/* * Copyright IBM Corp. 2010 * Author: Heinz Graalfs */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hwsampler.h" #include "op_counter.h" #define MAX_NUM_SDB 511 #define MIN_NUM_SDB 1 DECLARE_PER_CPU(struct hws_cpu_buffer, sampler_cpu_buffer); struct hws_execute_parms { void *buffer; signed int rc; }; DEFINE_PER_CPU(struct hws_cpu_buffer, sampler_cpu_buffer); EXPORT_PER_CPU_SYMBOL(sampler_cpu_buffer); static DEFINE_MUTEX(hws_sem); static DEFINE_MUTEX(hws_sem_oom); static unsigned char hws_flush_all; static unsigned int hws_oom; static unsigned int hws_alert; static struct workqueue_struct *hws_wq; static unsigned int hws_state; enum { HWS_INIT = 1, HWS_DEALLOCATED, HWS_STOPPED, HWS_STARTED, HWS_STOPPING }; /* set to 1 if called by kernel during memory allocation */ static unsigned char oom_killer_was_active; /* size of SDBT and SDB as of allocate API */ static unsigned long num_sdbt = 100; static unsigned long num_sdb = 511; /* sampling interval (machine cycles) */ static unsigned long interval; static unsigned long min_sampler_rate; static unsigned long max_sampler_rate; static void execute_qsi(void *parms) { struct hws_execute_parms *ep = parms; ep->rc = qsi(ep->buffer); } static void execute_ssctl(void *parms) { struct hws_execute_parms *ep = parms; ep->rc = lsctl(ep->buffer); } static int smp_ctl_ssctl_stop(int cpu) { int rc; struct hws_execute_parms ep; struct hws_cpu_buffer *cb; cb = &per_cpu(sampler_cpu_buffer, cpu); cb->ssctl.es = 0; cb->ssctl.cs = 0; ep.buffer = &cb->ssctl; smp_call_function_single(cpu, execute_ssctl, &ep, 1); rc = ep.rc; if (rc) { printk(KERN_ERR "hwsampler: CPU %d CPUMF SSCTL failed.\n", cpu); dump_stack(); } ep.buffer = &cb->qsi; smp_call_function_single(cpu, execute_qsi, &ep, 1); if (cb->qsi.es || cb->qsi.cs) { printk(KERN_EMERG "CPUMF sampling did not stop properly.\n"); dump_stack(); } return rc; } static int smp_ctl_ssctl_deactivate(int cpu) { int rc; struct hws_execute_parms ep; struct hws_cpu_buffer *cb; cb = &per_cpu(sampler_cpu_buffer, cpu); cb->ssctl.es = 1; cb->ssctl.cs = 0; ep.buffer = &cb->ssctl; smp_call_function_single(cpu, execute_ssctl, &ep, 1); rc = ep.rc; if (rc) printk(KERN_ERR "hwsampler: CPU %d CPUMF SSCTL failed.\n", cpu); ep.buffer = &cb->qsi; smp_call_function_single(cpu, execute_qsi, &ep, 1); if (cb->qsi.cs) printk(KERN_EMERG "CPUMF sampling was not set inactive.\n"); return rc; } static int smp_ctl_ssctl_enable_activate(int cpu, unsigned long interval) { int rc; struct hws_execute_parms ep; struct hws_cpu_buffer *cb; cb = &per_cpu(sampler_cpu_buffer, cpu); cb->ssctl.h = 1; cb->ssctl.tear = cb->first_sdbt; cb->ssctl.dear = *(unsigned long *) cb->first_sdbt; cb->ssctl.interval = interval; cb->ssctl.es = 1; cb->ssctl.cs = 1; ep.buffer = &cb->ssctl; smp_call_function_single(cpu, execute_ssctl, &ep, 1); rc = ep.rc; if (rc) printk(KERN_ERR "hwsampler: CPU %d CPUMF SSCTL failed.\n", cpu); ep.buffer = &cb->qsi; smp_call_function_single(cpu, execute_qsi, &ep, 1); if (ep.rc) printk(KERN_ERR "hwsampler: CPU %d CPUMF QSI failed.