/* * spu_switch.c * * (C) Copyright IBM Corp. 2005 * * Author: Mark Nutter * * Host-side part of SPU context switch sequence outlined in * Synergistic Processor Element, Book IV. * * A fully premptive switch of an SPE is very expensive in terms * of time and system resources. SPE Book IV indicates that SPE * allocation should follow a "serially reusable device" model, * in which the SPE is assigned a task until it completes. When * this is not possible, this sequence may be used to premptively * save, and then later (optionally) restore the context of a * program executing on an SPE. * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "spufs.h" #include "spu_save_dump.h" #include "spu_restore_dump.h" #if 0 #define POLL_WHILE_TRUE(_c) { \ do { \ } while (_c); \ } #else #define RELAX_SPIN_COUNT 1000 #define POLL_WHILE_TRUE(_c) { \ do { \ int _i; \ for (_i=0; _iproblem; u32 isolate_state; /* Save, Step 2: * Save, Step 6: * If SPU_Status[E,L,IS] any field is '1', this * SPU is in isolate state and cannot be context * saved at this time. */ isolate_state = SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS; return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0; } static inline void disable_interrupts(struct spu_state *csa, struct spu *spu) { /* Save, Step 3: * Restore, Step 2: * Save INT_Mask_class0 in CSA. * Write INT_MASK_class0 with value of 0. * Save INT_Mask_class1 in CSA. * Write INT_MASK_class1 with value of 0. * Save INT_Mask_class2 in CSA. * Write INT_MASK_class2 with value of 0. * Synchronize all three interrupts to be sure * we no longer execute a handler on another CPU. */ spin_lock_irq(&spu->register_lock); if (csa) { csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0); csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1); csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2); } spu_int_mask_set(spu, 0, 0ul); spu_int_mask_set(spu, 1, 0ul); spu_int_mask_set(spu, 2, 0ul); eieio(); spin_unlock_irq(&spu->register_lock); /* * This flag needs to be set before calling synchronize_irq so * that the update will be visible to the relevant handlers * via a simple load. */ set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags); synchronize_irq(spu->irqs[0]); synchronize_irq(spu->irqs[1]); synchronize_irq(spu->irqs[2]); } static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu) { /* Save, Step 4: * Restore, Step 25. * Set a software watchdog timer, which specifies the * maximum allowable time for a context save sequence. * * For present, this implementation will not set a global * watchdog timer, as virtualization & variable system load * may cause unpredictable execution times. */ } static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu) { /* Save, Step 5: * Restore, Step 3: * Inhibit user-space access (if provided) to this * SPU by unmapping the virtual pages assigned to * the SPU memory-mapped I/O (MMIO) for problem * state. TBD. */ } static inline void set_switch_pending(struct spu_state *csa, struct spu *spu) { /* Save, Step 7: * Restore, Step 5: * Set a software context switch pending flag. * Done above in Step 3 - disable_interrupts(). */ } static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 8: * Suspend DMA and save MFC_CNTL. */ switch (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_SUSPEND_DMA_STATUS_MASK) { case MFC_CNTL_SUSPEND_IN_PROGRESS: POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == MFC_CNTL_SUSPEND_COMPLETE); /* fall through */ case MFC_CNTL_SUSPEND_COMPLETE: if (csa) csa->priv2.mfc_control_RW = in_be64(&priv2->mfc_control_RW) | MFC_CNTL_SUSPEND_DMA_QUEUE; break; case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION: out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE); POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == MFC_CNTL_SUSPEND_COMPLETE); if (csa) csa->priv2.mfc_control_RW = in_be64(&priv2->mfc_control_RW) & ~MFC_CNTL_SUSPEND_DMA_QUEUE & ~MFC_CNTL_SUSPEND_MASK; break; } } static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 9: * Save SPU_Runcntl in the CSA. This value contains * the "Application Desired State". */ csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW); } static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu) { /* Save, Step 10: * Save MFC_SR1 in the CSA. */ csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu); } static inline void save_spu_status(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 11: * Read SPU_Status[R], and save to CSA. */ if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) { csa->prob.spu_status_R = in_be32(&prob->spu_status_R); } else { u32 stopped; out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); stopped = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP; if ((in_be32(&prob->spu_status_R) & stopped) == 0) csa->prob.spu_status_R = SPU_STATUS_RUNNING; else csa->prob.spu_status_R = in_be32(&prob->spu_status_R); } } static inline void save_mfc_stopped_status(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; const u64 mask = MFC_CNTL_DECREMENTER_RUNNING | MFC_CNTL_DMA_QUEUES_EMPTY; /* Save, Step 12: * Read MFC_CNTL[Ds]. Update saved copy of * CSA.MFC_CNTL[Ds]. * * update: do the same with MFC_CNTL[Q]. */ csa->priv2.mfc_control_RW &= ~mask; csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask; } static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 13: * Write MFC_CNTL[Dh] set to a '1' to halt * the decrementer. */ out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK); eieio(); } static inline void save_timebase(struct spu_state *csa, struct spu *spu) { /* Save, Step 14: * Read PPE Timebase High and Timebase low registers * and save in CSA. TBD. */ csa->suspend_time = get_cycles(); } static inline void remove_other_spu_access(struct spu_state *csa, struct spu *spu) { /* Save, Step 15: * Remove other SPU access to this SPU by unmapping * this SPU's pages from their address space. TBD. */ } static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 16: * Restore, Step 11. * Write SPU_MSSync register. Poll SPU_MSSync[P] * for a value of 0. */ out_be64(&prob->spc_mssync_RW, 1UL); POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING); } static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu) { /* Save, Step 17: * Restore, Step 12. * Restore, Step 48. * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register. * Then issue a PPE sync instruction. */ spu_tlb_invalidate(spu); mb(); } static inline void handle_pending_interrupts(struct spu_state *csa, struct spu *spu) { /* Save, Step 