/* * arch/s390/kernel/smp.c * * Copyright IBM Corp. 1999,2007 * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), * Martin Schwidefsky (schwidefsky@de.ibm.com) * Heiko Carstens (heiko.carstens@de.ibm.com) * * based on other smp stuff by * (c) 1995 Alan Cox, CymruNET Ltd * (c) 1998 Ingo Molnar * * We work with logical cpu numbering everywhere we can. The only * functions using the real cpu address (got from STAP) are the sigp * functions. For all other functions we use the identity mapping. * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is * used e.g. to find the idle task belonging to a logical cpu. Every array * in the kernel is sorted by the logical cpu number and not by the physical * one which is causing all the confusion with __cpu_logical_map and * cpu_number_map in other architectures. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * An array with a pointer the lowcore of every CPU. */ struct _lowcore *lowcore_ptr[NR_CPUS]; EXPORT_SYMBOL(lowcore_ptr); cpumask_t cpu_online_map = CPU_MASK_NONE; EXPORT_SYMBOL(cpu_online_map); cpumask_t cpu_possible_map = CPU_MASK_ALL; EXPORT_SYMBOL(cpu_possible_map); static struct task_struct *current_set[NR_CPUS]; static u8 smp_cpu_type; static int smp_use_sigp_detection; enum s390_cpu_state { CPU_STATE_STANDBY, CPU_STATE_CONFIGURED, }; #ifdef CONFIG_HOTPLUG_CPU static DEFINE_MUTEX(smp_cpu_state_mutex); #endif static int smp_cpu_state[NR_CPUS]; static DEFINE_PER_CPU(struct cpu, cpu_devices); DEFINE_PER_CPU(struct s390_idle_data, s390_idle); static void smp_ext_bitcall(int, ec_bit_sig); /* * Structure and data for __smp_call_function_map(). This is designed to * minimise static memory requirements. It also looks cleaner. */ static DEFINE_SPINLOCK(call_lock); struct call_data_struct { void (*func) (void *info); void *info; cpumask_t started; cpumask_t finished; int wait; }; static struct call_data_struct *call_data; /* * 'Call function' interrupt callback */ static void do_call_function(void) { void (*func) (void *info) = call_data->func; void *info = call_data->info; int wait = call_data->wait; cpu_set(smp_processor_id(), call_data->started); (*func)(info); if (wait) cpu_set(smp_processor_id(), call_data->finished);; } static void __smp_call_function_map(void (*func) (void *info), void *info, int nonatomic, int wait, cpumask_t map) { struct call_data_struct data; int cpu, local = 0; /* * Can deadlock when interrupts are disabled or if in wrong context. */ WARN_ON(irqs_disabled() || in_irq()); /* * Check for local function call. We have to have the same call order * as in on_each_cpu() because of machine_restart_smp(). */ if (cpu_isset(smp_processor_id(), map)) { local = 1; cpu_clear(smp_processor_id(), map); } cpus_and(map, map, cpu_online_map); if (cpus_empty(map)) goto out; data.func = func; data.info = info; data.started = CPU_MASK_NONE; data.wait = wait; if (wait) data.finished = CPU_MASK_NONE; spin_lock(&call_lock); call_data = &data; for_each_cpu_mask(cpu, map) smp_ext_bitcall(cpu, ec_call_function); /* Wait for response */ while (!cpus_equal(map, data.started)) cpu_relax(); if (wait) while (!cpus_equal(map, data.finished)) cpu_relax(); spin_unlock(&call_lock); out: if (local) { local_irq_disable(); func(info); local_irq_enable(); } } /* * smp_call_function: * @func: the function to run; this must be fast and non-blocking * @info: an arbitrary pointer to pass to the function * @nonatomic: unused * @wait: if true, wait (atomically) until function has completed on other CPUs * * Run a function on all other CPUs. * * You must not call this function with disabled interrupts, from a * hardware interrupt handler or from a bottom half. */ int smp_call_function(void (*func) (void *info), void *info, int nonatomic, int wait) { cpumask_t map; preempt_disable(); map = cpu_online_map; cpu_clear(smp_processor_id(), map); __smp_call_function_map(func, info, nonatomic, wait, map); preempt_enable(); return 