/* * Cell Broadband Engine OProfile Support * * (C) Copyright IBM Corporation 2006 * * Authors: Maynard Johnson * Carl Love * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include "pr_util.h" #define TRACE_ARRAY_SIZE 1024 #define SCALE_SHIFT 14 static u32 *samples; int spu_prof_running; static unsigned int profiling_interval; #define NUM_SPU_BITS_TRBUF 16 #define SPUS_PER_TB_ENTRY 4 #define SPU_PC_MASK 0xFFFF static DEFINE_SPINLOCK(oprof_spu_smpl_arry_lck); unsigned long oprof_spu_smpl_arry_lck_flags; void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset) { unsigned long ns_per_cyc; if (!freq_khz) freq_khz = ppc_proc_freq/1000; /* To calculate a timeout in nanoseconds, the basic * formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency). * To avoid floating point math, we use the scale math * technique as described in linux/jiffies.h. We use * a scale factor of SCALE_SHIFT, which provides 4 decimal places * of precision. This is close enough for the purpose at hand. * * The value of the timeout should be small enough that the hw * trace buffer will not get more then about 1/3 full for the * maximum user specified (the LFSR value) hw sampling frequency. * This is to ensure the trace buffer will never fill even if the * kernel thread scheduling varies under a heavy system load. */ ns_per_cyc = (USEC_PER_SEC << SCALE_SHIFT)/freq_khz; profiling_interval = (ns_per_cyc * cycles_reset) >> SCALE_SHIFT; } /* * Extract SPU PC from trace buffer entry */ static void spu_pc_extract(int cpu, int entry) { /* the trace buffer is 128 bits */ u64 trace_buffer[2]; u64 spu_mask; int spu; spu_mask = SPU_PC_MASK; /* Each SPU PC is 16 bits; hence, four spus in each of * the two 64-bit buffer entries that make up the * 128-bit trace_buffer entry. Process two 64-bit values * simultaneously. * trace[0] SPU PC contents are: 0 1 2 3 * trace[1] SPU PC contents are: 4 5 6 7 */ cbe_read_trace_buffer(cpu, trace_buffer); for (spu = SPUS_PER_TB_ENTRY-1; spu >= 0; spu--) { /* spu PC trace entry is upper 16 bits of the * 18 bit SPU program counter */ samples[spu * TRACE_ARRAY_SIZE + entry] = (spu_mask & trace_buffer[0]) << 2; samples[(spu + SPUS_PER_TB_ENTRY) * TRACE_ARRAY_SIZE + entry] = (spu_mask & trace_buffer[1]) << 2; trace_buffer[0] = trace_buffer[0] >> NUM_SPU_BITS_TRBUF; trace_buffer[1] = trace_buffer[1] >> NUM_SPU_BITS_TRBUF; } } static int cell_spu_pc_collection(int cpu) { u32 trace_addr; int entry; /* process the collected SPU PC for the node */ entry = 0; trace_addr = cbe_read_pm(cpu, trace_address); while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) { /* there is data in the trace buffer to process */ spu_pc_extract(cpu, entry); entry++; if (entry >= TRACE_ARRAY_SIZE) /* spu_samples is full */ break; trace_addr = cbe_read_pm(cpu, trace_address); } return entry; } static enum hrtimer_restart profile_spus(struct hrtimer *timer) { ktime_t kt; int cpu, node, k, num_samples, spu_num; if (!spu_prof_running) goto stop; for_each_online_cpu(cpu) { if (cbe_get_hw_thread_id(cpu)) continue; node = cbe_cpu_to_node(cpu); /* There should only be one kernel thread at a time processing * the samples. In the very unlikely case that the processing * is taking a very long time and multiple kernel threads are * started to process the samples. Make sure only one kernel * thread is working on the samples array at a time. The * sample array must be loaded and then processed for a given * cpu. The sample array is not per cpu. */ spin_lock_irqsave(&oprof_spu_smpl_arry_lck, oprof_spu_smpl_arry_lck_flags); num_samples = cell_spu_pc_collection(cpu); if (num_samples == 0) { spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck, oprof_spu_smpl_arry_lck_flags); continue; } for (k = 0; k < SPUS_PER_NODE; k++) { spu_num = k + (node * SPUS_PER_NODE); spu_sync_buffer(spu_num, samples + (k * TRACE_ARRAY_SIZE), num_samples); } spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck, oprof_spu_smpl_arry_lck_flags); } smp_wmb(); /* insure spu event buffer updates are written */ /* don't want events intermingled... */ kt = ktime_set(0, profiling_interval); if (!spu_prof_running) goto stop; hrtimer_forward(timer, timer->base->get_time(), kt); return HRTIMER_RESTART; stop: printk(KERN_INFO "SPU_PROF: spu-prof timer ending\n"); return HRTIMER_NORESTART; } static struct hrtimer timer; /* * Entry point for SPU cycle profiling. * NOTE: SPU profiling is done system-wide, not per-CPU. * * cycles_reset is the count value specified by the user when * setting up OProfile to count SPU_CYCLES. */ int start_spu_profiling_cycles(unsigned int cycles_reset) { ktime_t kt; pr_debug("timer resolution: %lu\n", TICK_NSEC); kt = ktime_set(0, profiling_interval); hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); hrtimer_set_expires(&timer, kt); timer.function = profile_spus; /* Allocate arrays for collecting SPU PC samples */ samples = kzalloc(SPUS_PER_NODE * TRACE_ARRAY_SIZE * sizeof(u32), GFP_KERNEL); if (!samples) return -ENOMEM; spu_prof_running = 1; hrtimer_start(&timer, kt, HRTIMER_MODE_REL); schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE); return 0; } void stop_spu_profiling_cycles(void) { spu_prof_running = 0; hrtimer_cancel(&timer); kfree(samples); pr_debug("SPU_PROF: stop_spu_profiling_cycles issued\n"); }