/* sun4m_smp.c: Sparc SUN4M SMP support. * * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) */ #include <asm/head.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/threads.h> #include <linux/smp.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/profile.h> #include <linux/delay.h> #include <linux/cpu.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/irq_regs.h> #include <asm/ptrace.h> #include <asm/atomic.h> #include <asm/irq.h> #include <asm/page.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <asm/oplib.h> #include <asm/cpudata.h> #include "irq.h" #define IRQ_CROSS_CALL 15 extern ctxd_t *srmmu_ctx_table_phys; extern volatile unsigned long cpu_callin_map[NR_CPUS]; extern unsigned char boot_cpu_id; extern cpumask_t smp_commenced_mask; extern int __smp4m_processor_id(void); /*#define SMP_DEBUG*/ #ifdef SMP_DEBUG #define SMP_PRINTK(x) printk x #else #define SMP_PRINTK(x) #endif static inline unsigned long swap_ulong(volatile unsigned long *ptr, unsigned long val) { __asm__ __volatile__("swap [%1], %0\n\t" : "=&r" (val), "=&r" (ptr) : "0" (val), "1" (ptr)); return val; } static void smp_setup_percpu_timer(void); extern void cpu_probe(void); void __cpuinit smp4m_callin(void) { int cpuid = hard_smp_processor_id(); local_flush_cache_all(); local_flush_tlb_all(); notify_cpu_starting(cpuid); /* Get our local ticker going. */ smp_setup_percpu_timer(); calibrate_delay(); smp_store_cpu_info(cpuid); local_flush_cache_all(); local_flush_tlb_all(); /* * Unblock the master CPU _only_ when the scheduler state * of all secondary CPUs will be up-to-date, so after * the SMP initialization the master will be just allowed * to call the scheduler code. */ /* Allow master to continue. */ swap_ulong(&cpu_callin_map[cpuid], 1); /* XXX: What's up with all the flushes? */ local_flush_cache_all(); local_flush_tlb_all(); cpu_probe(); /* Fix idle thread fields. */ __asm__ __volatile__("ld [%0], %%g6\n\t" : : "r" (¤t_set[cpuid]) : "memory" /* paranoid */); /* Attach to the address space of init_task. */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; while (!cpu_isset(cpuid, smp_commenced_mask)) mb(); local_irq_enable(); set_cpu_online(cpuid, true); } /* * Cycle through the processors asking the PROM to start each one. */ extern struct linux_prom_registers smp_penguin_ctable; extern unsigned long trapbase_cpu1[]; extern unsigned long trapbase_cpu2[]; extern unsigned long trapbase_cpu3[]; void __init smp4m_boot_cpus(void) { smp_setup_percpu_timer(); local_flush_cache_all(); } int __cpuinit smp4m_boot_one_cpu(int i) { extern unsigned long sun4m_cpu_startup; unsigned long *entry = &sun4m_cpu_startup; struct task_struct *p; int timeout; int cpu_node; cpu_find_by_mid(i, &cpu_node); /* Cook up an idler for this guy. */ p = fork_idle(i); current_set[i] = task_thread_info(p); /* See trampoline.S for details... */ entry += ((i-1) * 3); /* * Initialize the contexts table * Since the call to prom_startcpu() trashes the structure, * we need to re-initialize it for each cpu */ smp_penguin_ctable.which_io = 0; smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys; smp_penguin_ctable.reg_size = 0; /* whirrr, whirrr, whirrrrrrrrr... */ printk("Starting CPU %d at %p\n", i, entry); local_flush_cache_all(); prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry); /* wheee... it's going... */ for(timeout = 0; timeout < 10000; timeout++) { if(cpu_callin_map[i]) break; udelay(200); } if (!(cpu_callin_map[i])) { printk("Processor %d is stuck.