0; } EXPORT_SYMBOL(smp_call_function); /* * smp_call_function_single: * @cpu: the CPU where func should run * @func: the function to run; this must be fast and non-blocking * @info: an arbitrary pointer to pass to the function * @nonatomic: unused * @wait: if true, wait (atomically) until function has completed on other CPUs * * Run a function on one processor. * * You must not call this function with disabled interrupts, from a * hardware interrupt handler or from a bottom half. */ int smp_call_function_single(int cpu, void (*func) (void *info), void *info, int nonatomic, int wait) { preempt_disable(); __smp_call_function_map(func, info, nonatomic, wait, cpumask_of_cpu(cpu)); preempt_enable(); return 0; } EXPORT_SYMBOL(smp_call_function_single); void smp_send_stop(void) { int cpu, rc; /* Disable all interrupts/machine checks */ __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK); /* write magic number to zero page (absolute 0) */ lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC; /* stop all processors */ for_each_online_cpu(cpu) { if (cpu == smp_processor_id()) continue; do { rc = signal_processor(cpu, sigp_stop); } while (rc == sigp_busy); while (!smp_cpu_not_running(cpu)) cpu_relax(); } } /* * This is the main routine where commands issued by other * cpus are handled. */ static void do_ext_call_interrupt(__u16 code) { unsigned long bits; /* * handle bit signal external calls * * For the ec_schedule signal we have to do nothing. All the work * is done automatically when we return from the interrupt. */ bits = xchg(&S390_lowcore.ext_call_fast, 0); if (test_bit(ec_call_function, &bits)) do_call_function(); } /* * Send an external call sigp to another cpu and return without waiting * for its completion. */ static void smp_ext_bitcall(int cpu, ec_bit_sig sig) { /* * Set signaling bit in lowcore of target cpu and kick it */ set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast); while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy) udelay(10); } #ifndef CONFIG_64BIT /* * this function sends a 'purge tlb' signal to another CPU. */ void smp_ptlb_callback(void *info) { __tlb_flush_local(); } void smp_ptlb_all(void) { on_each_cpu(smp_ptlb_callback, NULL, 0, 1); } EXPORT_SYMBOL(smp_ptlb_all); #endif /* ! CONFIG_64BIT */ /* * this function sends a 'reschedule' IPI to another CPU. * it goes straight through and wastes no time serializing * anything. Worst case is that we lose a reschedule ... */ void smp_send_reschedule(int cpu) { smp_ext_bitcall(cpu, ec_schedule); } /* * parameter area for the set/clear control bit callbacks */ struct ec_creg_mask_parms { unsigned long orvals[16]; unsigned long andvals[16]; }; /* * callback for setting/clearing control bits */ static void smp_ctl_bit_callback(void *info) { struct ec_creg_mask_parms *pp = info; unsigned long cregs[16]; int i; __ctl_store(cregs, 0, 15); for (i = 0; i <= 15; i++) cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i]; __ctl_load(cregs, 0, 15); } /* * Set a bit in a control register of all cpus */ void smp_ctl_set_bit(int cr, int bit) { struct ec_creg_mask_parms parms; memset(&parms.orvals, 0, sizeof(parms.orvals)); memset(&parms.andvals, 0xff, sizeof(parms.andvals)); parms.orvals[cr] = 1 << bit; on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1); } EXPORT_SYMBOL(smp_ctl_set_bit); /* * Clear a bit in a control register of all cpus */ void smp_ctl_clear_bit(int cr, int bit) { struct ec_creg_mask_parms parms; memset(&parms.orvals, 0, sizeof(parms.orvals)); memset(&parms.andvals, 0xff, sizeof(parms.andvals)); parms.andvals[cr] = ~(1L << bit); on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1); } EXPORT_SYMBOL(smp_ctl_clear_bit); /* * In early ipl state a temp. logically cpu number is needed, so the sigp * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1. */ #define CPU_INIT_NO 1 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE) /* * zfcpdump_prefix_array holds prefix registers for the following scenario: * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to * save its prefix registers, since they get lost, when switching from 31 bit * to 64 bit. */ unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \ __attribute__((__section__(".data"))); static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { if (ipl_info.type != IPL_TYPE_FCP_DUMP) return; if (cpu >= NR_CPUS) { printk(KERN_WARNING "Registers for cpu %i not saved since dump " "kernel was compiled with NR_CPUS=%i\n", cpu, NR_CPUS); return; } zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL); __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu; while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) == sigp_busy) cpu_relax(); memcpy(zfcpdump_save_areas[cpu], (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE, SAVE_AREA_SIZE); #ifdef CONFIG_64BIT /* copy original prefix register */ zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu]; #endif } union save_area *zfcpdump_save_areas[NR_CPUS + 1]; EXPORT_SYMBOL_GPL(zfcpdump_save_areas); #else static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { } #endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE */ static int cpu_stopped(int cpu) { __u32 status; /* Check for stopped state */ if (signal_processor_ps(&status, 0, cpu, sigp_sense) == sigp_status_stored) { if (status & 0x40) return 1; } return 0; } static int cpu_known(int cpu_id) { int cpu; for_each_present_cpu(cpu) { if (__cpu_logical_map[cpu] == cpu_id) return 1; } return 0; } static int smp_rescan_cpus_sigp(cpumask_t avail) { int cpu_id, logical_cpu; logical_cpu = first_cpu(avail); if (logical_cpu == NR_CPUS) return 0; for (cpu_id = 0; cpu_id <= 65535; cpu_id++) { if (cpu_known(cpu_id)) continue; __cpu_logical_map[logical_cpu] = cpu_id; if (!cpu_stopped(logical_cpu)) continue; cpu_set(logical_cpu, cpu_present_map); smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED; logical_cpu = next_cpu(logical_cpu, avail); if (logical_cpu == NR_CPUS) break; } return 0; } static int smp_rescan_cpus_sclp(cpumask_t avail) { struct sclp_cpu_info *info; int cpu_id, logical_cpu, cpu; int rc; logical_cpu = first_cpu(avail); if (logical_cpu == NR_CPUS) return 0; info = kmalloc(sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; rc = sclp_get_cpu_info(info); if (rc) goto out; for (cpu = 0; cpu < info->combined; cpu++) { if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type) continue; cpu_id = info->cpu[cpu].address; if (cpu_known(cpu_id)) continue; __cpu_logical_map[logical_cpu] = cpu_id; cpu_set(logical_cpu, cpu_present_map); if (cpu >= info->configured) smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY; else smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED; logical_cpu = next_cpu(logical_cpu, avail); if (logical_cpu == NR_CPUS) break; } out: kfree(info); return rc; } static int smp_rescan_cpus(void) { cpumask_t avail; cpus_xor(avail, cpu_possible_map, cpu_present_map); if (smp_use_sigp_detection) return smp_rescan_cpus_sigp(avail); else return smp_rescan_cpus_sclp(avail); } static void __init smp_detect_cpus(void) { unsigned int cpu, c_cpus, s_cpus; struct sclp_cpu_info *info; u16 boot_cpu_addr, cpu_addr; c_cpus = 1; s_cpus = 0; boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr; info = kmalloc(sizeof(*info), GFP_KERNEL); if (!info) panic("smp_detect_cpus failed to allocate memory\n"); /* Use sigp detection algorithm if sclp doesn't work. */ if (sclp_get_cpu_info(info)) { smp_use_sigp_detection = 1; for (cpu = 0; cpu <= 65535; cpu++) { if (cpu == boot_cpu_addr) continue; __cpu_logical_map[CPU_INIT_NO] = cpu; if (!cpu_stopped(CPU_INIT_NO)) continue; smp_get_save_area(c_cpus, cpu); c_cpus++; } goto