/* * Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved. * * Authors: Shlomi Gridish * Li Yang * Based on cpm2_common.c from Dan Malek (dmalek@jlc.net) * * Description: * General Purpose functions for the global management of the * QUICC Engine (QE). * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void qe_snums_init(void); static void qe_muram_init(void); static int qe_sdma_init(void); static DEFINE_SPINLOCK(qe_lock); /* QE snum state */ enum qe_snum_state { QE_SNUM_STATE_USED, QE_SNUM_STATE_FREE }; /* QE snum */ struct qe_snum { u8 num; enum qe_snum_state state; }; /* We allocate this here because it is used almost exclusively for * the communication processor devices. */ struct qe_immap *qe_immr = NULL; EXPORT_SYMBOL(qe_immr); static struct qe_snum snums[QE_NUM_OF_SNUM]; /* Dynamically allocated SNUMs */ static phys_addr_t qebase = -1; phys_addr_t get_qe_base(void) { struct device_node *qe; if (qebase != -1) return qebase; qe = of_find_node_by_type(NULL, "qe"); if (qe) { unsigned int size; const void *prop = of_get_property(qe, "reg", &size); qebase = of_translate_address(qe, prop); of_node_put(qe); }; return qebase; } EXPORT_SYMBOL(get_qe_base); void qe_reset(void) { if (qe_immr == NULL) qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE); qe_snums_init(); qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID, QE_CR_PROTOCOL_UNSPECIFIED, 0); /* Reclaim the MURAM memory for our use. */ qe_muram_init(); if (qe_sdma_init()) panic("sdma init failed!"); } int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input) { unsigned long flags; u8 mcn_shift = 0, dev_shift = 0; spin_lock_irqsave(&qe_lock, flags); if (cmd == QE_RESET) { out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG)); } else { if (cmd == QE_ASSIGN_PAGE) { /* Here device is the SNUM, not sub-block */ dev_shift = QE_CR_SNUM_SHIFT; } else if (cmd == QE_ASSIGN_RISC) { /* Here device is the SNUM, and mcnProtocol is * e_QeCmdRiscAssignment value */ dev_shift = QE_CR_SNUM_SHIFT; mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT; } else { if (device == QE_CR_SUBBLOCK_USB) mcn_shift = QE_CR_MCN_USB_SHIFT; else mcn_shift = QE_CR_MCN_NORMAL_SHIFT; } out_be32(&qe_immr->cp.cecdr, cmd_input); out_be32(&qe_immr->cp.cecr, (cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32) mcn_protocol << mcn_shift)); } /* wait for the QE_CR_FLG to clear */ while(in_be32(&qe_immr->cp.cecr) & QE_CR_FLG) cpu_relax(); spin_unlock_irqrestore(&qe_lock, flags); return 0; } EXPORT_SYMBOL(qe_issue_cmd); /* Set a baud rate generator. This needs lots of work. There are * 16 BRGs, which can be connected to the QE channels or output * as clocks. The BRGs are in two different block of internal * memory mapped space. * The BRG clock is the QE clock divided by 2. * It was set up long ago during the initial boot phase and is * is given to us. * Baud rate clocks are zero-based in the driver code (as that maps * to port numbers). Documentation uses 1-based numbering. */ static unsigned int brg_clk = 0; unsigned int get_brg_clk(void) { struct device_node *qe; if (brg_clk) return brg_clk; qe = of_find_node_by_type(NULL, "qe"); if (qe) { unsigned int size; const u32 *prop = of_get_property(qe, "brg-frequency", &size); brg_clk = *prop; of_node_put(qe); }; return brg_clk; } /* Program the BRG to the given sampling rate and multiplier * * @brg: the BRG, QE_BRG1 - QE_BRG16 * @rate: the desired sampling rate * @multiplier: corresponds to the value programmed in GUMR_L[RDCR] or * GUMR_L[TDCR]. E.g., if this BRG is the RX clock, and GUMR_L[RDCR]=01, * then 'multiplier' should be 8. */ int qe_setbrg(enum qe_clock brg, unsigned int rate, unsigned int multiplier) { u32 divisor, tempval; u32 div16 = 0; if ((brg < QE_BRG1) || (brg > QE_BRG16)) return -EINVAL; divisor = get_brg_clk() / (rate * multiplier); if (divisor > QE_BRGC_DIVISOR_MAX + 1) { div16 = QE_BRGC_DIV16; divisor /= 16; } /* Errata QE_General4, which affects some MPC832x and MPC836x SOCs, says that the BRG divisor must be even if you're not using divide-by-16 mode. */ if (!div16 && (divisor & 1)) divisor++; tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) | QE_BRGC_ENABLE | div16; out_be32(&qe_immr->brg.brgc[brg - QE_BRG1], tempval); return 