18: * Handle any pending interrupts from this SPU * here. This is OS or hypervisor specific. One * option is to re-enable interrupts to handle any * pending interrupts, with the interrupt handlers * recognizing the software Context Switch Pending * flag, to ensure the SPU execution or MFC command * queue is not restarted. TBD. */ } static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; int i; /* Save, Step 19: * If MFC_Cntl[Se]=0 then save * MFC command queues. */ if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) { for (i = 0; i < 8; i++) { csa->priv2.puq[i].mfc_cq_data0_RW = in_be64(&priv2->puq[i].mfc_cq_data0_RW); csa->priv2.puq[i].mfc_cq_data1_RW = in_be64(&priv2->puq[i].mfc_cq_data1_RW); csa->priv2.puq[i].mfc_cq_data2_RW = in_be64(&priv2->puq[i].mfc_cq_data2_RW); csa->priv2.puq[i].mfc_cq_data3_RW = in_be64(&priv2->puq[i].mfc_cq_data3_RW); } for (i = 0; i < 16; i++) { csa->priv2.spuq[i].mfc_cq_data0_RW = in_be64(&priv2->spuq[i].mfc_cq_data0_RW); csa->priv2.spuq[i].mfc_cq_data1_RW = in_be64(&priv2->spuq[i].mfc_cq_data1_RW); csa->priv2.spuq[i].mfc_cq_data2_RW = in_be64(&priv2->spuq[i].mfc_cq_data2_RW); csa->priv2.spuq[i].mfc_cq_data3_RW = in_be64(&priv2->spuq[i].mfc_cq_data3_RW); } } } static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 20: * Save the PPU_QueryMask register * in the CSA. */ csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW); } static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 21: * Save the PPU_QueryType register * in the CSA. */ csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW); } static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save the Prxy_TagStatus register in the CSA. * * It is unnecessary to restore dma_tagstatus_R, however, * dma_tagstatus_R in the CSA is accessed via backing_ops, so * we must save it. */ csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R); } static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 22: * Save the MFC_CSR_TSQ register * in the LSCSA. */ csa->priv2.spu_tag_status_query_RW = in_be64(&priv2->spu_tag_status_query_RW); } static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 23: * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2 * registers in the CSA. */ csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW); csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW); } static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 24: * Save the MFC_CSR_ATO register in * the CSA. */ csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW); } static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu) { /* Save, Step 25: * Save the MFC_TCLASS_ID register in * the CSA. */ csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu); } static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu) { /* Save, Step 26: * Restore, Step 23. * Write the MFC_TCLASS_ID register with * the value 0x10000000. */ spu_mfc_tclass_id_set(spu, 0x10000000); eieio(); } static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 27: * Restore, Step 14. * Write MFC_CNTL[Pc]=1 (purge queue). */ out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST | MFC_CNTL_SUSPEND_MASK); eieio(); } static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 28: * Poll MFC_CNTL[Ps] until value '11' is read * (purge complete). */ POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_PURGE_DMA_STATUS_MASK) == MFC_CNTL_PURGE_DMA_COMPLETE); } static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu) { /* Save, Step 30: * Restore, Step 18: * Write MFC_SR1 with MFC_SR1[D=0,S=1] and * MFC_SR1[TL,R,Pr,T] set correctly for the * OS specific environment. * * Implementation note: The SPU-side code * for save/restore is privileged, so the * MFC_SR1[Pr] bit is not set. * */ spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK | MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK)); } static inline void save_spu_npc(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 31: * Save SPU_NPC in the CSA. */ csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW); } static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 32: * Save SPU_PrivCntl in the CSA. */ csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW); } static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 33: * Restore, Step 16: * Write SPU_PrivCntl[S,Le,A] fields reset to 0. */ out_be64(&priv2->spu_privcntl_RW, 0UL); eieio(); } static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 34: * Save SPU_LSLR in the CSA. */ csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW); } static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 35: * Restore, Step 17. * Reset SPU_LSLR. */ out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK); eieio(); } static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 36: * Save SPU_Cfg in the CSA. */ csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW); } static inline void save_pm_trace(struct spu_state *csa, struct spu *spu) { /* Save, Step 37: * Save PM_Trace_Tag_Wait_Mask in the CSA. * Not performed by this implementation. */ } static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu) { /* Save, Step 38: * Save RA_GROUP_ID register and the * RA_ENABLE reigster in the CSA. */ csa->priv1.resource_allocation_groupID_RW = spu_resource_allocation_groupID_get(spu); csa->priv1.resource_allocation_enable_RW = spu_resource_allocation_enable_get(spu); } static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 39: * Save MB_Stat register in the CSA. */ csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R); } static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 40: * Save the PPU_MB register in the CSA. */ csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R); } static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 41: * Save the PPUINT_MB register in the CSA. */ csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R); } static inline void save_ch_part1(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; int i; /* Save, Step 42: */ /* Save CH 1, without channel count */ out_be64(&priv2->spu_chnlcntptr_RW, 1); csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW); /* Save the following CH: [0,3,4,24,25,27] */ for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { idx = ch_indices[i]; out_be64(&priv2->spu_chnlcntptr_RW, idx); eieio(); csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW); csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW); out_be64(&priv2->spu_chnldata_RW, 0UL); out_be64(&priv2->spu_chnlcnt_RW, 0UL); eieio(); } } static