\n", cpu); return rc; } static int smp_ctl_qsi(int cpu) { struct hws_execute_parms ep; struct hws_cpu_buffer *cb; cb = &per_cpu(sampler_cpu_buffer, cpu); ep.buffer = &cb->qsi; smp_call_function_single(cpu, execute_qsi, &ep, 1); return ep.rc; } static void hws_ext_handler(struct ext_code ext_code, unsigned int param32, unsigned long param64) { struct hws_cpu_buffer *cb = &__get_cpu_var(sampler_cpu_buffer); if (!(param32 & CPU_MF_INT_SF_MASK)) return; if (!hws_alert) return; inc_irq_stat(IRQEXT_CMS); atomic_xchg(&cb->ext_params, atomic_read(&cb->ext_params) | param32); if (hws_wq) queue_work(hws_wq, &cb->worker); } static void worker(struct work_struct *work); static void add_samples_to_oprofile(unsigned cpu, unsigned long *, unsigned long *dear); static void init_all_cpu_buffers(void) { int cpu; struct hws_cpu_buffer *cb; for_each_online_cpu(cpu) { cb = &per_cpu(sampler_cpu_buffer, cpu); memset(cb, 0, sizeof(struct hws_cpu_buffer)); } } static int prepare_cpu_buffers(void) { int cpu; int rc; struct hws_cpu_buffer *cb; rc = 0; for_each_online_cpu(cpu) { cb = &per_cpu(sampler_cpu_buffer, cpu); atomic_set(&cb->ext_params, 0); cb->worker_entry = 0; cb->sample_overflow = 0; cb->req_alert = 0; cb->incorrect_sdbt_entry = 0; cb->invalid_entry_address = 0; cb->loss_of_sample_data = 0; cb->sample_auth_change_alert = 0; cb->finish = 0; cb->oom = 0; cb->stop_mode = 0; } return rc; } /* * allocate_sdbt() - allocate sampler memory * @cpu: the cpu for which sampler memory is allocated * * A 4K page is allocated for each requested SDBT. * A maximum of 511 4K pages are allocated for the SDBs in each of the SDBTs. * Set ALERT_REQ mask in each SDBs trailer. * Returns zero if successful, <0 otherwise. */ static int allocate_sdbt(int cpu) { int j, k, rc; unsigned long *sdbt; unsigned long sdb; unsigned long *tail; unsigned long *trailer; struct hws_cpu_buffer *cb; cb = &per_cpu(sampler_cpu_buffer, cpu); if (cb->first_sdbt) return -EINVAL; sdbt = NULL; tail = sdbt; for (j = 0; j < num_sdbt; j++) { sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL); mutex_lock(&hws_sem_oom); /* OOM killer might have been activated */ barrier(); if (oom_killer_was_active || !sdbt) { if (sdbt) free_page((unsigned long)sdbt); goto allocate_sdbt_error; } if (cb->first_sdbt == 0) cb->first_sdbt = (unsigned long)sdbt; /* link current page to tail of chain */ if (tail) *tail = (unsigned long)(void *)sdbt + 1; mutex_unlock(&hws_sem_oom); for (k = 0; k < num_sdb; k++) { /* get and set SDB page */ sdb = get_zeroed_page(GFP_KERNEL); mutex_lock(&hws_sem_oom); /* OOM killer might have been activated */ barrier(); if (oom_killer_was_active || !sdb) { if (sdb) free_page(sdb); goto allocate_sdbt_error; } *sdbt = sdb; trailer = trailer_entry_ptr(*sdbt); *trailer = SDB_TE_ALERT_REQ_MASK; sdbt++; mutex_unlock(&hws_sem_oom); } tail = sdbt; } mutex_lock(&hws_sem_oom); if (oom_killer_was_active) goto allocate_sdbt_error; rc = 0; if (tail) *tail = (unsigned long) ((void *)cb->first_sdbt) + 1; allocate_sdbt_exit: mutex_unlock(&hws_sem_oom); return rc; allocate_sdbt_error: rc = -ENOMEM; goto allocate_sdbt_exit; } /* * deallocate_sdbt() - deallocate all sampler memory * * For each online CPU all SDBT trees are deallocated. * Returns the number of freed pages. */ static int deallocate_sdbt(void) { int cpu; int counter; counter = 0; for_each_online_cpu(cpu) { unsigned long start; unsigned long sdbt; unsigned long *curr; struct hws_cpu_buffer *cb; cb = &per_cpu(sampler_cpu_buffer, cpu); if (!cb->first_sdbt) continue; sdbt = cb->first_sdbt; curr = (unsigned long *) sdbt; start = sdbt; /* we'll free the SDBT after all SDBs are processed... */ while (1) { if (!