out; } if (info->has_cpu_type) { for (cpu = 0; cpu < info->combined; cpu++) { if (info->cpu[cpu].address == boot_cpu_addr) { smp_cpu_type = info->cpu[cpu].type; break; } } } for (cpu = 0; cpu < info->combined; cpu++) { if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type) continue; cpu_addr = info->cpu[cpu].address; if (cpu_addr == boot_cpu_addr) continue; __cpu_logical_map[CPU_INIT_NO] = cpu_addr; if (!cpu_stopped(CPU_INIT_NO)) { s_cpus++; continue; } smp_get_save_area(c_cpus, cpu_addr); c_cpus++; } out: kfree(info); printk(KERN_INFO "CPUs: %d configured, %d standby\n", c_cpus, s_cpus); lock_cpu_hotplug(); smp_rescan_cpus(); unlock_cpu_hotplug(); } /* * Activate a secondary processor. */ int __cpuinit start_secondary(void *cpuvoid) { /* Setup the cpu */ cpu_init(); preempt_disable(); /* Enable TOD clock interrupts on the secondary cpu. */ init_cpu_timer(); #ifdef CONFIG_VIRT_TIMER /* Enable cpu timer interrupts on the secondary cpu. */ init_cpu_vtimer(); #endif /* Enable pfault pseudo page faults on this cpu. */ pfault_init(); /* Mark this cpu as online */ cpu_set(smp_processor_id(), cpu_online_map); /* Switch on interrupts */ local_irq_enable(); /* Print info about this processor */ print_cpu_info(&S390_lowcore.cpu_data); /* cpu_idle will call schedule for us */ cpu_idle(); return 0; } static void __init smp_create_idle(unsigned int cpu) { struct task_struct *p; /* * don't care about the psw and regs settings since we'll never * reschedule the forked task. */ p = fork_idle(cpu); if (IS_ERR(p)) panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p)); current_set[cpu] = p; spin_lock_init(&(&per_cpu(s390_idle, cpu))->lock); } /* Upping and downing of CPUs */ int __cpu_up(unsigned int cpu) { struct task_struct *idle; struct _lowcore *cpu_lowcore; struct stack_frame *sf; sigp_ccode ccode; if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED) return -EIO; ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]), cpu, sigp_set_prefix); if (ccode) { printk("sigp_set_prefix failed for cpu %d " "with condition code %d\n", (int) cpu, (int) ccode); return -EIO; } idle = current_set[cpu]; cpu_lowcore = lowcore_ptr[cpu]; cpu_lowcore->kernel_stack = (unsigned long) task_stack_page(idle) + THREAD_SIZE; sf = (struct stack_frame *) (cpu_lowcore->kernel_stack - sizeof(struct pt_regs) - sizeof(struct stack_frame)); memset(sf, 0, sizeof(struct stack_frame)); sf->gprs[9] = (unsigned long) sf; cpu_lowcore->save_area[15] = (unsigned long) sf; __ctl_store(cpu_lowcore->cregs_save_area[0], 0, 15); asm volatile( " stam 0,15,0(%0)" : : "a" (&cpu_lowcore->access_regs_save_area) : "memory"); cpu_lowcore->percpu_offset = __per_cpu_offset[cpu]; cpu_lowcore->current_task = (unsigned long) idle; cpu_lowcore->cpu_data.cpu_nr = cpu; eieio(); while (signal_processor(cpu, sigp_restart) == sigp_busy) udelay(10); while (!cpu_online(cpu)) cpu_relax(); return 0; } static int __init setup_possible_cpus(char *s) { int pcpus, cpu; pcpus = simple_strtoul(s, NULL, 0); cpu_possible_map = cpumask_of_cpu(0); for (cpu = 1; cpu < pcpus && cpu < NR_CPUS; cpu++) cpu_set(cpu, cpu_possible_map); return 0; } early_param("possible_cpus", setup_possible_cpus); #ifdef CONFIG_HOTPLUG_CPU int __cpu_disable(void) { struct ec_creg_mask_parms cr_parms; int cpu = smp_processor_id(); cpu_clear(cpu, cpu_online_map); /* Disable pfault pseudo page faults on this cpu. */ pfault_fini(); memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals)); memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals)); /* disable all external interrupts */ cr_parms.orvals[0] = 0; cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 | 1 << 11 | 1 << 10 | 1 << 6 | 1 << 4); /* disable all I/O interrupts */ cr_parms.orvals[6] = 0; cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 | 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24); /* disable