inline void save_spu_mb(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; int i; /* Save, Step 43: * Save SPU Read Mailbox Channel. */ out_be64(&priv2->spu_chnlcntptr_RW, 29UL); eieio(); csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW); for (i = 0; i < 4; i++) { csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW); } out_be64(&priv2->spu_chnlcnt_RW, 0UL); eieio(); } static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 44: * Save MFC_CMD Channel. */ out_be64(&priv2->spu_chnlcntptr_RW, 21UL); eieio(); csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW); eieio(); } static inline void reset_ch(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL }; u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL }; u64 idx; int i; /* Save, Step 45: * Reset the following CH: [21, 23, 28, 30] */ for (i = 0; i < 4; i++) { idx = ch_indices[i]; out_be64(&priv2->spu_chnlcntptr_RW, idx); eieio(); out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); eieio(); } } static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 46: * Restore, Step 25. * Write MFC_CNTL[Sc]=0 (resume queue processing). */ out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE); } static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu, unsigned int *code, int code_size) { /* Save, Step 47: * Restore, Step 30. * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All * register, then initialize SLB_VSID and SLB_ESID * to provide access to SPU context save code and * LSCSA. * * This implementation places both the context * switch code and LSCSA in kernel address space. * * Further this implementation assumes that the * MFC_SR1[R]=1 (in other words, assume that * translation is desired by OS environment). */ spu_invalidate_slbs(spu); spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size); } static inline void set_switch_active(struct spu_state *csa, struct spu *spu) { /* Save, Step 48: * Restore, Step 23. * Change the software context switch pending flag * to context switch active. * * This implementation does not uses a switch active flag. */ clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags); mb(); } static inline void enable_interrupts(struct spu_state *csa, struct spu *spu) { unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR | CLASS1_ENABLE_STORAGE_FAULT_INTR; /* Save, Step 49: * Restore, Step 22: * Reset and then enable interrupts, as * needed by OS. * * This implementation enables only class1 * (translation) interrupts. */ spin_lock_irq(&spu->register_lock); spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK); spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); spu_int_mask_set(spu, 0, 0ul); spu_int_mask_set(spu, 1, class1_mask); spu_int_mask_set(spu, 2, 0ul); spin_unlock_irq(&spu->register_lock); } static inline int send_mfc_dma(struct spu *spu, unsigned long ea, unsigned int ls_offset, unsigned int size, unsigned int tag, unsigned int rclass, unsigned int cmd) { struct spu_problem __iomem *prob = spu->problem; union mfc_tag_size_class_cmd command; unsigned int transfer_size; volatile unsigned int status = 0x0; while (size > 0) { transfer_size = (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size; command.u.mfc_size = transfer_size; command.u.mfc_tag = tag; command.u.mfc_rclassid = rclass; command.u.mfc_cmd = cmd; do { out_be32(&prob->mfc_lsa_W, ls_offset); out_be64(&prob->mfc_ea_W, ea); out_be64(&prob->mfc_union_W.all64, command.all64); status = in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32); if (unlikely(status & 0x2)) { cpu_relax(); } } while (status & 0x3); size -= transfer_size; ea += transfer_size; ls_offset += transfer_size; } return 0; } static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu) { unsigned long addr = (unsigned long)&csa->lscsa->ls[0]; unsigned int ls_offset = 0x0; unsigned int size = 16384; unsigned int tag = 0; unsigned int rclass = 0; unsigned int cmd = MFC_PUT_CMD; /* Save, Step 50: * Issue a DMA command to copy the first 16K bytes * of local storage to the CSA. */ send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); } static inline void set_spu_npc(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 51: * Restore, Step 31. * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry * point address of context save code in local * storage. * * This implementation uses SPU-side save/restore * programs with entry points at LSA of 0. */ out_be32(&prob->spu_npc_RW, 0); eieio(); } static inline void set_signot1(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; union { u64 ull; u32 ui[2]; } addr64; /* Save, Step 52: * Restore, Step 32: * Write SPU_Sig_Notify_1 register with upper 32-bits * of the CSA.LSCSA effective address. */ addr64.ull = (u64) csa->lscsa; out_be32(&prob->signal_notify1, addr64.ui[0]); eieio(); } static inline void set_signot2(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; union { u64 ull; u32 ui[2]; } addr64; /* Save, Step 53: * Restore, Step 33: * Write SPU_Sig_Notify_2 register with lower 32-bits * of the CSA.LSCSA effective address. */ addr64.ull = (u64) csa->lscsa; out_be32(&prob->signal_notify2, addr64.ui[1]); eieio(); } static inline void send_save_code(struct spu_state *csa, struct spu *spu) { unsigned long addr = (unsigned long)&spu_save_code[0]; unsigned int ls_offset = 0x0; unsigned int size = sizeof(spu_save_code); unsigned int tag = 0; unsigned int rclass = 0; unsigned int cmd = MFC_GETFS_CMD; /* Save, Step 54: * Issue a DMA command to copy context save code * to local storage and start SPU. */ send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); } static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 55: * Restore, Step 38. * Write PPU_QueryMask=1 (enable Tag Group 0) * and issue eieio instruction. */ out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0)); eieio(); } static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; u32 mask = MFC_TAGID_TO_TAGMASK(0); unsigned long flags; /* Save, Step 56: * Restore, Step 39. * Restore, Step 39. * Restore, Step 46. * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete) * or write PPU_QueryType[TS]=01 and wait for Tag Group * Complete Interrupt. Write INT_Stat_Class0 or * INT_Stat_Class2 with value of 'handled'. */ POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask); local_irq_save(flags); spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); local_irq_restore(flags); } static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; unsigned long flags; /* Save, Step 57: * Restore, Step 