/* * Intel IO-APIC support for multi-Pentium hosts. * * Copyright (C) 1997, 1998, 1999, 2000 Ingo Molnar, Hajnalka Szabo * * Many thanks to Stig Venaas for trying out countless experimental * patches and reporting/debugging problems patiently! * * (c) 1999, Multiple IO-APIC support, developed by * Ken-ichi Yaku and * Hidemi Kishimoto , * further tested and cleaned up by Zach Brown * and Ingo Molnar * * Fixes * Maciej W. Rozycki : Bits for genuine 82489DX APICs; * thanks to Eric Gilmore * and Rolf G. Tews * for testing these extensively * Paul Diefenbaugh : Added full ACPI support */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* time_after() */ #ifdef CONFIG_ACPI #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define __apicdebuginit(type) static type __init int ioapic_force; int sis_apic_bug; /* not actually supported, dummy for compile */ static DEFINE_SPINLOCK(ioapic_lock); static DEFINE_SPINLOCK(vector_lock); int first_free_entry; /* * Rough estimation of how many shared IRQs there are, can * be changed anytime. */ int pin_map_size; /* * # of IRQ routing registers */ int nr_ioapic_registers[MAX_IO_APICS]; /* I/O APIC entries */ struct mp_config_ioapic mp_ioapics[MAX_IO_APICS]; int nr_ioapics; /* MP IRQ source entries */ struct mp_config_intsrc mp_irqs[MAX_IRQ_SOURCES]; /* # of MP IRQ source entries */ int mp_irq_entries; DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES); int skip_ioapic_setup; static int __init parse_noapic(char *str) { disable_ioapic_setup(); return 0; } early_param("noapic", parse_noapic); struct irq_cfg; struct irq_pin_list; struct irq_cfg { unsigned int irq; struct irq_cfg *next; struct irq_pin_list *irq_2_pin; cpumask_t domain; cpumask_t old_domain; unsigned move_cleanup_count; u8 vector; u8 move_in_progress : 1; }; /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */ static struct irq_cfg irq_cfg_legacy[] __initdata = { [0] = { .irq = 0, .domain = CPU_MASK_ALL, .vector = IRQ0_VECTOR, }, [1] = { .irq = 1, .domain = CPU_MASK_ALL, .vector = IRQ1_VECTOR, }, [2] = { .irq = 2, .domain = CPU_MASK_ALL, .vector = IRQ2_VECTOR, }, [3] = { .irq = 3, .domain = CPU_MASK_ALL, .vector = IRQ3_VECTOR, }, [4] = { .irq = 4, .domain = CPU_MASK_ALL, .vector = IRQ4_VECTOR, }, [5] = { .irq = 5, .domain = CPU_MASK_ALL, .vector = IRQ5_VECTOR, }, [6] = { .irq = 6, .domain = CPU_MASK_ALL, .vector = IRQ6_VECTOR, }, [7] = { .irq = 7, .domain = CPU_MASK_ALL, .vector = IRQ7_VECTOR, }, [8] = { .irq = 8, .domain = CPU_MASK_ALL, .vector = IRQ8_VECTOR, }, [9] = { .irq = 9, .domain = CPU_MASK_ALL, .vector = IRQ9_VECTOR, }, [10] = { .irq = 10, .domain = CPU_MASK_ALL, .vector = IRQ10_VECTOR, }, [11] = { .irq = 11, .domain = CPU_MASK_ALL, .vector = IRQ11_VECTOR, }, [12] = { .irq = 12, .domain = CPU_MASK_ALL, .vector = IRQ12_VECTOR, }, [13] = { .irq = 13, .domain = CPU_MASK_ALL, .vector = IRQ13_VECTOR, }, [14] = { .irq = 14, .domain = CPU_MASK_ALL, .vector = IRQ14_VECTOR, }, [15] = { .irq = 15, .domain = CPU_MASK_ALL, .vector = IRQ15_VECTOR, }, }; static struct irq_cfg irq_cfg_init = { .irq = -1U, }; /* need to be biger than size of irq_cfg_legacy */ static int nr_irq_cfg = 32; static int __init parse_nr_irq_cfg(char *arg) { if (arg) { nr_irq_cfg = simple_strtoul(arg, NULL, 0); if (nr_irq_cfg < 32) nr_irq_cfg = 32; } return 0; } early_param("nr_irq_cfg", parse_nr_irq_cfg); static void init_one_irq_cfg(struct irq_cfg *cfg) { memcpy(cfg, &irq_cfg_init, sizeof(struct irq_cfg)); } static struct irq_cfg *irq_cfgx; static struct irq_cfg *irq_cfgx_free; static void __init init_work(void *data) { struct