_pe, child); } /** * eeh_pe_traverse - Traverse PEs in the specified PHB * @root: root PE * @fn: callback * @flag: extra parameter to callback * * The function is used to traverse the specified PE and its * child PEs. The traversing is to be terminated once the * callback returns something other than NULL, or no more PEs * to be traversed. */ static void *eeh_pe_traverse(struct eeh_pe *root, eeh_traverse_func fn, void *flag) { struct eeh_pe *pe; void *ret; for (pe = root; pe; pe = eeh_pe_next(pe, root)) { ret = fn(pe, flag); if (ret) return ret; } return NULL; } /** * eeh_pe_dev_traverse - Traverse the devices from the PE * @root: EEH PE * @fn: function callback * @flag: extra parameter to callback * * The function is used to traverse the devices of the specified * PE and its child PEs. */ void *eeh_pe_dev_traverse(struct eeh_pe *root, eeh_traverse_func fn, void *flag) { struct eeh_pe *pe; struct eeh_dev *edev; void *ret; if (!root) { pr_warning("%s: Invalid PE %p\n", __func__, root); return NULL; } eeh_lock(); /* Traverse root PE */ for (pe = root; pe; pe = eeh_pe_next(pe, root)) { eeh_pe_for_each_dev(pe, edev) { ret = fn(edev, flag); if (ret) { eeh_unlock(); return ret; } } } eeh_unlock(); return NULL; } /** * __eeh_pe_get - Check the PE address * @data: EEH PE * @flag: EEH device * * For one particular PE, it can be identified by PE address * or tranditional BDF address. BDF address is composed of * Bus/Device/Function number. The extra data referred by flag * indicates which type of address should be used. */ static void *__eeh_pe_get(void *data, void *flag) { struct eeh_pe *pe = (struct eeh_pe *)data; struct eeh_dev *edev = (struct eeh_dev *)flag; /* Unexpected PHB PE */ if (pe->type & EEH_PE_PHB) return NULL; /* We prefer PE address */ if (edev->pe_config_addr && (edev->pe_config_addr == pe->addr)) return pe; /* Try BDF address */ if (edev->config_addr && (edev->config_addr == pe->config_addr)) return pe; return NULL; } /** * eeh_pe_get - Search PE based on the given address * @edev: EEH device * * Search the corresponding PE based on the specified address which * is included in the eeh device. The function is used to check if * the associated PE has been created against the PE address. It's * notable that the PE address has 2 format: traditional PE address * which is composed of PCI bus/device/function number, or unified * PE address. */ struct eeh_pe *eeh_pe_get(struct eeh_dev *edev) { struct eeh_pe *root = eeh_phb_pe_get(edev->phb); struct eeh_pe *pe; pe = eeh_pe_traverse(root, __eeh_pe_get, edev); return pe; } /** * eeh_pe_get_parent - Retrieve the parent PE * @edev: EEH device * * The whole PEs existing in the system are organized as hierarchy * tree. The function is used to retrieve the parent PE according * to the parent EEH device. */ static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev) { struct device_node *dn; struct eeh_dev *parent; /* * It might have the case for the indirect parent * EEH device already having associated PE, but * the direct parent EEH device doesn't have yet. */ dn = edev->dn->parent; while (dn) { /* We're poking out of PCI territory */ if (!PCI_DN(dn)) return NULL; parent = of_node_to_eeh_dev(dn); /* We're poking out of PCI territory */ if (!parent) return NULL; if (parent->pe) return parent->pe; dn = dn->parent; } return NULL; } /** * eeh_add_to_parent_pe - Add EEH device to parent PE * @edev: EEH device * * Add EEH device to the parent PE. If the parent PE already * exists, the PE type will be changed to EEH_PE_BUS. Otherwise, * we have to create new PE to hold the EEH device and the new * PE will be linked to its parent PE as well. */ int eeh_add_to_parent_pe(struct eeh_dev *edev) { struct eeh_pe *pe, *parent; eeh_lock(); /* * Search the PE has been existing or not according * to the PE address. If that has been existing, the * PE should be composed of PCI bus and its subordinate * components. */ pe = eeh_pe_get(edev); if (pe && !