40. * Poll until SPU_Status[R]=0 or wait for SPU Class 0 * or SPU Class 2 interrupt. Write INT_Stat_class0 * or INT_Stat_class2 with value of handled. */ POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); local_irq_save(flags); spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); local_irq_restore(flags); } static inline int check_save_status(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; u32 complete; /* Save, Step 54: * If SPU_Status[P]=1 and SPU_Status[SC] = "success", * context save succeeded, otherwise context save * failed. */ complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) | SPU_STATUS_STOPPED_BY_STOP); return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0; } static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu) { /* Restore, Step 4: * If required, notify the "using application" that * the SPU task has been terminated. TBD. */ } static inline void suspend_mfc_and_halt_decr(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 7: * Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend * the queue and halt the decrementer. */ out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE | MFC_CNTL_DECREMENTER_HALTED); eieio(); } static inline void wait_suspend_mfc_complete(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 8: * Restore, Step 47. * Poll MFC_CNTL[Ss] until 11 is returned. */ POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == MFC_CNTL_SUSPEND_COMPLETE); } static inline int suspend_spe(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Restore, Step 9: * If SPU_Status[R]=1, stop SPU execution * and wait for stop to complete. * * Returns 1 if SPU_Status[R]=1 on entry. * 0 otherwise */ if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) { if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_EXIT_STATUS) { POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); } if ((in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_LOAD_STATUS) || (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE)) { out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); out_be32(&prob->spu_runcntl_RW, 0x2); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); } if (in_be32(&prob->spu_status_R) & SPU_STATUS_WAITING_FOR_CHANNEL) { out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); } return 1; } return 0; } static inline void clear_spu_status(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Restore, Step 10: * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1, * release SPU from isolate state. */ if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) { if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_EXIT_STATUS) { spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK); eieio(); out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); } if ((in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_LOAD_STATUS) || (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE)) { spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK); eieio(); out_be32(&prob->spu_runcntl_RW, 0x2); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); } } } static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; u64 idx; int i; /* Restore, Step 20: */ /* Reset CH 1 */ out_be64(&priv2->spu_chnlcntptr_RW, 1); out_be64(&priv2->spu_chnldata_RW, 0UL); /* Reset the following CH: [0,3,4,24,25,27] */ for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { idx = ch_indices[i]; out_be64(&priv2->spu_chnlcntptr_RW, idx); eieio(); out_be64(&priv2->spu_chnldata_RW, 0UL); out_be64(&priv2->spu_chnlcnt_RW, 0UL); eieio(); } } static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL }; u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL }; u64 idx; int i; /* Restore, Step 21: * Reset the following CH: [21, 23, 28, 29, 30] */ for (i = 0; i < 5; i++) { idx = ch_indices[i]; out_be64(&priv2->spu_chnlcntptr_RW, idx); eieio(); out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); eieio(); } } static inline void setup_spu_status_part1(struct spu_state *csa, struct spu *spu) { u32 status_P = SPU_STATUS_STOPPED_BY_STOP; u32 status_I = SPU_STATUS_INVALID_INSTR; u32 status_H = SPU_STATUS_STOPPED_BY_HALT; u32 status_S = SPU_STATUS_SINGLE_STEP; u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR; u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP; u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP; u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR; u32 status_code; /* Restore, Step 27: * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct * instruction sequence to the end of the SPU based restore * code (after the "context restored" stop and signal) to * restore the correct SPU status. * * NOTE: Rather than modifying the SPU executable, we * instead add a new 'stopped_status' field to the * LSCSA. The SPU-side restore reads this field and * takes the appropriate action when exiting. */ status_code = (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF; if ((csa->prob.spu_status_R & status_P_I) == status_P_I) { /* SPU_Status[P,I]=1 - Illegal Instruction followed * by Stop and Signal instruction, followed by 'br -4'. * */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I; csa->lscsa->stopped_status.slot[1] = status_code; } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) { /* SPU_Status[P,H]=1 - Halt Conditional, followed * by Stop and Signal instruction, followed by * 'br -4'. */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H; csa->lscsa->stopped_status.slot[1] = status_code; } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) { /* SPU_Status[S,P]=1 - Stop and Signal instruction * followed by 'br -4'. */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P; csa->lscsa->stopped_status.slot[1] = status_code; } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) { /* SPU_Status[S,I]=1 - Illegal instruction followed * by 'br -4'. */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I; csa->lscsa->stopped_status.slot[1] = status_code; } else if ((csa->prob.spu_status_R & status_P) == status_P) { /* SPU_Status[P]=1 - Stop and Signal instruction * followed by 'br -4'. */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P; csa->lscsa->stopped_status.slot[1] = status_code; } else if ((csa->prob.spu_status_R & status_H) == status_H) { /* SPU_Status[H]=1 - Halt Conditional, followed * by 'br -4'. */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H; } else if ((csa->prob.spu_status_R & status_S) == status_S) { /* SPU_Status[S]=1 - Two nop instructions. */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S; } else if ((csa->prob.spu_status_R & status_I) == status_I) { /* SPU_Status[I]=1 - Illegal instruction followed * by 'br -4'. */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I; } } static inline void setup_spu_status_part2(struct spu_state *csa, struct spu *spu) { u32 mask; /* Restore, Step 28: * If the CSA.SPU_Status[I,S,H,P,R]=0 then * add a 'br *' instruction to the end of * the SPU based restore code. * * NOTE: Rather than modifying the SPU executable, we * instead add a new 'stopped_status' field to the * LSCSA. The SPU-side restore reads this field and * takes the appropriate action when exiting. */ mask = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING; if (!