#ifndef _ASM_X86_PGTABLE_H #define _ASM_X86_PGTABLE_H #include #include #include /* * Macro to mark a page protection value as UC- */ #define pgprot_noncached(prot) \ ((boot_cpu_data.x86 > 3) \ ? (__pgprot(pgprot_val(prot) | _PAGE_CACHE_UC_MINUS)) \ : (prot)) #ifndef __ASSEMBLY__ #include /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) extern spinlock_t pgd_lock; extern struct list_head pgd_list; extern struct mm_struct *pgd_page_get_mm(struct page *page); #ifdef CONFIG_PARAVIRT #include #else /* !CONFIG_PARAVIRT */ #define set_pte(ptep, pte) native_set_pte(ptep, pte) #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) #define set_pmd_at(mm, addr, pmdp, pmd) native_set_pmd_at(mm, addr, pmdp, pmd) #define set_pte_atomic(ptep, pte) \ native_set_pte_atomic(ptep, pte) #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) #ifndef __PAGETABLE_PUD_FOLDED #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) #define pgd_clear(pgd) native_pgd_clear(pgd) #endif #ifndef set_pud # define set_pud(pudp, pud) native_set_pud(pudp, pud) #endif #ifndef __PAGETABLE_PMD_FOLDED #define pud_clear(pud) native_pud_clear(pud) #endif #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) #define pmd_clear(pmd) native_pmd_clear(pmd) #define pte_update(mm, addr, ptep) do { } while (0) #define pte_update_defer(mm, addr, ptep) do { } while (0) #define pmd_update(mm, addr, ptep) do { } while (0) #define pmd_update_defer(mm, addr, ptep) do { } while (0) #define pgd_val(x) native_pgd_val(x) #define __pgd(x) native_make_pgd(x) #ifndef __PAGETABLE_PUD_FOLDED #define pud_val(x) native_pud_val(x) #define __pud(x) native_make_pud(x) #endif #ifndef __PAGETABLE_PMD_FOLDED #define pmd_val(x) native_pmd_val(x) #define __pmd(x) native_make_pmd(x) #endif #define pte_val(x) native_pte_val(x) #define __pte(x) native_make_pte(x) #define arch_end_context_switch(prev) do {} while(0) #endif /* CONFIG_PARAVIRT */ /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return pte_flags(pte) & _PAGE_ACCESSED; } static inline int pmd_young(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_ACCESSED; } static inline int pte_write(pte_t pte) { return pte_flags(pte) & _PAGE_RW; } static inline int pte_file(pte_t pte) { return pte_flags(pte) & _PAGE_FILE; } static inline int pte_huge(pte_t pte) { return pte_flags(pte) & _PAGE_PSE; } static inline int pte_global(pte_t pte) { return pte_flags(pte) & _PAGE_GLOBAL; } static inline int pte_exec(pte_t pte) { return !(pte_flags(pte) & _PAGE_NX); } static inline int pte_special(pte_t pte) { return pte_flags(pte) & _PAGE_SPECIAL; } static inline unsigned long pte_pfn(pte_t pte) { return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT; } static inline unsigned long pmd_pfn(pmd_t pmd) { return (pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT; } #define pte_page(pte) pfn_to_page(pte_pfn(pte)) static inline int pmd_large(pmd_t pte) { return (pmd_flags(pte) & (_PAGE_PSE | _PAGE_PRESENT)) == (_PAGE_PSE | _PAGE_PRESENT); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmd_trans_splitting(pmd_t pmd) { return pmd_val(pmd) & _PAGE_SPLITTING; } static inline int pmd_trans_huge(pmd_t pmd) { return pmd_val(pmd) & _PAGE_PSE; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline pte_t pte_set_flags(pte_t pte, pteval_t set) { pteval_t v = native_pte_val(pte); return native_make_pte(v | set); } static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) { pteval_t v = native_pte_val(pte); return native_make_pte(v & ~clear); } static inline pte_t pte_mkclean(pte_t pte) { return pte_clear_flags(pte, _PAGE_DIRTY); } static inline pte_t pte_mkold(pte_t pte) { return pte_clear_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_wrprotect(pte_t pte) { return pte_clear_flags(pte, _PAGE_RW); } static inline pte_t pte_mkexec(pte_t pte) { return pte_clear_flags(pte, _PAGE_NX); } static inline pte_t pte_mkdirty(pte_t pte) { return pte_set_flags(pte, _PAGE_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return pte_set_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_mkwrite(pte_t pte) { return pte_set_flags(pte, _PAGE_RW); } static inline pte_t pte_mkhuge(pte_t pte) { return pte_set_flags(pte, _PAGE_PSE); } static inline pte_t pte_clrhuge(pte_t pte) { return pte_clear_flags(pte, _PAGE_PSE); } static inline pte_t pte_mkglobal(pte_t pte) { return pte_set_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_clrglobal(pte_t pte) { return pte_clear_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_mkspecial(pte_t pte) { return pte_set_flags(pte, _PAGE_SPECIAL); } static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) { pmdval_t v = native_pmd_val(pmd); return __pmd(v | set); } static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) { pmdval_t v = native_pmd_val(pmd); return __pmd(v & ~clear); } static inline pmd_t pmd_mkold(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_wrprotect(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_RW); } static inline pmd_t pmd_mkdirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_DIRTY); } static inline pmd_t pmd_mkhuge(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_PSE); } static inline pmd_t