/* * Copyright (C) 2001 Mike Corrigan IBM Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "it_lp_naca.h" /* * The LpQueue is used to pass event data from the hypervisor to * the partition. This is where I/O interrupt events are communicated. * * It is written to by the hypervisor so cannot end up in the BSS. */ struct hvlpevent_queue hvlpevent_queue __attribute__((__section__(".data"))); DEFINE_PER_CPU(unsigned long[HvLpEvent_Type_NumTypes], hvlpevent_counts); static char *event_types[HvLpEvent_Type_NumTypes] = { "Hypervisor", "Machine Facilities", "Session Manager", "SPD I/O", "Virtual Bus", "PCI I/O", "RIO I/O", "Virtual Lan", "Virtual I/O" }; /* Array of LpEvent handler functions */ static LpEventHandler lpEventHandler[HvLpEvent_Type_NumTypes]; static unsigned lpEventHandlerPaths[HvLpEvent_Type_NumTypes]; static struct HvLpEvent * get_next_hvlpevent(void) { struct HvLpEvent * event; event = (struct HvLpEvent *)hvlpevent_queue.hq_current_event; if (hvlpevent_is_valid(event)) { /* rmb() needed only for weakly consistent machines (regatta) */ rmb(); /* Set pointer to next potential event */ hvlpevent_queue.hq_current_event += ((event->xSizeMinus1 + IT_LP_EVENT_ALIGN) / IT_LP_EVENT_ALIGN) * IT_LP_EVENT_ALIGN; /* Wrap to beginning if no room at end */ if (hvlpevent_queue.hq_current_event > hvlpevent_queue.hq_last_event) { hvlpevent_queue.hq_current_event = hvlpevent_queue.hq_event_stack; } } else { event = NULL; } return event; } static unsigned long spread_lpevents = NR_CPUS; int hvlpevent_is_pending(void) { struct HvLpEvent *next_event; if (smp_processor_id() >= spread_lpevents) return 0; next_event = (struct HvLpEvent *)hvlpevent_queue.hq_current_event; return hvlpevent_is_valid(next_event) || hvlpevent_queue.hq_overflow_pending; } static void hvlpevent_clear_valid(struct HvLpEvent * event) { /* Tell the Hypervisor that we're done with this event. * Also clear bits within this event that might look like valid bits. * ie. on 64-byte boundaries. */ struct HvLpEvent *tmp; unsigned extra = ((event->xSizeMinus1 + IT_LP_EVENT_ALIGN) / IT_LP_EVENT_ALIGN) - 1; switch (extra) { case 3: tmp = (struct HvLpEvent*)((char*)event + 3 * IT_LP_EVENT_ALIGN); hvlpevent_invalidate(tmp); case 2: tmp = (struct HvLpEvent*)((char*)event + 2 * IT_LP_EVENT_ALIGN); hvlpevent_invalidate(tmp); case 1: tmp = (struct HvLpEvent*)((char*)event + 1 * IT_LP_EVENT_ALIGN); hvlpevent_invalidate(tmp); } mb(); hvlpevent_invalidate(event); } void process_hvlpevents(void) { struct HvLpEvent * event; /* If we have recursed, just return */ if (!spin_trylock(&hvlpevent_queue.hq_lock)) return; for (;;) { event = get_next_hvlpevent(); if (event) { /* Call appropriate handler here, passing * a pointer to the LpEvent. The handler * must make a copy of the LpEvent if it * needs it in a bottom half. (perhaps for * an ACK) * * Handlers are responsible for ACK processing * * The Hypervisor guarantees that LpEvents will * only be delivered with types that we have * registered for, so no type check is necessary * here! */ if (event->xType < HvLpEvent_Type_NumTypes) __get_cpu_var(hvlpevent_counts)[event->xType]++; if (event->xType < HvLpEvent_Type_NumTypes && lpEventHandler[event->xType]) lpEventHandler[event->xType](event); else printk(KERN_INFO "Unexpected Lp Event type=%d\n", event->xType ); hvlpevent_clear_valid(event); } else if (hvlpevent_queue.hq_overflow_pending) /* * No more valid events. If overflow events are * pending process them */ HvCallEvent_getOverflowLpEvents(hvlpevent_queue.hq_index); else break; } spin_unlock(&hvlpevent_queue.hq_lock); } static int set_spread_lpevents(char *str) { unsigned long val = simple_strtoul(str, NULL, 0); /* * The parameter is the number of processors to share in processing * lp events. */ if (( val > 0) && (val <= NR_CPUS)) { spread_lpevents = val; printk("lpevent processing spread over %ld processors\n", val); } else { printk("invalid spread_lpevents %ld\n", val); } return 1; } __setup("spread_lpevents=", set_spread_lpevents); void __init setup_hvlpevent_queue(void) { void *eventStack; spin_lock_init(&hvlpevent_queue.hq_lock); /* Allocate a page for the Event Stack. */ eventStack = alloc_bootmem_pages(IT_LP_EVENT_STACK_SIZE); memset(eventStack, 0, IT_LP_EVENT_STACK_SIZE); /* Invoke the hypervisor to initialize the event stack */ HvCallEvent_setLpEventStack(0, eventStack, IT_LP_EVENT_STACK_SIZE); hvlpevent_queue.hq_event_stack = eventStack; hvlpevent_queue.hq_current_event = eventStack; hvlpevent_queue.hq_last_event = (char *)eventStack + (IT_LP_EVENT_STACK_SIZE - IT_LP_EVENT_MAX_SIZE); hvlpevent_queue.hq_index = 0; } /* Register a handler for an LpEvent type */ int HvLpEvent_registerHandler(HvLpEvent_Type eventType, LpEventHandler handler) { if (eventType < HvLpEvent_Type_NumTypes) { lpEventHandler[eventType] = handler; return 0; } return 1; } EXPORT_SYMBOL(HvLpEvent_registerHandler); int HvLpEvent_unregisterHandler(HvLpEvent_Type eventType) { might_sleep(); if (eventType < HvLpEvent_Type_NumTypes) { if (!lpEventHandlerPaths[eventType]) { lpEventHandler[eventType] = NULL; /* * We now sleep until all other CPUs have scheduled. * This ensures that the deletion is seen by all * other CPUs, and that the deleted handler isn't * still running on another CPU when we return. */ synchronize_sched(); return 0; } } return 1; } EXPORT_SYMBOL(HvLpEvent_unregisterHandler); /* * lpIndex is the partition index of the target partition. * needed only for VirtualIo, VirtualLan and SessionMgr. Zero * indicates to use our partition index - for the other types. */ int HvLpEvent_openPath(HvLpEvent_Type eventType, HvLpIndex lpIndex) { if ((eventType < HvLpEvent_Type_NumTypes) && lpEventHandler[eventType]) { if (lpIndex == 0) lpIndex = itLpNaca.xLpIndex; HvCallEvent_openLpEventPath(lpIndex, eventType); ++lpEventHandlerPaths[eventType]; return 0; } return 1; } int HvLpEvent_closePath(HvLpEvent_Type eventType, HvLpIndex lpIndex) { if ((eventType < HvLpEvent_Type_NumTypes) && lpEventHandler[eventType] && lpEventHandlerPaths[eventType]) { if (lpIndex == 0) lpIndex = itLpNaca.xLpIndex; HvCallEvent_closeLpEventPath(lpIndex, eventType); --lpEventHandlerPaths[eventType]; return 0; } return 1; } static int proc_lpevents_show(struct seq_file *m, void *v) { int cpu, i; unsigned long sum; static unsigned long cpu_totals[NR_CPUS]; /* FIXME: do we care that there's no locking here? */ sum = 0; for_each_online_cpu(cpu) { cpu_totals[cpu] = 0; for (i = 0; i < HvLpEvent_Type_NumTypes; i++) { cpu_totals[cpu] += per_cpu(hvlpevent_counts, cpu)[i]; } sum += cpu_totals[cpu]; } seq_printf(m, "LpEventQueue 0\n"); seq_printf(m, " events processed:\t%lu\n", sum); for (i = 0; i < HvLpEvent_Type_NumTypes; ++i) { sum = 0; for_each_online_cpu(cpu) { sum += per_cpu(hvlpevent_counts, cpu)[i]; } seq_printf(m, " %-20s %10lu\n", event_types[i], sum); } seq_printf(m, "\n events processed by processor:\n"); for_each_online_cpu(cpu) { seq_printf(m, " CPU%02d %10lu\n", cpu, cpu_totals[cpu]); } return 0; } static int proc_lpevents_open(struct inode *inode, struct file *file) { return single_open(file, proc_lpevents_show, NULL); } static const struct file_operations proc_lpevents_operations = { .open = proc_lpevents_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int __init proc_lpevents_init(void) { struct proc_dir_entry *e; if (!firmware_has_feature(FW_FEATURE_ISERIES)) return 0; e = create_proc_entry("iSeries/lpevents", S_IFREG|S_IRUGO, NULL); if (e) e->proc_fops = &proc_lpevents_operations; return 0; } __initcall(proc_lpevents_init);