most machine checks */ cr_parms.orvals[14] = 0; cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24); smp_ctl_bit_callback(&cr_parms); return 0; } void __cpu_die(unsigned int cpu) { /* Wait until target cpu is down */ while (!smp_cpu_not_running(cpu)) cpu_relax(); printk(KERN_INFO "Processor %d spun down\n", cpu); } void cpu_die(void) { idle_task_exit(); signal_processor(smp_processor_id(), sigp_stop); BUG(); for (;;); } #endif /* CONFIG_HOTPLUG_CPU */ /* * Cycle through the processors and setup structures. */ void __init smp_prepare_cpus(unsigned int max_cpus) { unsigned long stack; unsigned int cpu; int i; smp_detect_cpus(); /* request the 0x1201 emergency signal external interrupt */ if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0) panic("Couldn't request external interrupt 0x1201"); memset(lowcore_ptr, 0, sizeof(lowcore_ptr)); /* * Initialize prefix pages and stacks for all possible cpus */ print_cpu_info(&S390_lowcore.cpu_data); for_each_possible_cpu(i) { lowcore_ptr[i] = (struct _lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, sizeof(void*) == 8 ? 1 : 0); stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); if (!lowcore_ptr[i] || !stack) panic("smp_boot_cpus failed to allocate memory\n"); *(lowcore_ptr[i]) = S390_lowcore; lowcore_ptr[i]->async_stack = stack + ASYNC_SIZE; stack = __get_free_pages(GFP_KERNEL, 0); if (!stack) panic("smp_boot_cpus failed to allocate memory\n"); lowcore_ptr[i]->panic_stack = stack + PAGE_SIZE; #ifndef CONFIG_64BIT if (MACHINE_HAS_IEEE) { lowcore_ptr[i]->extended_save_area_addr = (__u32) __get_free_pages(GFP_KERNEL, 0); if (!lowcore_ptr[i]->extended_save_area_addr) panic("smp_boot_cpus failed to " "allocate memory\n"); } #endif } #ifndef CONFIG_64BIT if (MACHINE_HAS_IEEE) ctl_set_bit(14, 29); /* enable extended save area */ #endif set_prefix((u32)(unsigned long) lowcore_ptr[smp_processor_id()]); for_each_possible_cpu(cpu) if (cpu != smp_processor_id()) smp_create_idle(cpu); } void __init smp_prepare_boot_cpu(void) { BUG_ON(smp_processor_id() != 0); current_thread_info()->cpu = 0; cpu_set(0, cpu_present_map); cpu_set(0, cpu_online_map); S390_lowcore.percpu_offset = __per_cpu_offset[0]; current_set[0] = current; smp_cpu_state[0] = CPU_STATE_CONFIGURED; spin_lock_init(&(&__get_cpu_var(s390_idle))->lock); } void __init smp_cpus_done(unsigned int max_cpus) { } /* * the frequency of the profiling timer can be changed * by writing a multiplier value into /proc/profile. * * usually you want to run this on all CPUs ;) */ int setup_profiling_timer(unsigned int multiplier) { return 0; } #ifdef CONFIG_HOTPLUG_CPU static ssize_t cpu_configure_show(struct sys_device *dev, char *buf) { ssize_t count; mutex_lock(&smp_cpu_state_mutex); count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]); mutex_unlock(&smp_cpu_state_mutex); return count; } static ssize_t cpu_configure_store(struct sys_device *dev, const char *buf, size_t count) { int cpu = dev->id; int val, rc; char delim; if (sscanf(buf, "%d %c", &val, &delim) != 1) return -EINVAL; if (val != 0 && val != 1) return -EINVAL; mutex_lock(&smp_cpu_state_mutex); lock_cpu_hotplug(); rc = -EBUSY; if (cpu_online(cpu)) goto out; rc = 0; switch (val) { case 0: if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) { rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]); if (!rc) smp_cpu_state[cpu] = CPU_STATE_STANDBY; } break; case 1: if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) { rc = sclp_cpu_configure(__cpu_logical_map[cpu]); if (!rc) smp_cpu_state[cpu] = CPU_STATE_CONFIGURED; } break; default: break; } out: unlock_cpu_hotplug(); mutex_unlock(&smp_cpu_state_mutex); return rc ? rc : count; } static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); #endif /* CONFIG_HOTPLUG_CPU */ static ssize_t show_cpu_address(struct sys_device *dev, char *buf) { return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]); } static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL); static struct attribute *cpu_common_attrs[] = { #ifdef CONFIG_HOTPLUG_CPU &attr_configure.attr, #endif &attr_address.attr, NULL, }; static struct attribute_group cpu_common_attr_group = { .attrs = cpu_common_attrs, }; static ssize_t show_capability(struct sys_device *dev, char *buf) { unsigned int capability; int rc; rc = get_cpu_capability(&capability); if (rc) return rc; return sprintf(buf, "%u\n", capability); } static SYSDEV_ATTR(capability, 0444, show_capability, NULL); static ssize_t show_idle_count(struct sys_device *dev, char *buf) { struct s390_idle_data *idle; unsigned long long idle_count; idle = &per_cpu(s390_idle, dev->id); spin_lock_irq(&idle->lock); idle_count = idle->idle_count; spin_unlock_irq(&idle->lock); return sprintf(buf, "%llu\n", idle_count); } static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL); static ssize_t show_idle_time(struct sys_device *dev, char *buf) { struct s390_idle_data *idle; unsigned long long new_time; idle = &per_cpu(s390_idle, dev->id); spin_lock_irq(&idle->lock); if (idle->in_idle) { new_time = get_clock(); idle->idle_time += new_time - idle->idle_enter; idle->idle_enter = new_time; } new_time = idle->idle_time; spin_unlock_irq(&idle->lock); return sprintf(buf, "%llu\n", new_time >> 12); } static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL); static struct attribute *cpu_online_attrs[] = { &attr_capability.attr, &attr_idle_count.attr, &attr_idle_time_us.attr, NULL, }; static struct attribute_group cpu_online_attr_group = { .attrs = cpu_online_attrs, }; static int __cpuinit smp_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned int)(long)hcpu; struct cpu *c = &per_cpu(cpu_devices, cpu); struct sys_device *s = &c->sysdev; struct s390_idle_data *idle; switch (action) { case CPU_ONLINE: case CPU_ONLINE_FROZEN: idle = &per_cpu(s390_idle, cpu); spin_lock_irq(&idle->lock); idle->idle_enter = 0; idle->idle_time = 0; idle->idle_count = 0; spin_unlock_irq(&idle->lock); if (sysfs_create_group(&s->kobj, &cpu_online_attr_group)) return NOTIFY_BAD; break; case CPU_DEAD: case CPU_DEAD_FROZEN: sysfs_remove_group(&s->kobj, &cpu_online_attr_group); break; } return NOTIFY_OK; } static struct notifier_block __cpuinitdata smp_cpu_nb = { .notifier_call = smp_cpu_notify, }; static int smp_add_present_cpu(int cpu) { struct cpu *c = &per_cpu(cpu_devices, cpu); struct sys_device *s = &c->sysdev; int rc; c->hotpluggable = 1; rc = register_cpu(c, cpu); if (rc) goto out; rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); if (rc) goto out_cpu; if (!cpu_online(cpu)) goto out; rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group); if (!rc) return 0; sysfs_remove_group(&s->kobj, &cpu_common_attr_group); out_cpu: #ifdef CONFIG_HOTPLUG_CPU unregister_cpu(c); #endif out: return rc; } #ifdef CONFIG_HOTPLUG_CPU static ssize_t rescan_store(struct sys_device *dev, const char *buf, size_t count) { cpumask_t newcpus; int cpu; int rc; mutex_lock(&smp_cpu_state_mutex); lock_cpu_hotplug(); newcpus = cpu_present_map; rc = smp_rescan_cpus(); if (rc) goto out; cpus_andnot(newcpus, cpu_present_map, newcpus); for_each_cpu_mask(cpu, newcpus) { rc = smp_add_present_cpu(cpu); if (rc) cpu_clear(cpu, cpu_present_map); } rc = 0; out: unlock_cpu_hotplug(); mutex_unlock(&smp_cpu_state_mutex); return rc ? rc : count; } static SYSDEV_ATTR(rescan, 0200, NULL, rescan_store); #endif /* CONFIG_HOTPLUG_CPU */ static int __init topology_init(void) { int cpu; int rc; register_cpu_notifier(&smp_cpu_nb); #ifdef CONFIG_HOTPLUG_CPU rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj, &attr_rescan.attr); if (rc) return rc; #endif for_each_present_cpu(cpu) { rc = smp_add_present_cpu(cpu); if (rc) return rc; } return 0; } subsys_initcall(topology_init);