/* * This file contains common routines for dealing with free of page tables * Along with common page table handling code * * Derived from arch/powerpc/mm/tlb_64.c: * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Dave Engebretsen * Rework for PPC64 port. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include "mmu_decl.h" #ifdef CONFIG_SMP /* * Handle batching of page table freeing on SMP. Page tables are * queued up and send to be freed later by RCU in order to avoid * freeing a page table page that is being walked without locks */ static unsigned long pte_freelist_forced_free; struct pte_freelist_batch { struct rcu_head rcu; unsigned int index; unsigned long tables[0]; }; #define PTE_FREELIST_SIZE \ ((PAGE_SIZE - sizeof(struct pte_freelist_batch)) \ / sizeof(unsigned long)) static void pte_free_smp_sync(void *arg) { /* Do nothing, just ensure we sync with all CPUs */ } /* This is only called when we are critically out of memory * (and fail to get a page in pte_free_tlb). */ static void pgtable_free_now(void *table, unsigned shift) { pte_freelist_forced_free++; smp_call_function(pte_free_smp_sync, NULL, 1); pgtable_free(table, shift); } static void pte_free_rcu_callback(struct rcu_head *head) { struct pte_freelist_batch *batch = container_of(head, struct pte_freelist_batch, rcu); unsigned int i; for (i = 0; i < batch->index; i++) { void *table = (void *)(batch->tables[i] & ~MAX_PGTABLE_INDEX_SIZE); unsigned shift = batch->tables[i] & MAX_PGTABLE_INDEX_SIZE; pgtable_free(table, shift); } free_page((unsigned long)batch); } static void pte_free_submit(struct pte_freelist_batch *batch) { call_rcu_sched(&batch->rcu, pte_free_rcu_callback); } void pgtable_free_tlb(struct mmu_gather *tlb, void *table, unsigned shift) { struct pte_freelist_batch **batchp = &tlb->arch.batch; unsigned long pgf; if (atomic_read(&tlb->mm->mm_users) < 2) { pgtable_free(table, shift); return; } if (*batchp == NULL) { *batchp = (struct pte_freelist_batch *)__get_free_page(GFP_ATOMIC); if (*batchp == NULL) { pgtable_free_now(table, shift); return; } (*batchp)->index = 0; } BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE); pgf = (unsigned long)table | shift; (*batchp)->tables[(*batchp)->index++] = pgf; if ((*batchp)->index == PTE_FREELIST_SIZE) { pte_free_submit(*batchp); *batchp = NULL; } } void pte_free_finish(struct mmu_gather *tlb) { struct pte_freelist_batch **batchp = &tlb->arch.batch; if (*batchp == NULL) return; pte_free_submit(*batchp); *batchp = NULL; } #endif /* CONFIG_SMP */ static inline int is_exec_fault(void) { return current->thread.regs && TRAP(current->thread.regs) == 0x400; } /* We only try to do i/d cache coherency on stuff that looks like * reasonably "normal" PTEs. We currently require a PTE to be present * and we avoid _PAGE_SPECIAL and _PAGE_NO_CACHE. We also only do that * on userspace PTEs */ static inline int pte_looks_normal(pte_t pte) { return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_SPECIAL | _PAGE_NO_CACHE | _PAGE_USER)) == (_PAGE_PRESENT | _PAGE_USER); } struct page * maybe_pte_to_page(pte_t pte) { unsigned long pfn = pte_pfn(pte); struct page *page; if (unlikely(!pfn_valid(pfn))) return NULL; page = pfn_to_page(pfn); if (PageReserved(page)) return NULL; return page; } #if defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 /* Server-style MMU handles coherency when hashing if HW exec permission * is supposed per page (currently 64-bit only). If not, then, we always * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec * support falls into the same category. */ static pte_t set_pte_filter(pte_t pte, unsigned long addr) { pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) || cpu_has_feature(CPU_FTR_NOEXECUTE))) { struct page *pg = maybe_pte_to_page(pte); if (!pg) return pte; if (!test_bit(PG_arch_1, &pg->flags)) { #ifdef CONFIG_8xx /* On 8xx, cache control instructions (particularly * "dcbst" from