*curr || !sdbt) break; /* watch for link entry reset if found */ if (is_link_entry(curr)) { curr = get_next_sdbt(curr); if (sdbt) free_page(sdbt); /* we are done if we reach the start */ if ((unsigned long) curr == start) break; else sdbt = (unsigned long) curr; } else { /* process SDB pointer */ if (*curr) { free_page(*curr); curr++; } } counter++; } cb->first_sdbt = 0; } return counter; } static int start_sampling(int cpu) { int rc; struct hws_cpu_buffer *cb; cb = &per_cpu(sampler_cpu_buffer, cpu); rc = smp_ctl_ssctl_enable_activate(cpu, interval); if (rc) { printk(KERN_INFO "hwsampler: CPU %d ssctl failed.\n", cpu); goto start_exit; } rc = -EINVAL; if (!cb->qsi.es) { printk(KERN_INFO "hwsampler: CPU %d ssctl not enabled.\n", cpu); goto start_exit; } if (!cb->qsi.cs) { printk(KERN_INFO "hwsampler: CPU %d ssctl not active.\n", cpu); goto start_exit; } printk(KERN_INFO "hwsampler: CPU %d, CPUMF Sampling started, interval %lu.\n", cpu, interval); rc = 0; start_exit: return rc; } static int stop_sampling(int cpu) { unsigned long v; int rc; struct hws_cpu_buffer *cb; rc = smp_ctl_qsi(cpu); WARN_ON(rc); cb = &per_cpu(sampler_cpu_buffer, cpu); if (!rc && !cb->qsi.es) printk(KERN_INFO "hwsampler: CPU %d, already stopped.\n", cpu); rc = smp_ctl_ssctl_stop(cpu); if (rc) { printk(KERN_INFO "hwsampler: CPU %d, ssctl stop error %d.\n", cpu, rc); goto stop_exit; } printk(KERN_INFO "hwsampler: CPU %d, CPUMF Sampling stopped.\n", cpu); stop_exit: v = cb->req_alert; if (v) printk(KERN_ERR "hwsampler: CPU %d CPUMF Request alert," " count=%lu.\n", cpu, v); v = cb->loss_of_sample_data; if (v) printk(KERN_ERR "hwsampler: CPU %d CPUMF Loss of sample data," " count=%lu.\n", cpu, v); v = cb->invalid_entry_address; if (v) printk(KERN_ERR "hwsampler: CPU %d CPUMF Invalid entry address," " count=%lu.\n", cpu, v); v = cb->incorrect_sdbt_entry; if (v) printk(KERN_ERR "hwsampler: CPU %d CPUMF Incorrect SDBT address," " count=%lu.\n", cpu, v); v = cb->sample_auth_change_alert; if (v) printk(KERN_ERR "hwsampler: CPU %d CPUMF Sample authorization change," " count=%lu.\n", cpu, v); return rc; } static int check_hardware_prerequisites(void) { if (!test_facility(68)) return -EOPNOTSUPP; return 0; } /* * hws_oom_callback() - the OOM callback function * * In case the callback is invoked during memory allocation for the * hw sampler, all obtained memory is deallocated and a flag is set * so main sampler memory allocation can exit with a failure code. * In case the callback is invoked during sampling the hw sampler * is deactivated for all CPUs. */ static int hws_oom_callback(struct notifier_block *nfb, unsigned long dummy, void *parm) { unsigned long *freed; int cpu; struct hws_cpu_buffer *cb; freed = parm; mutex_lock(&hws_sem_oom); if (hws_state == HWS_DEALLOCATED) { /* during memory allocation */ if (oom_killer_was_active == 0) { oom_killer_was_active = 1; *freed += deallocate_sdbt(); } } else { int i; cpu = get_cpu(); cb = &per_cpu(sampler_cpu_buffer, cpu); if (!cb->oom) { for_each_online_cpu(i) { smp_ctl_ssctl_deactivate(i); cb->oom = 1; } cb->finish = 1; printk(KERN_INFO "hwsampler: CPU %d, OOM notify during CPUMF Sampling.