pmd_mkyoung(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkwrite(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_RW); } static inline pmd_t pmd_mknotpresent(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_PRESENT); } /* * Mask out unsupported bits in a present pgprot. Non-present pgprots * can use those bits for other purposes, so leave them be. */ static inline pgprotval_t massage_pgprot(pgprot_t pgprot) { pgprotval_t protval = pgprot_val(pgprot); if (protval & _PAGE_PRESENT) protval &= __supported_pte_mask; return protval; } static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) { return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) | massage_pgprot(pgprot)); } static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) { return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) | massage_pgprot(pgprot)); } static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pteval_t val = pte_val(pte); /* * Chop off the NX bit (if present), and add the NX portion of * the newprot (if present): */ val &= _PAGE_CHG_MASK; val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK; return __pte(val); } static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { pmdval_t val = pmd_val(pmd); val &= _HPAGE_CHG_MASK; val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK; return __pmd(val); } /* mprotect needs to preserve PAT bits when updating vm_page_prot */ #define pgprot_modify pgprot_modify static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) { pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; pgprotval_t addbits = pgprot_val(newprot); return __pgprot(preservebits | addbits); } #define pte_pgprot(x) __pgprot(pte_flags(x) & PTE_FLAGS_MASK) #define canon_pgprot(p) __pgprot(massage_pgprot(p)) static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, unsigned long flags, unsigned long new_flags) { /* * PAT type is always WB for untracked ranges, so no need to check. */ if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) return 1; /* * Certain new memtypes are not allowed with certain * requested memtype: * - request is uncached, return cannot be write-back * - request is write-combine, return cannot be write-back */ if ((flags == _PAGE_CACHE_UC_MINUS && new_flags == _PAGE_CACHE_WB) || (flags == _PAGE_CACHE_WC && new_flags == _PAGE_CACHE_WB)) { return 0; } return 1; } pmd_t *populate_extra_pmd(unsigned long vaddr); pte_t *populate_extra_pte(unsigned long vaddr); #endif /* __ASSEMBLY__ */ #ifdef CONFIG_X86_32 # include "pgtable_32.h" #else # include "pgtable_64.h" #endif #ifndef __ASSEMBLY__ #include static inline int pte_none(pte_t pte) { return !pte.pte; } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t a, pte_t b) { return a.pte == b.pte; } static inline int pte_present(pte_t a) { return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); } static inline int pte_hidden(pte_t pte) { return pte_flags(pte) & _PAGE_HIDDEN; } static inline int pmd_present(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_PRESENT; } static inline int pmd_none(pmd_t pmd) { /* Only check low word on 32-bit platforms, since it might be out of sync with upper half. */ return (unsigned long)native_pmd_val(pmd) == 0; } static inline unsigned long pmd_page_vaddr(pmd_t pmd) { return (unsigned long)__va(pmd_val(pmd) & PTE_PFN_MASK); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pmd_page(pmd) pfn_to_page((pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT) /* * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] * * this macro returns the index of the entry in the pmd page which would * control the given virtual address */ static inline unsigned long pmd_index(unsigned long address) { return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * (Currently stuck as a macro because of indirect forward reference * to linux/mm.h:page_to_nid()) */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) /* * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] * * this function returns the index of the entry in the pte page which would * control the given virtual address */ static inline unsigned long pte_index(unsigned long address) { return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); } static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) { return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); } static inline int pmd_bad(pmd_t pmd) { return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; } static inline unsigned long pages_to_mb(unsigned long npg) { return npg >> (20 - PAGE_SHIFT); } #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ remap_pfn_range(vma, vaddr, pfn, size, prot) #if PAGETABLE_LEVELS > 2 static inline int pud_none(pud_t pud) { return native_pud_val(pud) == 0; } static inline int pud_present(pud_t pud) { return pud_flags(pud) & _PAGE_PRESENT; } static inline unsigned long pud_page_vaddr(pud_t pud) { return (unsigned long)__va((unsigned long)pud_val(pud) & PTE_PFN_MASK); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pud_page(pud) pfn_to_page(pud_val(pud) >> PAGE_SHIFT) /* Find an entry in the second-level page table.. */ static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) { return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); } static