\n", i); return -ENODEV; } local_flush_cache_all(); return 0; } void __init smp4m_smp_done(void) { int i, first; int *prev; /* setup cpu list for irq rotation */ first = 0; prev = &first; for_each_online_cpu(i) { *prev = i; prev = &cpu_data(i).next; } *prev = first; local_flush_cache_all(); /* Free unneeded trap tables */ if (!cpu_isset(1, cpu_present_map)) { ClearPageReserved(virt_to_page(trapbase_cpu1)); init_page_count(virt_to_page(trapbase_cpu1)); free_page((unsigned long)trapbase_cpu1); totalram_pages++; num_physpages++; } if (!cpu_isset(2, cpu_present_map)) { ClearPageReserved(virt_to_page(trapbase_cpu2)); init_page_count(virt_to_page(trapbase_cpu2)); free_page((unsigned long)trapbase_cpu2); totalram_pages++; num_physpages++; } if (!cpu_isset(3, cpu_present_map)) { ClearPageReserved(virt_to_page(trapbase_cpu3)); init_page_count(virt_to_page(trapbase_cpu3)); free_page((unsigned long)trapbase_cpu3); totalram_pages++; num_physpages++; } /* Ok, they are spinning and ready to go. */ } /* At each hardware IRQ, we get this called to forward IRQ reception * to the next processor. The caller must disable the IRQ level being * serviced globally so that there are no double interrupts received. * * XXX See sparc64 irq.c. */ void smp4m_irq_rotate(int cpu) { int next = cpu_data(cpu).next; if (next != cpu) set_irq_udt(next); } static struct smp_funcall { smpfunc_t func; unsigned long arg1; unsigned long arg2; unsigned long arg3; unsigned long arg4; unsigned long arg5; unsigned long processors_in[SUN4M_NCPUS]; /* Set when ipi entered. */ unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */ } ccall_info; static DEFINE_SPINLOCK(cross_call_lock); /* Cross calls must be serialized, at least currently. */ static void smp4m_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1, unsigned long arg2, unsigned long arg3, unsigned long arg4) { register int ncpus = SUN4M_NCPUS; unsigned long flags; spin_lock_irqsave(&cross_call_lock, flags); /* Init function glue. */ ccall_info.func = func; ccall_info.arg1 = arg1; ccall_info.arg2 = arg2; ccall_info.arg3 = arg3; ccall_info.arg4 = arg4; ccall_info.arg5 = 0; /* Init receive/complete mapping, plus fire the IPI's off. */ { register int i; cpu_clear(smp_processor_id(), mask); cpus_and(mask, cpu_online_map, mask); for(i = 0; i < ncpus; i++) { if (cpu_isset(i, mask)) { ccall_info.processors_in[i] = 0; ccall_info.processors_out[i] = 0; set_cpu_int(i, IRQ_CROSS_CALL); } else { ccall_info.processors_in[i] = 1; ccall_info.processors_out[i] = 1; } } } { register int i; i = 0; do { if (!cpu_isset(i, mask)) continue; while(!ccall_info.processors_in[i]) barrier(); } while(++i < ncpus); i = 0; do { if (!cpu_isset(i, mask)) continue; while(!ccall_info.processors_out[i]) barrier(); } while(++i < ncpus); } spin_unlock_irqrestore(&cross_call_lock, flags); } /* Running cross calls. */ void smp4m_cross_call_irq(void) { int i = smp_processor_id(); ccall_info.processors_in[i] = 1; ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3, ccall_info.arg4, ccall_info.arg5); ccall_info.processors_out[i] = 1; } extern void sun4m_clear_profile_irq(int cpu); void smp4m_percpu_timer_interrupt(struct pt_regs *regs) { struct pt_regs *old_regs; int cpu = smp_processor_id(); old_regs = set_irq_regs(regs); sun4m_clear_profile_irq(cpu); profile_tick(CPU_PROFILING); if(!--prof_counter(cpu)) { int user = user_mode(regs); irq_enter(); update_process_times(user); irq_exit(); prof_counter(cpu) = prof_multiplier(cpu); } set_irq_regs(old_regs); } extern unsigned int lvl14_resolution; static void __cpuinit smp_setup_percpu_timer(void) { int cpu = smp_processor_id(); prof_counter(cpu) = prof_multiplier(cpu) = 1; load_profile_irq(cpu, lvl14_resolution); if(cpu == boot_cpu_id) enable_pil_irq(14); } static void __init smp4m_blackbox_id(unsigned *addr) { int rd = *addr & 0x3e000000; int rs1 = rd >> 11; addr[0] = 0x81580000 | rd; /* rd %tbr, reg */ addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */ addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */ } static void __init smp4m_blackbox_current(unsigned *addr) { int rd = *addr & 0x3e000000; int rs1 = rd >> 11; addr[0] = 0x81580000 | rd; /* rd %tbr, reg */ addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */ addr[4] = 0x8008200c | rd | rs1; /* and reg, 0xc, reg */ } void __init sun4m_init_smp(void) { BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4m_blackbox_id); BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current); BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM); }