\n", cpu); } } mutex_unlock(&hws_sem_oom); return NOTIFY_OK; } static struct notifier_block hws_oom_notifier = { .notifier_call = hws_oom_callback }; static int hws_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { /* We do not have sampler space available for all possible CPUs. All CPUs should be online when hw sampling is activated. */ return (hws_state <= HWS_DEALLOCATED) ? NOTIFY_OK : NOTIFY_BAD; } static struct notifier_block hws_cpu_notifier = { .notifier_call = hws_cpu_callback }; /** * hwsampler_deactivate() - set hardware sampling temporarily inactive * @cpu: specifies the CPU to be set inactive. * * Returns 0 on success, !0 on failure. */ int hwsampler_deactivate(unsigned int cpu) { /* * Deactivate hw sampling temporarily and flush the buffer * by pushing all the pending samples to oprofile buffer. * * This function can be called under one of the following conditions: * Memory unmap, task is exiting. */ int rc; struct hws_cpu_buffer *cb; rc = 0; mutex_lock(&hws_sem); cb = &per_cpu(sampler_cpu_buffer, cpu); if (hws_state == HWS_STARTED) { rc = smp_ctl_qsi(cpu); WARN_ON(rc); if (cb->qsi.cs) { rc = smp_ctl_ssctl_deactivate(cpu); if (rc) { printk(KERN_INFO "hwsampler: CPU %d, CPUMF Deactivation failed.\n", cpu); cb->finish = 1; hws_state = HWS_STOPPING; } else { hws_flush_all = 1; /* Add work to queue to read pending samples.*/ queue_work_on(cpu, hws_wq, &cb->worker); } } } mutex_unlock(&hws_sem); if (hws_wq) flush_workqueue(hws_wq); return rc; } /** * hwsampler_activate() - activate/resume hardware sampling which was deactivated * @cpu: specifies the CPU to be set active. * * Returns 0 on success, !0 on failure. */ int hwsampler_activate(unsigned int cpu) { /* * Re-activate hw sampling. This should be called in pair with * hwsampler_deactivate(). */ int rc; struct hws_cpu_buffer *cb; rc = 0; mutex_lock(&hws_sem); cb = &per_cpu(sampler_cpu_buffer, cpu); if (hws_state == HWS_STARTED) { rc = smp_ctl_qsi(cpu); WARN_ON(rc); if (!cb->qsi.cs) { hws_flush_all = 0; rc = smp_ctl_ssctl_enable_activate(cpu, interval); if (rc) { printk(KERN_ERR "CPU %d, CPUMF activate sampling failed.\n", cpu); } } } mutex_unlock(&hws_sem); return rc; } static int check_qsi_on_setup(void) { int rc; unsigned int cpu; struct hws_cpu_buffer *cb; for_each_online_cpu(cpu) { cb = &per_cpu(sampler_cpu_buffer, cpu); rc = smp_ctl_qsi(cpu); WARN_ON(rc); if (rc) return -EOPNOTSUPP; if (!cb->qsi.as) { printk(KERN_INFO "hwsampler: CPUMF sampling is not authorized.\n"); return -EINVAL; } if (cb->qsi.es) { printk(KERN_WARNING "hwsampler: CPUMF is still enabled.\n"); rc = smp_ctl_ssctl_stop(cpu); if (rc) return -EINVAL; printk(KERN_INFO "CPU %d, CPUMF Sampling stopped now.