0; } EXPORT_SYMBOL(qe_setbrg); /* Convert a string to a QE clock source enum * * This function takes a string, typically from a property in the device * tree, and returns the corresponding "enum qe_clock" value. */ enum qe_clock qe_clock_source(const char *source) { unsigned int i; if (strcasecmp(source, "none") == 0) return QE_CLK_NONE; if (strncasecmp(source, "brg", 3) == 0) { i = simple_strtoul(source + 3, NULL, 10); if ((i >= 1) && (i <= 16)) return (QE_BRG1 - 1) + i; else return QE_CLK_DUMMY; } if (strncasecmp(source, "clk", 3) == 0) { i = simple_strtoul(source + 3, NULL, 10); if ((i >= 1) && (i <= 24)) return (QE_CLK1 - 1) + i; else return QE_CLK_DUMMY; } return QE_CLK_DUMMY; } EXPORT_SYMBOL(qe_clock_source); /* Initialize SNUMs (thread serial numbers) according to * QE Module Control chapter, SNUM table */ static void qe_snums_init(void) { int i; static const u8 snum_init[] = { 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D, 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89, 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9, 0xD8, 0xD9, 0xE8, 0xE9, }; for (i = 0; i < QE_NUM_OF_SNUM; i++) { snums[i].num = snum_init[i]; snums[i].state = QE_SNUM_STATE_FREE; } } int qe_get_snum(void) { unsigned long flags; int snum = -EBUSY; int i; spin_lock_irqsave(&qe_lock, flags); for (i = 0; i < QE_NUM_OF_SNUM; i++) { if (snums[i].state == QE_SNUM_STATE_FREE) { snums[i].state = QE_SNUM_STATE_USED; snum = snums[i].num; break; } } spin_unlock_irqrestore(&qe_lock, flags); return snum; } EXPORT_SYMBOL(qe_get_snum); void qe_put_snum(u8 snum) { int i; for (i = 0; i < QE_NUM_OF_SNUM; i++) { if (snums[i].num == snum) { snums[i].state = QE_SNUM_STATE_FREE; break; } } } EXPORT_SYMBOL(qe_put_snum); static int qe_sdma_init(void) { struct sdma *sdma = &qe_immr->sdma; unsigned long sdma_buf_offset; if (!sdma) return -ENODEV; /* allocate 2 internal temporary buffers (512 bytes size each) for * the SDMA */ sdma_buf_offset = qe_muram_alloc(512 * 2, 4096); if (IS_ERR_VALUE(sdma_buf_offset)) return -ENOMEM; out_be32(&sdma->sdebcr, (u32) sdma_buf_offset & QE_SDEBCR_BA_MASK); out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK | (0x1 << QE_SDMR_CEN_SHIFT))); return 0; } /* * muram_alloc / muram_free bits. */ static DEFINE_SPINLOCK(qe_muram_lock); /* 16 blocks should be enough to satisfy all requests * until the memory subsystem goes up... */ static rh_block_t qe_boot_muram_rh_block[16]; static rh_info_t qe_muram_info; static void qe_muram_init(void) { struct device_node *np; u32 address; u64 size; unsigned int flags; /* initialize the info header */ rh_init(&qe_muram_info, 1, sizeof(qe_boot_muram_rh_block) / sizeof(qe_boot_muram_rh_block[0]), qe_boot_muram_rh_block); /* Attach the usable muram area */ /* XXX: This is a subset of the available muram. It * varies with the processor and the microcode patches activated. */ if ((np = of_find_node_by_name(NULL, "data-only")) != NULL) { address = *of_get_address(np, 0, &size, &flags); of_node_put(np); rh_attach_region(&qe_muram_info, address, (int) size); } } /* This function returns an index into the MURAM area. */ unsigned long qe_muram_alloc(int size, int align) { unsigned long start; unsigned long flags; spin_lock_irqsave(&qe_muram_lock, flags); start = rh_alloc_align(&qe_muram_info, size, align, "QE"); spin_unlock_irqrestore(&qe_muram_lock, flags); return start; } EXPORT_SYMBOL(qe_muram_alloc); int qe_muram_free(unsigned long offset) { int ret; unsigned long flags; spin_lock_irqsave(&qe_muram_lock, flags); ret = rh_free(&qe_muram_info, offset); spin_unlock_irqrestore(&qe_muram_lock, flags); return ret; } EXPORT_SYMBOL(qe_muram_free); /* not sure if this is ever needed */ unsigned long qe_muram_alloc_fixed(unsigned long offset, int size) { unsigned long start; unsigned long flags; spin_lock_irqsave(&qe_muram_lock, flags); start = rh_alloc_fixed(&qe_muram_info, offset, size, "commproc"); spin_unlock_irqrestore(&qe_muram_lock, flags); return start; } EXPORT_SYMBOL(qe_muram_alloc_fixed); void qe_muram_dump(void) { rh_dump(&qe_muram_info); } EXPORT_SYMBOL(qe_muram_dump); void *qe_muram_addr(unsigned long offset) { return (void *)&qe_immr->muram[offset]; } EXPORT_SYMBOL(qe_muram_addr);