inline int pud_large(pud_t pud) { return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == (_PAGE_PSE | _PAGE_PRESENT); } static inline int pud_bad(pud_t pud) { return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; } #else static inline int pud_large(pud_t pud) { return 0; } #endif /* PAGETABLE_LEVELS > 2 */ #if PAGETABLE_LEVELS > 3 static inline int pgd_present(pgd_t pgd) { return pgd_flags(pgd) & _PAGE_PRESENT; } static inline unsigned long pgd_page_vaddr(pgd_t pgd) { return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT) /* to find an entry in a page-table-directory. */ static inline unsigned long pud_index(unsigned long address) { return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); } static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) { return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(address); } static inline int pgd_bad(pgd_t pgd) { return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE; } static inline int pgd_none(pgd_t pgd) { return !native_pgd_val(pgd); } #endif /* PAGETABLE_LEVELS > 3 */ #endif /* __ASSEMBLY__ */ /* * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] * * this macro returns the index of the entry in the pgd page which would * control the given virtual address */ #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) /* * pgd_offset() returns a (pgd_t *) * pgd_index() is used get the offset into the pgd page's array of pgd_t's; */ #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address))) /* * a shortcut which implies the use of the kernel's pgd, instead * of a process's */ #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) #ifndef __ASSEMBLY__ extern int direct_gbpages; /* local pte updates need not use xchg for locking */ static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) { pte_t res = *ptep; /* Pure native function needs no input for mm, addr */ native_pte_clear(NULL, 0, ptep); return res; } static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) { pmd_t res = *pmdp; native_pmd_clear(pmdp); return res; } static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep , pte_t pte) { native_set_pte(ptep, pte); } static inline void native_set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp , pmd_t pmd) { native_set_pmd(pmdp, pmd); } #ifndef CONFIG_PARAVIRT /* * Rules for using pte_update - it must be called after any PTE update which * has not been done using the set_pte / clear_pte interfaces. It is used by * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE * updates should either be sets, clears, or set_pte_atomic for P->P * transitions, which means this hook should only be called for user PTEs. * This hook implies a P->P protection or access change has taken place, which * requires a subsequent TLB flush. The notification can optionally be delayed * until the TLB flush event by using the pte_update_defer form of the * interface, but care must be taken to assure that the flush happens while * still holding the same page table lock so that the shadow and primary pages * do not become out of sync on SMP. */ #define pte_update(mm, addr, ptep) do { } while (0) #define pte_update_defer(mm, addr, ptep) do { } while (0) #endif /* * We only update the dirty/accessed state if we set * the dirty bit by hand in the kernel, since the hardware * will do the accessed bit for us, and we don't want to * race with other CPU's that might be updating the dirty * bit at the same time. */ struct vm_area_struct; #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep); #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH extern int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = native_ptep_get_and_clear(ptep); pte_update(mm, addr, ptep); return pte; } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { pte_t pte; if (full) { /* * Full address destruction in progress; paravirt does not * care about updates and native needs no locking */ pte = native_local_ptep_get_and_clear(ptep); } else { pte = ptep_get_and_clear(mm, addr, ptep); } return pte; } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); pte_update(mm, addr, ptep); } #define flush_tlb_fix_spurious_fault(vma, address) #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp); #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH extern void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp); #define __HAVE_ARCH_PMD_WRITE static inline int pmd_write(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_RW; } #define __HAVE_ARCH_PMDP_GET_AND_CLEAR static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { pmd_t pmd = native_pmdp_get_and_clear(pmdp); pmd_update(mm, addr, pmdp); return pmd; } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); pmd_update(mm, addr, pmdp); } /* * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); * * dst - pointer to pgd range anwhere on a pgd page * src - "" * count - the number of pgds to copy. * * dst and src can be on the same page, but the range must not overlap, * and must not cross a page boundary. */ static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) { memcpy(dst, src, count * sizeof(pgd_t)); } #include #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_H */