\n", cpu); } } return 0; } static int check_qsi_on_start(void) { unsigned int cpu; int rc; struct hws_cpu_buffer *cb; for_each_online_cpu(cpu) { cb = &per_cpu(sampler_cpu_buffer, cpu); rc = smp_ctl_qsi(cpu); WARN_ON(rc); if (!cb->qsi.as) return -EINVAL; if (cb->qsi.es) return -EINVAL; if (cb->qsi.cs) return -EINVAL; } return 0; } static void worker_on_start(unsigned int cpu) { struct hws_cpu_buffer *cb; cb = &per_cpu(sampler_cpu_buffer, cpu); cb->worker_entry = cb->first_sdbt; } static int worker_check_error(unsigned int cpu, int ext_params) { int rc; unsigned long *sdbt; struct hws_cpu_buffer *cb; rc = 0; cb = &per_cpu(sampler_cpu_buffer, cpu); sdbt = (unsigned long *) cb->worker_entry; if (!sdbt || !*sdbt) return -EINVAL; if (ext_params & CPU_MF_INT_SF_PRA) cb->req_alert++; if (ext_params & CPU_MF_INT_SF_LSDA) cb->loss_of_sample_data++; if (ext_params & CPU_MF_INT_SF_IAE) { cb->invalid_entry_address++; rc = -EINVAL; } if (ext_params & CPU_MF_INT_SF_ISE) { cb->incorrect_sdbt_entry++; rc = -EINVAL; } if (ext_params & CPU_MF_INT_SF_SACA) { cb->sample_auth_change_alert++; rc = -EINVAL; } return rc; } static void worker_on_finish(unsigned int cpu) { int rc, i; struct hws_cpu_buffer *cb; cb = &per_cpu(sampler_cpu_buffer, cpu); if (cb->finish) { rc = smp_ctl_qsi(cpu); WARN_ON(rc); if (cb->qsi.es) { printk(KERN_INFO "hwsampler: CPU %d, CPUMF Stop/Deactivate sampling.\n", cpu); rc = smp_ctl_ssctl_stop(cpu); if (rc) printk(KERN_INFO "hwsampler: CPU %d, CPUMF Deactivation failed.\n", cpu); for_each_online_cpu(i) { if (i == cpu) continue; if (!cb->finish) { cb->finish = 1; queue_work_on(i, hws_wq, &cb->worker); } } } } } static void worker_on_interrupt(unsigned int cpu) { unsigned long *sdbt; unsigned char done; struct hws_cpu_buffer *cb; cb = &per_cpu(sampler_cpu_buffer, cpu); sdbt = (unsigned long *) cb->worker_entry; done = 0; /* do not proceed if stop was entered, * forget the buffers not yet processed */ while (!done && !cb->stop_mode) { unsigned long *trailer; struct hws_trailer_entry *te; unsigned long *dear = 0; trailer = trailer_entry_ptr(*sdbt); /* leave loop if no more work to do */ if (!(*trailer & SDB_TE_BUFFER_FULL_MASK)) { done = 1; if (!hws_flush_all) continue; } te = (struct hws_trailer_entry *)trailer; cb->sample_overflow += te->overflow; add_samples_to_oprofile(cpu, sdbt, dear); /* reset trailer */ xchg((unsigned char *) te, 0x40); /* advance to next sdb slot in current sdbt */ sdbt++; /* in case link bit is set use address w/o link bit */ if (is_link_entry(sdbt)) sdbt = get_next_sdbt(sdbt); cb->worker_entry = (unsigned long)sdbt; } } static void add_samples_to_oprofile(unsigned int cpu, unsigned long *sdbt, unsigned long *dear) { struct hws_data_entry *sample_data_ptr; unsigned long *trailer; trailer = trailer_entry_ptr(*sdbt); if (dear) { if (dear > trailer) return; trailer = dear; } sample_data_ptr = (struct hws_data_entry *)(*sdbt); while ((unsigned long *)sample_data_ptr < trailer) { struct pt_regs *regs = NULL; struct task_struct *tsk = NULL; /* * Check sampling mode, 1 indicates basic (=customer) sampling * mode. */ if (sample_data_ptr->def != 1) { /* sample slot is not yet written */ break; } else { /* make sure we don't use it twice, * the next time the sampler will set it again */ sample_data_ptr->def = 0; } /* Get pt_regs. */ if (sample_data_ptr->P == 1) { /* userspace sample */ unsigned int pid = sample_data_ptr->prim_asn; if (!counter_config.user) goto skip_sample; rcu_read_lock(); tsk = pid_task(find_vpid(pid), PIDTYPE_PID); if (tsk) regs = task_pt_regs(tsk); rcu_read_unlock(); } else { /* kernelspace sample */ if (!counter_config.kernel) goto skip_sample; regs = task_pt_regs(current); } mutex_lock(&hws_sem); oprofile_add_ext_hw_sample(sample_data_ptr->ia, regs, 0, !sample_data_ptr->P, tsk); mutex_unlock(&hws_sem); skip_sample: sample_data_ptr++; } } static void worker(struct work_struct *work) { unsigned int cpu; int ext_params; struct hws_cpu_buffer *cb; cb = container_of(work, struct hws_cpu_buffer, worker); cpu = smp_processor_id(); ext_params = atomic_xchg(&cb->ext_params, 0); if (!cb->worker_entry) worker_on_start(cpu); if (worker_check_error(cpu, ext_params)) return; if (!cb->finish) worker_on_interrupt(cpu); if (cb->finish) worker_on_finish(cpu); } /** * hwsampler_allocate() - allocate memory for the hardware sampler * @sdbt: number of SDBTs per online CPU (must be > 0) * @sdb: number of SDBs per SDBT (minimum 1, maximum 511) * * Returns 0 on success, !0 on failure. */ int hwsampler_allocate(unsigned long sdbt, unsigned long sdb) { int cpu, rc; mutex_lock(&hws_sem); rc = -EINVAL; if (hws_state != HWS_DEALLOCATED) goto allocate_exit; if (sdbt < 1) goto allocate_exit; if (sdb > MAX_NUM_SDB || sdb < MIN_NUM_SDB) goto allocate_exit; num_sdbt = sdbt; num_sdb = sdb; oom_killer_was_active = 0; register_oom_notifier(&hws_oom_notifier); for_each_online_cpu(cpu) { if (allocate_sdbt(cpu)) { unregister_oom_notifier(&hws_oom_notifier); goto allocate_error; } } unregister_oom_notifier(&hws_oom_notifier); if (oom_killer_was_active) goto allocate_error; hws_state = HWS_STOPPED; rc = 0; allocate_exit: mutex_unlock(&hws_sem); return rc; allocate_error: rc = -ENOMEM; printk(KERN_ERR "hwsampler: CPUMF Memory allocation failed.\n"); goto allocate_exit; } /** * hwsampler_deallocate() - deallocate hardware sampler memory * * Returns 0 on success, !0 on failure. */ int hwsampler_deallocate(void) { int rc; mutex_lock(&hws_sem); rc = -EINVAL; if (hws_state != HWS_STOPPED) goto deallocate_exit; irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); hws_alert = 0; deallocate_sdbt(); hws_state = HWS_DEALLOCATED; rc = 0; deallocate_exit: mutex_unlock(&hws_sem); return rc; } unsigned long hwsampler_query_min_interval(void) { return min_sampler_rate; } unsigned long hwsampler_query_max_interval(void) { return max_sampler_rate; } unsigned long hwsampler_get_sample_overflow_count(unsigned int cpu) { struct hws_cpu_buffer *cb; cb = &per_cpu(sampler_cpu_buffer, cpu); return cb->sample_overflow; } int hwsampler_setup(void) { int rc; int cpu; struct hws_cpu_buffer *cb; mutex_lock(&hws_sem); rc = -EINVAL; if (hws_state) goto setup_exit; hws_state = HWS_INIT; init_all_cpu_buffers(); rc = check_hardware_prerequisites(); if (rc) goto setup_exit; rc = check_qsi_on_setup(); if (rc) goto setup_exit; rc = -EINVAL; hws_wq = create_workqueue("hwsampler"); if (!hws_wq) goto setup_exit; register_cpu_notifier(&hws_cpu_notifier); for_each_online_cpu(cpu) { cb = &per_cpu(sampler_cpu_buffer, cpu); INIT_WORK(&cb->worker, worker); rc = smp_ctl_qsi(cpu); WARN_ON(rc); if (min_sampler_rate != cb->qsi.min_sampl_rate) { if (min_sampler_rate) { printk(KERN_WARNING "hwsampler: different min sampler rate values.