(pe->type & EEH_PE_INVALID)) { if (!edev->pe_config_addr) { eeh_unlock(); pr_err("%s: PE with addr 0x%x already exists\n", __func__, edev->config_addr); return -EEXIST; } /* Mark the PE as type of PCI bus */ pe->type = EEH_PE_BUS; edev->pe = pe; /* Put the edev to PE */ list_add_tail(&edev->list, &pe->edevs); eeh_unlock(); pr_debug("EEH: Add %s to Bus PE#%x\n", edev->dn->full_name, pe->addr); return 0; } else if (pe && (pe->type & EEH_PE_INVALID)) { list_add_tail(&edev->list, &pe->edevs); edev->pe = pe; /* * We're running to here because of PCI hotplug caused by * EEH recovery. We need clear EEH_PE_INVALID until the top. */ parent = pe; while (parent) { if (!(parent->type & EEH_PE_INVALID)) break; parent->type &= ~EEH_PE_INVALID; parent = parent->parent; } eeh_unlock(); pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n", edev->dn->full_name, pe->addr, pe->parent->addr); return 0; } /* Create a new EEH PE */ pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE); if (!pe) { eeh_unlock(); pr_err("%s: out of memory!\n", __func__); return -ENOMEM; } pe->addr = edev->pe_config_addr; pe->config_addr = edev->config_addr; /* * While doing PE reset, we probably hot-reset the * upstream bridge. However, the PCI devices including * the associated EEH devices might be removed when EEH * core is doing recovery. So that won't safe to retrieve * the bridge through downstream EEH device. We have to * trace the parent PCI bus, then the upstream bridge. */ if (eeh_probe_mode_dev()) pe->bus = eeh_dev_to_pci_dev(edev)->bus; /* * Put the new EEH PE into hierarchy tree. If the parent * can't be found, the newly created PE will be attached * to PHB directly. Otherwise, we have to associate the * PE with its parent. */ parent = eeh_pe_get_parent(edev); if (!parent) { parent = eeh_phb_pe_get(edev->phb); if (!parent) { eeh_unlock(); pr_err("%s: No PHB PE is found (PHB Domain=%d)\n", __func__, edev->phb->global_number); edev->pe = NULL; kfree(pe); return -EEXIST; } } pe->parent = parent; /* * Put the newly created PE into the child list and * link the EEH device accordingly. */ list_add_tail(&pe->child, &parent->child_list); list_add_tail(&edev->list, &pe->edevs); edev->pe = pe; eeh_unlock(); pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n", edev->dn->full_name, pe->addr, pe->parent->addr); return 0; } /** * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE * @edev: EEH device * @purge_pe: remove PE or not * * The PE hierarchy tree might be changed when doing PCI hotplug. * Also, the PCI devices or buses could be removed from the system * during EEH recovery. So we have to call the function remove the * corresponding PE accordingly if necessary. */ int eeh_rmv_from_parent_pe(struct eeh_dev *edev, int purge_pe) { struct eeh_pe *pe, *parent, *child; int cnt; if (!edev->pe) { pr_warning("%s: No PE found for EEH device %s\n", __func__, edev->dn->full_name); return -EEXIST; } eeh_lock(); /* Remove the EEH device */ pe = edev->pe; edev->pe = NULL; list_del(&edev->list); /* * Check if the parent PE includes any EEH devices. * If not, we should delete that. Also, we should * delete the parent PE if it doesn't have associated * child PEs and EEH devices. */ while (1) { parent = pe->parent; if (pe->type & EEH_PE_PHB) break; if (purge_pe) { if (list_empty(&pe->edevs) && list_empty(&pe->child_list)) { list_del(&pe->child); kfree(pe); } else { break; } } else { if (list_empty(&pe->edevs)) { cnt = 0; list_for_each_entry(child, &pe->child_list, child) { if (!(child->type & EEH_PE_INVALID)) { cnt++; break; } } if (!cnt) pe->type |= EEH_PE_INVALID; else break; } } pe = parent; } eeh_unlock(); return 0; } /** * __eeh_pe_state_mark - Mark the state for the PE * @data: EEH PE * @flag: state * * The function is used to mark the indicated state for the given * PE. Also, the associated PCI devices will be put into IO frozen * state as well. */ static void *__eeh_pe_state_mark(void *data, void *flag) { struct eeh_pe *pe = (struct eeh_pe *)data; int state = *((int *)flag); struct eeh_dev *tmp; struct pci_dev *pdev; /* * Mark the PE with the indicated state. Also, * the