(csa->prob.spu_status_R & mask)) { csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R; } } static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu) { /* Restore, Step 29: * Restore RA_GROUP_ID register and the * RA_ENABLE reigster from the CSA. */ spu_resource_allocation_groupID_set(spu, csa->priv1.resource_allocation_groupID_RW); spu_resource_allocation_enable_set(spu, csa->priv1.resource_allocation_enable_RW); } static inline void send_restore_code(struct spu_state *csa, struct spu *spu) { unsigned long addr = (unsigned long)&spu_restore_code[0]; unsigned int ls_offset = 0x0; unsigned int size = sizeof(spu_restore_code); unsigned int tag = 0; unsigned int rclass = 0; unsigned int cmd = MFC_GETFS_CMD; /* Restore, Step 37: * Issue MFC DMA command to copy context * restore code to local storage. */ send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); } static inline void setup_decr(struct spu_state *csa, struct spu *spu) { /* Restore, Step 34: * If CSA.MFC_CNTL[Ds]=1 (decrementer was * running) then adjust decrementer, set * decrementer running status in LSCSA, * and set decrementer "wrapped" status * in LSCSA. */ if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) { cycles_t resume_time = get_cycles(); cycles_t delta_time = resume_time - csa->suspend_time; csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING; if (csa->lscsa->decr.slot[0] < delta_time) { csa->lscsa->decr_status.slot[0] |= SPU_DECR_STATUS_WRAPPED; } csa->lscsa->decr.slot[0] -= delta_time; } else { csa->lscsa->decr_status.slot[0] = 0; } } static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu) { /* Restore, Step 35: * Copy the CSA.PU_MB data into the LSCSA. */ csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R; } static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu) { /* Restore, Step 36: * Copy the CSA.PUINT_MB data into the LSCSA. */ csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R; } static inline int check_restore_status(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; u32 complete; /* Restore, Step 40: * If SPU_Status[P]=1 and SPU_Status[SC] = "success", * context restore succeeded, otherwise context restore * failed. */ complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) | SPU_STATUS_STOPPED_BY_STOP); return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0; } static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 41: * Restore SPU_PrivCntl from the CSA. */ out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW); eieio(); } static inline void restore_status_part1(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; u32 mask; /* Restore, Step 42: * If any CSA.SPU_Status[I,S,H,P]=1, then * restore the error or single step state. */ mask = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP; if (csa->prob.spu_status_R & mask) { out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); } } static inline void restore_status_part2(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; u32 mask; /* Restore, Step 43: * If all CSA.SPU_Status[I,S,H,P,R]=0 then write * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1, * then write '00' to SPU_RunCntl[R0R1] and wait * for SPU_Status[R]=0. */ mask = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING; if (!(csa->prob.spu_status_R & mask)) { out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); eieio(); POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); } } static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu) { unsigned long addr = (unsigned long)&csa->lscsa->ls[0]; unsigned int ls_offset = 0x0; unsigned int size = 16384; unsigned int tag = 0; unsigned int rclass = 0; unsigned int cmd = MFC_GET_CMD; /* Restore, Step 44: * Issue a DMA command to restore the first * 16kb of local storage from CSA. */ send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); } static inline void suspend_mfc(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 47. * Write MFC_Cntl[Sc,Sm]='1','0' to suspend * the queue. */ out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE); eieio(); } static inline void clear_interrupts(struct spu_state *csa, struct spu *spu) { /* Restore, Step 49: * Write INT_MASK_class0 with value of 0. * Write INT_MASK_class1 with value of 0. * Write INT_MASK_class2 with value of 0. * Write INT_STAT_class0 with value of -1. * Write INT_STAT_class1 with value of -1. * Write INT_STAT_class2 with value of -1. */ spin_lock_irq(&spu->register_lock); spu_int_mask_set(spu, 0, 0ul); spu_int_mask_set(spu, 1, 0ul); spu_int_mask_set(spu, 2, 0ul); spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK); spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); spin_unlock_irq(&spu->register_lock); } static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; int i; /* Restore, Step 50: * If MFC_Cntl[Se]!=0 then restore * MFC command queues. */ if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) { for (i = 0; i < 8; i++) { out_be64(&priv2->puq[i].mfc_cq_data0_RW, csa->priv2.puq[i].mfc_cq_data0_RW); out_be64(&priv2->puq[i].mfc_cq_data1_RW, csa->priv2.puq[i].mfc_cq_data1_RW); out_be64(&priv2->puq[i].mfc_cq_data2_RW, csa->priv2.puq[i].mfc_cq_data2_RW); out_be64(&priv2->puq[i].mfc_cq_data3_RW, csa->priv2.puq[i].mfc_cq_data3_RW); } for (i = 0; i < 16; i++) { out_be64(&priv2->spuq[i].mfc_cq_data0_RW, csa->priv2.spuq[i].mfc_cq_data0_RW); out_be64(&priv2->spuq[i].mfc_cq_data1_RW, csa->priv2.spuq[i].mfc_cq_data1_RW); out_be64(&priv2->spuq[i].mfc_cq_data2_RW, csa->priv2.spuq[i].mfc_cq_data2_RW); out_be64(&priv2->spuq[i].mfc_cq_data3_RW, csa->priv2.spuq[i].mfc_cq_data3_RW); } } eieio(); } static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Restore, Step 51: * Restore the PPU_QueryMask register from CSA. */ out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW); eieio(); } static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Restore, Step 