\n"); if (min_sampler_rate < cb->qsi.min_sampl_rate) min_sampler_rate = cb->qsi.min_sampl_rate; } else min_sampler_rate = cb->qsi.min_sampl_rate; } if (max_sampler_rate != cb->qsi.max_sampl_rate) { if (max_sampler_rate) { printk(KERN_WARNING "hwsampler: different max sampler rate values.\n"); if (max_sampler_rate > cb->qsi.max_sampl_rate) max_sampler_rate = cb->qsi.max_sampl_rate; } else max_sampler_rate = cb->qsi.max_sampl_rate; } } register_external_interrupt(0x1407, hws_ext_handler); hws_state = HWS_DEALLOCATED; rc = 0; setup_exit: mutex_unlock(&hws_sem); return rc; } int hwsampler_shutdown(void) { int rc; mutex_lock(&hws_sem); rc = -EINVAL; if (hws_state == HWS_DEALLOCATED || hws_state == HWS_STOPPED) { mutex_unlock(&hws_sem); if (hws_wq) flush_workqueue(hws_wq); mutex_lock(&hws_sem); if (hws_state == HWS_STOPPED) { irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); hws_alert = 0; deallocate_sdbt(); } if (hws_wq) { destroy_workqueue(hws_wq); hws_wq = NULL; } unregister_external_interrupt(0x1407, hws_ext_handler); hws_state = HWS_INIT; rc = 0; } mutex_unlock(&hws_sem); unregister_cpu_notifier(&hws_cpu_notifier); return rc; } /** * hwsampler_start_all() - start hardware sampling on all online CPUs * @rate: specifies the used interval when samples are taken * * Returns 0 on success, !0 on failure. */ int hwsampler_start_all(unsigned long rate) { int rc, cpu; mutex_lock(&hws_sem); hws_oom = 0; rc = -EINVAL; if (hws_state != HWS_STOPPED) goto start_all_exit; interval = rate; /* fail if rate is not valid */ if (interval < min_sampler_rate || interval > max_sampler_rate) goto start_all_exit; rc = check_qsi_on_start(); if (rc) goto start_all_exit; rc = prepare_cpu_buffers(); if (rc) goto start_all_exit; for_each_online_cpu(cpu) { rc = start_sampling(cpu); if (rc) break; } if (rc) { for_each_online_cpu(cpu) { stop_sampling(cpu); } goto start_all_exit; } hws_state = HWS_STARTED; rc = 0; start_all_exit: mutex_unlock(&hws_sem); if (rc) return rc; register_oom_notifier(&hws_oom_notifier); hws_oom = 1; hws_flush_all = 0; /* now let them in, 1407 CPUMF external interrupts */ hws_alert = 1; irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); return 0; } /** * hwsampler_stop_all() - stop hardware sampling on all online CPUs * * Returns 0 on success, !0 on failure. */ int hwsampler_stop_all(void) { int tmp_rc, rc, cpu; struct hws_cpu_buffer *cb; mutex_lock(&hws_sem); rc = 0; if (hws_state == HWS_INIT) { mutex_unlock(&hws_sem); return rc; } hws_state = HWS_STOPPING; mutex_unlock(&hws_sem); for_each_online_cpu(cpu) { cb = &per_cpu(sampler_cpu_buffer, cpu); cb->stop_mode = 1; tmp_rc = stop_sampling(cpu); if (tmp_rc) rc = tmp_rc; } if (hws_wq) flush_workqueue(hws_wq); mutex_lock(&hws_sem); if (hws_oom) { unregister_oom_notifier(&hws_oom_notifier); hws_oom = 0; } hws_state = HWS_STOPPED; mutex_unlock(&hws_sem); return rc; }