flush_dcache_icache) fault as write * operation if there is an unpopulated TLB entry * for the address in question. To workaround that, * we invalidate the TLB here, thus avoiding dcbst * misbehaviour. */ /* 8xx doesn't care about PID, size or ind args */ _tlbil_va(addr, 0, 0, 0); #endif /* CONFIG_8xx */ flush_dcache_icache_page(pg); set_bit(PG_arch_1, &pg->flags); } } return pte; } static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma, int dirty) { return pte; } #else /* defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 */ /* Embedded type MMU with HW exec support. This is a bit more complicated * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so * instead we "filter out" the exec permission for non clean pages. */ static pte_t set_pte_filter(pte_t pte, unsigned long addr) { struct page *pg; /* No exec permission in the first place, move on */ if (!(pte_val(pte) & _PAGE_EXEC) || !pte_looks_normal(pte)) return pte; /* If you set _PAGE_EXEC on weird pages you're on your own */ pg = maybe_pte_to_page(pte); if (unlikely(!pg)) return pte; /* If the page clean, we move on */ if (test_bit(PG_arch_1, &pg->flags)) return pte; /* If it's an exec fault, we flush the cache and make it clean */ if (is_exec_fault()) { flush_dcache_icache_page(pg); set_bit(PG_arch_1, &pg->flags); return pte; } /* Else, we filter out _PAGE_EXEC */ return __pte(pte_val(pte) & ~_PAGE_EXEC); } static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma, int dirty) { struct page *pg; /* So here, we only care about exec faults, as we use them * to recover lost _PAGE_EXEC and perform I$/D$ coherency * if necessary. Also if _PAGE_EXEC is already set, same deal, * we just bail out */ if (dirty || (pte_val(pte) & _PAGE_EXEC) || !is_exec_fault()) return pte; #ifdef CONFIG_DEBUG_VM /* So this is an exec fault, _PAGE_EXEC is not set. If it was * an error we would have bailed out earlier in do_page_fault() * but let's make sure of it */ if (WARN_ON(!(vma->vm_flags & VM_EXEC))) return pte; #endif /* CONFIG_DEBUG_VM */ /* If you set _PAGE_EXEC on weird pages you're on your own */ pg = maybe_pte_to_page(pte); if (unlikely(!pg)) goto bail; /* If the page is already clean, we move on */ if (test_bit(PG_arch_1, &pg->flags)) goto bail; /* Clean the page and set PG_arch_1 */ flush_dcache_icache_page(pg); set_bit(PG_arch_1, &pg->flags); bail: return __pte(pte_val(pte) | _PAGE_EXEC); } #endif /* !(defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0) */ /* * set_pte stores a linux PTE into the linux page table. */ void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { #ifdef CONFIG_DEBUG_VM WARN_ON(pte_present(*ptep)); #endif /* Note: mm->context.id might not yet have been assigned as * this context might not have been activated yet when this * is called. */ pte = set_pte_filter(pte, addr); /* Perform the setting of the PTE */ __set_pte_at(mm, addr, ptep, pte, 0); } /* * This is called when relaxing access to a PTE. It's also called in the page * fault path when we don't hit any of the major fault cases, ie, a minor * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have * handled those two for us, we additionally deal with missing execute * permission here on some processors */ int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty) { int changed; entry = set_access_flags_filter(entry, vma, dirty); changed = !pte_same(*(ptep), entry); if (changed) { if (!(vma->vm_flags & VM_HUGETLB)) assert_pte_locked(vma->vm_mm, address); __ptep_set_access_flags(ptep, entry); flush_tlb_page_nohash(vma, address); } return changed; } #ifdef CONFIG_DEBUG_VM void assert_pte_locked(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; if (mm == &init_mm) return; pgd = mm->pgd + pgd_index(addr); BUG_ON(pgd_none(*pgd)); pud = pud_offset(pgd, addr); BUG_ON(pud_none(*pud)); pmd = pmd_offset(pud, addr); BUG_ON(!pmd_present(*pmd)); assert_spin_locked(pte_lockptr(mm, pmd)); } #endif /* CONFIG_DEBUG_VM */