52: * Restore the PPU_QueryType register from CSA. */ out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW); eieio(); } static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 53: * Restore the MFC_CSR_TSQ register from CSA. */ out_be64(&priv2->spu_tag_status_query_RW, csa->priv2.spu_tag_status_query_RW); eieio(); } static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 54: * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2 * registers from CSA. */ out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW); out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW); eieio(); } static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 55: * Restore the MFC_CSR_ATO register from CSA. */ out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW); } static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu) { /* Restore, Step 56: * Restore the MFC_TCLASS_ID register from CSA. */ spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW); eieio(); } static inline void set_llr_event(struct spu_state *csa, struct spu *spu) { u64 ch0_cnt, ch0_data; u64 ch1_data; /* Restore, Step 57: * Set the Lock Line Reservation Lost Event by: * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1. * 2. If CSA.SPU_Channel_0_Count=0 and * CSA.SPU_Wr_Event_Mask[Lr]=1 and * CSA.SPU_Event_Status[Lr]=0 then set * CSA.SPU_Event_Status_Count=1. */ ch0_cnt = csa->spu_chnlcnt_RW[0]; ch0_data = csa->spu_chnldata_RW[0]; ch1_data = csa->spu_chnldata_RW[1]; csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT; if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) && (ch1_data & MFC_LLR_LOST_EVENT)) { csa->spu_chnlcnt_RW[0] = 1; } } static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu) { /* Restore, Step 58: * If the status of the CSA software decrementer * "wrapped" flag is set, OR in a '1' to * CSA.SPU_Event_Status[Tm]. */ if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED)) return; if ((csa->spu_chnlcnt_RW[0] == 0) && (csa->spu_chnldata_RW[1] & 0x20) && !(csa->spu_chnldata_RW[0] & 0x20)) csa->spu_chnlcnt_RW[0] = 1; csa->spu_chnldata_RW[0] |= 0x20; } static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; int i; /* Restore, Step 59: * Restore the following CH: [0,3,4,24,25,27] */ for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { idx = ch_indices[i]; out_be64(&priv2->spu_chnlcntptr_RW, idx); eieio(); out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]); out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]); eieio(); } } static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; u64 ch_indices[3] = { 9UL, 21UL, 23UL }; u64 ch_counts[3] = { 1UL, 16UL, 1UL }; u64 idx; int i; /* Restore, Step 60: * Restore the following CH: [9,21,23]. */ ch_counts[0] = 1UL; ch_counts[1] = csa->spu_chnlcnt_RW[21]; ch_counts[2] = 1UL; for (i = 0; i < 3; i++) { idx = ch_indices[i]; out_be64(&priv2->spu_chnlcntptr_RW, idx); eieio(); out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); eieio(); } } static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 61: * Restore the SPU_LSLR register from CSA. */ out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW); eieio(); } static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 62: * Restore the SPU_Cfg register from CSA. */ out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW); eieio(); } static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu) { /* Restore, Step 63: * Restore PM_Trace_Tag_Wait_Mask from CSA. * Not performed by this implementation. */ } static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Restore, Step 64: * Restore SPU_NPC from CSA. */ out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW); eieio(); } static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; int i; /* Restore, Step 65: * Restore MFC_RdSPU_MB from CSA. */ out_be64(&priv2->spu_chnlcntptr_RW, 29UL); eieio(); out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]); for (i = 0; i < 4; i++) { out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]); } eieio(); } static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; u32 dummy = 0; /* Restore, Step 66: * If CSA.MB_Stat[P]=0 (mailbox empty) then * read from the PPU_MB register. */ if ((csa->prob.mb_stat_R & 0xFF) == 0) { dummy = in_be32(&prob->pu_mb_R); eieio(); } } static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; u64 dummy = 0UL; /* Restore, Step 66: * If CSA.MB_Stat[I]=0 (mailbox empty) then * read from the PPUINT_MB register. */ if ((csa->prob.mb_stat_R & 0xFF0000) == 0) { dummy = in_be64(&priv2->puint_mb_R); eieio(); spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR); eieio(); } } static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu) { /* Restore, Step 69: * Restore the MFC_SR1 register from CSA. */ spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW); eieio(); } static inline void set_int_route(struct spu_state *csa, struct spu *spu) { struct spu_context *ctx = spu->ctx; spu_cpu_affinity_set(spu, ctx->last_ran); } static inline void restore_other_spu_access(struct spu_state *csa, struct spu *spu) { /* Restore, Step 70: * Restore other SPU mappings to this SPU. TBD. */ } static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Restore, Step 71: * If CSA.SPU_Status[R]=1 then write * SPU_RunCntl[R0R1]='01'. */ if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) { out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); eieio(); } } static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 72: * Restore the MFC_CNTL register for the CSA. */ out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW); eieio(); /* * FIXME: this is to restart a DMA that we were processing * before the save. better remember the fault information * in the csa instead. */ if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) { out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND); eieio(); } } static inline void enable_user_access(struct spu_state *csa, struct spu *spu) { /* Restore, Step 73: * Enable user-space access (if provided) to this * SPU by mapping the virtual pages assigned to * the SPU memory-mapped I/O (MMIO) for problem * state. TBD. */ } static inline void reset_switch_active(struct spu_state *csa, struct spu *spu) { /* Restore, Step 74: * Reset the "context switch active" flag. * Not performed by this implementation. */ } static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu) { /* Restore, Step 75: * Re-enable SPU interrupts. */ spin_lock_irq(&spu->register_lock); spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW); spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW); spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW); spin_unlock_irq(&spu->register_lock); } static int quiece_spu(struct spu_state *prev, struct spu *spu) { /* * Combined steps 2-18 of SPU context save sequence, which * quiesce the SPU state (disable SPU execution, MFC command * queues, decrementer, SPU interrupts, etc.). * * Returns 0 on success. * 2 if failed step 2. * 6 if failed step 6. */ if (check_spu_isolate(prev, spu)) { /* Step 2. */ return 2; } disable_interrupts(prev, spu); /* Step 3. */ set_watchdog_timer(prev, spu); /* Step 4. */ inhibit_user_access(prev, spu); /* Step 5. */ if (check_spu_isolate(prev, spu)) { /* Step 6. */ return 6; } set_switch_pending(prev, spu); /* Step 7. */ save_mfc_cntl(prev, spu); /* Step 8. */ save_spu_runcntl(prev, spu); /* Step 9. */ save_mfc_sr1(prev, spu); /* Step 10. */ save_spu_status(prev, spu); /* Step 11. */ save_mfc_stopped_status(prev, spu); /* Step 12. */ halt_mfc_decr(prev, spu); /* Step 13. */ save_timebase(prev, spu); /* Step 14. */ remove_other_spu_access(prev, spu); /* Step 15. */ do_mfc_mssync(prev, spu); /* Step 16. */ issue_mfc_tlbie(prev, spu); /* Step 17. */ handle_pending_interrupts(prev, spu); /* Step 18. */ return 0; } static void save_csa(struct spu_state *prev, struct spu *spu) { /* * Combine steps 19-44 of SPU context save sequence, which * save regions of the privileged & problem state areas. */ save_mfc_queues(prev, spu); /* Step 19. */ save_ppu_querymask(prev, spu); /* Step 20. */ save_ppu_querytype(prev, spu); /* Step 21. */ save_ppu_tagstatus(prev, spu); /* NEW. */ save_mfc_csr_tsq(prev, spu); /* Step 22. */ save_mfc_csr_cmd(prev, spu); /* Step 23. */ save_mfc_csr_ato(prev, spu); /* Step 24. */ save_mfc_tclass_id(prev, spu); /* Step 25. */ set_mfc_tclass_id(prev, spu); /* Step 26. */ save_mfc_cmd(prev, spu); /* Step 26a - moved from 44. */ purge_mfc_queue(prev, spu); /* Step 27. */ wait_purge_complete(prev, spu); /* Step 28. */ setup_mfc_sr1(prev, spu); /* Step 30. */ save_spu_npc(prev, spu); /* Step 31. */ save_spu_privcntl(prev, spu); /* Step 32. */ reset_spu_privcntl(prev, spu); /* Step 33. */ save_spu_lslr(prev, spu); /* Step 34. */ reset_spu_lslr(prev, spu); /* Step 35. */ save_spu_cfg(prev, spu); /* Step 36. */ save_pm_trace(prev, spu); /* Step 37. */ save_mfc_rag(prev, spu); /* Step 38. */ save_ppu_mb_stat(prev, spu); /* Step 39. */ save_ppu_mb(prev, spu); /* Step 40. */ save_ppuint_mb(prev, spu); /* Step 41. */ save_ch_part1(prev, spu); /* Step 42. */ save_spu_mb(prev, spu); /* Step 43. */ reset_ch(prev, spu); /* Step 45. */ } static void save_lscsa(struct spu_state *prev, struct spu *spu) { /* * Perform steps 46-57 of SPU context save sequence, * which save regions of the local store and register * file. */ resume_mfc_queue(prev, spu); /* Step 46. */ /* Step 47. */ setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code)); set_switch_active(prev, spu); /* Step 48. */ enable_interrupts(prev, spu); /* Step 49. */ save_ls_16kb(prev, spu); /* Step 50. */ set_spu_npc(prev, spu); /* Step 51. */ set_signot1(prev, spu); /* Step 52. */ set_signot2(prev, spu); /* Step 53. */ send_save_code(prev, spu); /* Step 54. */ set_ppu_querymask(prev, spu); /* Step 55. */ wait_tag_complete(prev, spu); /* Step 56. */ wait_spu_stopped(prev, spu); /* Step 57. */ } static void force_spu_isolate_exit(struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; struct spu_priv2 __iomem *priv2 = spu->priv2; /* Stop SPE execution and wait for completion. */ out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); iobarrier_rw(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); /* Restart SPE master runcntl. */ spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK); iobarrier_w(); /* Initiate isolate exit request and wait for completion. */ out_be64(&priv2->spu_privcntl_RW, 4LL); iobarrier_w(); out_be32(&prob->spu_runcntl_RW, 2); iobarrier_rw(); POLL_WHILE_FALSE((in_be32(&prob->spu_status_R) & SPU_STATUS_STOPPED_BY_STOP)); /* Reset load request to normal. */ out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL); iobarrier_w(); } /** * stop_spu_isolate * Check SPU run-control state and force isolated * exit function as necessary. */ static void stop_spu_isolate(struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) { /* The SPU is in isolated state; the only way * to get it out is to perform an isolated * exit (clean) operation. */ force_spu_isolate_exit(spu); } } static void harvest(struct spu_state *prev, struct spu *spu) { /* * Perform steps 2-25 of SPU context restore sequence, * which resets an SPU either after a failed save, or * when using SPU for first time. */ disable_interrupts(prev, spu); /* Step 2. */ inhibit_user_access(prev, spu); /* Step 3. */ terminate_spu_app(prev, spu); /* Step 4. */ set_switch_pending(prev, spu); /* Step 5. */ stop_spu_isolate(spu); /* NEW. */ remove_other_spu_access(prev, spu); /* Step 6. */ suspend_mfc_and_halt_decr(prev, spu); /* Step 7. */ wait_suspend_mfc_complete(prev, spu); /* Step 8. */ if (!suspend_spe(prev, spu)) /* Step 9. */ clear_spu_status(prev, spu); /* Step 10. */ do_mfc_mssync(prev, spu); /* Step 11. */ issue_mfc_tlbie(prev, spu); /* Step 12. */ handle_pending_interrupts(prev, spu); /* Step 13. */ purge_mfc_queue(prev, spu); /* Step 14. */ wait_purge_complete(prev, spu); /* Step 15. */ reset_spu_privcntl(prev, spu); /* Step 16. */ reset_spu_lslr(prev, spu); /* Step 17. */ setup_mfc_sr1(prev, spu); /* Step 18. */ spu_invalidate_slbs(spu); /* Step 19. */ reset_ch_part1(prev, spu); /* Step 20. */ reset_ch_part2(prev, spu); /* Step 21. */ enable_interrupts(prev, spu); /* Step 22. */ set_switch_active(prev, spu); /* Step 23. */ set_mfc_tclass_id(prev, spu); /* Step 24. */ resume_mfc_queue(prev, spu); /* Step 25. */ } static void restore_lscsa(struct spu_state *next, struct spu *spu) { /* * Perform steps 26-40 of SPU context restore sequence, * which restores regions of the local store and register * file. */ set_watchdog_timer(next, spu); /* Step 26. */ setup_spu_status_part1(next, spu); /* Step 27. */ setup_spu_status_part2(next, spu); /* Step 28. */ restore_mfc_rag(next, spu); /* Step 29. */ /* Step 30. */ setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code)); set_spu_npc(next, spu); /* Step 31. */ set_signot1(next, spu); /* Step 32. */ set_signot2(next, spu); /* Step 33. */ setup_decr(next, spu); /* Step 34. */ setup_ppu_mb(next, spu); /* Step 35. */ setup_ppuint_mb(next, spu); /* Step 36. */ send_restore_code(next, spu); /* Step 37. */ set_ppu_querymask(next, spu); /* Step 38. */ wait_tag_complete(next, spu); /* Step 39. */ wait_spu_stopped(next, spu); /* Step 40. */ } static void restore_csa(struct spu_state *next, struct spu *spu) { /* * Combine steps 41-76 of SPU context restore sequence, which * restore regions of the privileged & problem state areas. */ restore_spu_privcntl(next, spu); /* Step 41. */ restore_status_part1(next, spu); /* Step 42. */ restore_status_part2(next, spu); /* Step 43. */ restore_ls_16kb(next, spu); /* Step 44. */ wait_tag_complete(next, spu); /* Step 45. */ suspend_mfc(next, spu); /* Step 46. */ wait_suspend_mfc_complete(next, spu); /* Step 47. */ issue_mfc_tlbie(next, spu); /* Step 48. */ clear_interrupts(next, spu); /* Step 49. */ restore_mfc_queues(next, spu); /* Step 50. */ restore_ppu_querymask(next, spu); /* Step 51. */ restore_ppu_querytype(next, spu); /* Step 52. */ restore_mfc_csr_tsq(next, spu); /* Step 53. */ restore_mfc_csr_cmd(next, spu); /* Step 54. */ restore_mfc_csr_ato(next, spu); /* Step 55. */ restore_mfc_tclass_id(next, spu); /* Step 56. */ set_llr_event(next, spu); /* Step 57. */ restore_decr_wrapped(next, spu); /* Step 58. */ restore_ch_part1(next, spu); /* Step 59. */ restore_ch_part2(next, spu); /* Step 60. */ restore_spu_lslr(next, spu); /* Step 61. */ restore_spu_cfg(next, spu); /* Step 62. */ restore_pm_trace(next, spu); /* Step 63. */ restore_spu_npc(next, spu); /* Step 64. */ restore_spu_mb(next, spu); /* Step 65. */ check_ppu_mb_stat(next, spu); /* Step 66. */ check_ppuint_mb_stat(next, spu); /* Step 67. */ spu_invalidate_slbs(spu); /* Modified Step 68. */ restore_mfc_sr1(next, spu); /* Step 69. */ set_int_route(next, spu); /* NEW */ restore_other_spu_access(next, spu); /* Step 70. */ restore_spu_runcntl(next, spu); /* Step 71. */ restore_mfc_cntl(next, spu); /* Step 72. */ enable_user_access(next, spu); /* Step 73. */ reset_switch_active(next, spu); /* Step 74. */ reenable_interrupts(next, spu); /* Step 75. */ } static int __do_spu_save(struct spu_state *prev, struct spu *spu) { int rc; /* * SPU context save can be broken into three phases: * * (a) quiesce [steps 2-16]. * (b) save of CSA, performed by PPE [steps 17-42] * (c) save of LSCSA, mostly performed by SPU [steps 43-52]. * * Returns 0 on success. * 2,6 if failed to quiece SPU * 53 if SPU-side of save failed. */ rc = quiece_spu(prev, spu); /* Steps 2-16. */ switch (rc) { default: case 2: case 6: harvest(prev, spu); return rc; break; case 0: break; } save_csa(prev, spu); /* Steps 17-43. */ save_lscsa(prev, spu); /* Steps 44-53. */ return check_save_status(prev, spu); /* Step 54. */ } static int __do_spu_restore(struct spu_state *next, struct spu *spu) { int rc; /* * SPU context restore can be broken into three phases: * * (a) harvest (or reset) SPU [steps 2-24]. * (b) restore LSCSA [steps 25-40], mostly performed by SPU. * (c) restore CSA [steps 41-76], performed by PPE. * * The 'harvest' step is not performed here, but rather * as needed below. */ restore_lscsa(next, spu); /* Steps 24-39. */ rc = check_restore_status(next, spu); /* Step 40. */ switch (rc) { default: /* Failed. Return now. */ return rc; break; case 0: /* Fall through to next step. */ break; } restore_csa(next, spu); return 0; } /** * spu_save - SPU context save, with locking. * @prev: pointer to SPU context save area, to be saved. * @spu: pointer to SPU iomem structure. * * Acquire locks, perform the save operation then return. */ int spu_save(struct spu_state *prev, struct spu *spu) { int rc; acquire_spu_lock(spu); /* Step 1. */ rc = __do_spu_save(prev, spu); /* Steps 2-53. */ release_spu_lock(spu); if (rc != 0 && rc != 2 && rc != 6) { panic("%s failed on SPU[%d], rc=%d.\n", __func__, spu->number, rc); } return 0; } EXPORT_SYMBOL_GPL(spu_save); /** * spu_restore - SPU context restore, with harvest and locking. * @new: pointer to SPU context save area, to be restored. * @spu: pointer to SPU iomem structure. * * Perform harvest + restore, as we may not be coming * from a previous successful save operation, and the * hardware state is unknown. */ int spu_restore(struct spu_state *new, struct spu *spu) { int rc; acquire_spu_lock(spu); harvest(NULL, spu); spu->slb_replace = 0; rc = __do_spu_restore(new, spu); release_spu_lock(spu); if (rc) { panic("%s failed on SPU[%d] rc=%d.\n", __func__, spu->number, rc); } return rc; } EXPORT_SYMBOL_GPL(spu_restore); static void init_prob(struct spu_state *csa) { csa->spu_chnlcnt_RW[9] = 1; csa->spu_chnlcnt_RW[21] = 16; csa->spu_chnlcnt_RW[23] = 1; csa->spu_chnlcnt_RW[28] = 1; csa->spu_chnlcnt_RW[30] = 1; csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP; csa->prob.mb_stat_R = 0x000400; } static void init_priv1(struct spu_state *csa) { /* Enable decode, relocate, tlbie response, master runcntl. */ csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK | MFC_STATE1_MASTER_RUN_CONTROL_MASK | MFC_STATE1_PROBLEM_STATE_MASK | MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK; /* Enable OS-specific set of interrupts. */ csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR | CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR | CLASS0_ENABLE_SPU_ERROR_INTR; csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR | CLASS1_ENABLE_STORAGE_FAULT_INTR; csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR | CLASS2_ENABLE_SPU_HALT_INTR | CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR; } static void init_priv2(struct spu_state *csa) { csa->priv2.spu_lslr_RW = LS_ADDR_MASK; csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE | MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION | MFC_CNTL_DMA_QUEUES_EMPTY_MASK; } /** * spu_alloc_csa - allocate and initialize an SPU context save area. * * Allocate and initialize the contents of an SPU context save area. * This includes enabling address translation, interrupt masks, etc., * as appropriate for the given OS environment. * * Note that storage for the 'lscsa' is allocated separately, * as it is by far the largest of the context save regions, * and may need to be pinned or otherwise specially aligned. */ int spu_init_csa(struct spu_state *csa) { int rc; if (!csa) return -EINVAL; memset(csa, 0, sizeof(struct spu_state)); rc = spu_alloc_lscsa(csa); if (rc) return rc; spin_lock_init(&csa->register_lock); init_prob(csa); init_priv1(csa); init_priv2(csa); return 0; } void spu_fini_csa(struct spu_state *csa) { spu_free_lscsa(csa); }