associated PCI device will be put into * I/O frozen state to avoid I/O accesses from * the PCI device driver. */ pe->state |= state; eeh_pe_for_each_dev(pe, tmp) { pdev = eeh_dev_to_pci_dev(tmp); if (pdev) pdev->error_state = pci_channel_io_frozen; } return NULL; } /** * eeh_pe_state_mark - Mark specified state for PE and its associated device * @pe: EEH PE * * EEH error affects the current PE and its child PEs. The function * is used to mark appropriate state for the affected PEs and the * associated devices. */ void eeh_pe_state_mark(struct eeh_pe *pe, int state) { eeh_lock(); eeh_pe_traverse(pe, __eeh_pe_state_mark, &state); eeh_unlock(); } /** * __eeh_pe_state_clear - Clear state for the PE * @data: EEH PE * @flag: state * * The function is used to clear the indicated state from the * given PE. Besides, we also clear the check count of the PE * as well. */ static void *__eeh_pe_state_clear(void *data, void *flag) { struct eeh_pe *pe = (struct eeh_pe *)data; int state = *((int *)flag); pe->state &= ~state; pe->check_count = 0; return NULL; } /** * eeh_pe_state_clear - Clear state for the PE and its children * @pe: PE * @state: state to be cleared * * When the PE and its children has been recovered from error, * we need clear the error state for that. The function is used * for the purpose. */ void eeh_pe_state_clear(struct eeh_pe *pe, int state) { eeh_lock(); eeh_pe_traverse(pe, __eeh_pe_state_clear, &state); eeh_unlock(); } /** * eeh_restore_one_device_bars - Restore the Base Address Registers for one device * @data: EEH device * @flag: Unused * * Loads the PCI configuration space base address registers, * the expansion ROM base address, the latency timer, and etc. * from the saved values in the device node. */ static void *eeh_restore_one_device_bars(void *data, void *flag) { int i; u32 cmd; struct eeh_dev *edev = (struct eeh_dev *)data; struct device_node *dn = eeh_dev_to_of_node(edev); for (i = 4; i < 10; i++) eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]); /* 12 == Expansion ROM Address */ eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]); #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)]) eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1, SAVED_BYTE(PCI_CACHE_LINE_SIZE)); eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1, SAVED_BYTE(PCI_LATENCY_TIMER)); /* max latency, min grant, interrupt pin and line */ eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]); /* * Restore PERR & SERR bits, some devices require it, * don't touch the other command bits */ eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd); if (edev->config_space[1] & PCI_COMMAND_PARITY) cmd |= PCI_COMMAND_PARITY; else cmd &= ~PCI_COMMAND_PARITY; if (edev->config_space[1] & PCI_COMMAND_SERR) cmd |= PCI_COMMAND_SERR; else cmd &= ~PCI_COMMAND_SERR; eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd); return NULL; } /** * eeh_pe_restore_bars - Restore the PCI config space info * @pe: EEH PE * * This routine performs a recursive walk to the children * of this device as well. */ void eeh_pe_restore_bars(struct eeh_pe *pe) { /* * We needn't take the EEH lock since eeh_pe_dev_traverse() * will take that. */ eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL); } /** * eeh_pe_bus_get - Retrieve PCI bus according to the given PE * @pe: EEH PE * * Retrieve the PCI bus according to the given PE. Basically, * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the * primary PCI bus will be retrieved. The parent bus will be * returned for BUS PE. However, we don't have associated PCI * bus for DEVICE PE. */ struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe) { struct pci_bus *bus = NULL; struct eeh_dev *edev; struct pci_dev *pdev; eeh_lock(); if (pe->type & EEH_PE_PHB) { bus = pe->phb->bus; } else if (pe->type & EEH_PE_BUS || pe->type & EEH_PE_DEVICE) { if (pe->bus) { bus = pe->bus; goto out; } edev = list_first_entry(&pe->edevs, struct eeh_dev, list); pdev = eeh_dev_to_pci_dev(edev); if (pdev) bus = pdev->bus; } out: eeh_unlock(); return bus; }