dyn_array *da = data; struct irq_cfg *cfg; int legacy_count; int i; cfg = *da->name; memcpy(cfg, irq_cfg_legacy, sizeof(irq_cfg_legacy)); legacy_count = sizeof(irq_cfg_legacy)/sizeof(irq_cfg_legacy[0]); for (i = legacy_count; i < *da->nr; i++) init_one_irq_cfg(&cfg[i]); for (i = 1; i < *da->nr; i++) cfg[i-1].next = &cfg[i]; irq_cfgx_free = &irq_cfgx[legacy_count]; irq_cfgx[legacy_count - 1].next = NULL; } #define for_each_irq_cfg(cfg) \ for (cfg = irq_cfgx; cfg; cfg = cfg->next) DEFINE_DYN_ARRAY(irq_cfgx, sizeof(struct irq_cfg), nr_irq_cfg, PAGE_SIZE, init_work); static struct irq_cfg *irq_cfg(unsigned int irq) { struct irq_cfg *cfg; cfg = irq_cfgx; while (cfg) { if (cfg->irq == irq) return cfg; cfg = cfg->next; } return NULL; } static struct irq_cfg *irq_cfg_alloc(unsigned int irq) { struct irq_cfg *cfg, *cfg_pri; int i; int count = 0; cfg_pri = cfg = irq_cfgx; while (cfg) { if (cfg->irq == irq) return cfg; cfg_pri = cfg; cfg = cfg->next; count++; } if (!irq_cfgx_free) { unsigned long phys; unsigned long total_bytes; /* * we run out of pre-allocate ones, allocate more */ printk(KERN_DEBUG "try to get more irq_cfg %d\n", nr_irq_cfg); total_bytes = sizeof(struct irq_cfg) * nr_irq_cfg; if (after_bootmem) cfg = kzalloc(total_bytes, GFP_ATOMIC); else cfg = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0); if (!cfg) panic("please boot with nr_irq_cfg= %d\n", count * 2); phys = __pa(cfg); printk(KERN_DEBUG "irq_irq ==> [%#lx - %#lx]\n", phys, phys + total_bytes); for (i = 0; i < nr_irq_cfg; i++) init_one_irq_cfg(&cfg[i]); for (i = 1; i < nr_irq_cfg; i++) cfg[i-1].next = &cfg[i]; irq_cfgx_free = cfg; } cfg = irq_cfgx_free; irq_cfgx_free = irq_cfgx_free->next; cfg->next = NULL; if (cfg_pri) cfg_pri->next = cfg; else irq_cfgx = cfg; cfg->irq = irq; printk(KERN_DEBUG "found new irq_cfg for irq %d\n", cfg->irq); #ifdef CONFIG_HAVE_SPARSE_IRQ_DEBUG { /* dump the results */ struct irq_cfg *cfg; unsigned long phys; unsigned long bytes = sizeof(struct irq_cfg); printk(KERN_DEBUG "=========================== %d\n", irq); printk(KERN_DEBUG "irq_cfg dump after get that for %d\n", irq); for_each_irq_cfg(cfg) { phys = __pa(cfg); printk(KERN_DEBUG "irq_cfg %d ==> [%#lx - %#lx]\n", cfg->irq, phys, phys + bytes); } printk(KERN_DEBUG "===========================\n"); } #endif return cfg; } /* * This is performance-critical, we want to do it O(1) * * the indexing order of this array favors 1:1 mappings * between pins and IRQs. */ struct irq_pin_list { int apic, pin; struct irq_pin_list *next; }; static struct irq_pin_list *irq_2_pin_head; /* fill one page ? */ static int nr_irq_2_pin = 0x100; static struct irq_pin_list *irq_2_pin_ptr; static void __init irq_2_pin_init_work(void *data) { struct dyn_array *da = data; struct irq_pin_list *pin; int i; pin = *da->name; for (i = 1; i < *da->nr; i++) pin[i-1].next = &pin[i]; irq_2_pin_ptr = &pin[0]; } DEFINE_DYN_ARRAY(irq_2_pin_head, sizeof(struct irq_pin_list), nr_irq_2_pin, PAGE_SIZE, irq_2_pin_init_work); static struct irq_pin_list *get_one_free_irq_2_pin(void) { struct irq_pin_list *pin; int i; pin = irq_2_pin_ptr; if (pin) { irq_2_pin_ptr = pin->next; pin->next = NULL; return pin; } /* * we run out of pre-allocate ones, allocate more */ printk(KERN_DEBUG "try to get more irq_2_pin %d\n", nr_irq_2_pin); if (after_bootmem) pin = kzalloc(sizeof(struct irq_pin_list)*nr_irq_2_pin, GFP_ATOMIC); else pin = __alloc_bootmem_nopanic(sizeof(struct irq_pin_list) * nr_irq_2_pin, PAGE_SIZE, 0); if (!pin) panic("can not get more irq_2_pin\n"); for (i = 1; i < nr_irq_2_pin; i++) pin[i-1].next = &pin[i]; irq_2_pin_ptr = pin->next; pin->next = NULL; return pin; } struct io_apic { unsigned int index; unsigned int unused[3]; unsigned int data; }; static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx) { return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx) + (mp_ioapics[idx].mp_apicaddr & ~PAGE_MASK); } static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg) { struct io_apic __iomem *io_apic = io_apic_base(apic); writel(reg, &io_apic->index); return readl(&io_apic->data); } static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value) { struct io_apic __iomem *io_apic = io_apic_base(apic); writel(reg, &io_apic->index); writel(value, &io_apic->data); } /* * Re-write a value: to be used for read-modify-write * cycles where the read already set up the index register. */ static inline void io_apic_modify(unsigned int apic, unsigned int value) { struct io_apic __iomem *io_apic = io_apic_base(apic); writel(value, &io_apic->data); } static bool io_apic_level_ack_pending(unsigned int irq) { struct irq_pin_list *entry; unsigned long flags; struct irq_cfg *cfg = irq_cfg(irq); spin_lock_irqsave(&ioapic_lock, flags); entry = cfg->irq_2_pin; for (;;) { unsigned int reg; int pin; if (!entry) break; pin = entry->pin; reg = io_apic_read(entry->apic, 0x10 + pin*2); /* Is the remote IRR bit set? */ if (reg & IO_APIC_REDIR_REMOTE_IRR) { spin_unlock_irqrestore(&ioapic_lock, flags); return true; } if (!entry->next) break; entry = entry->next; } spin_unlock_irqrestore(&ioapic_lock, flags); return false; } union entry_union { struct { u32 w1, w2; }; struct IO_APIC_route_entry entry; }; static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin) { union entry_union eu; unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); eu.w1 = io_apic_read(apic, 0x10 + 2 * pin); eu.w2 = io_apic_read(apic, 0x11 + 2 * pin); spin_unlock_irqrestore(&ioapic_lock, flags); return eu.entry; } /* * When we write a new IO APIC routing entry, we need to write the high * word first! If the mask bit in the low word is clear, we will enable * the interrupt, and we need to make sure the entry is fully populated * before that happens. */ static void __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) { union entry_union eu; eu.entry = e; io_apic_write(apic, 0x11 + 2*pin, eu.w2); io_apic_write(apic, 0x10 + 2*pin, eu.w1); } static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) { unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); __ioapic_write_entry(apic, pin, e); spin_unlock_irqrestore(&ioapic_lock, flags); } /* * When we mask an IO APIC routing entry, we need to write the low * word first, in order to set the mask bit before we change the * high bits! */ static void ioapic_mask_entry(int apic, int pin) { unsigned long flags; union entry_union eu = { .entry.mask = 1 }; spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(apic, 0x10 + 2*pin, eu.w1); io_apic_write(apic, 0x11 + 2*pin, eu.w2); spin_unlock_irqrestore(&ioapic_lock, flags); } #ifdef CONFIG_SMP static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, u8 vector) { int apic, pin; struct irq_cfg *cfg; struct irq_pin_list *entry; cfg = irq_cfg(irq); entry = cfg->irq_2_pin; for (;;) { unsigned int reg; if (!entry) break; apic = entry->apic; pin = entry->pin; #ifdef CONFIG_INTR_REMAP /* * With interrupt-remapping, destination information comes * from interrupt-remapping table entry. */ if (!irq_remapped(irq)) io_apic_write(apic, 0x11 + pin*2, dest); #else io_apic_write(apic, 0x11 + pin*2, dest); #endif reg = io_apic_read(apic, 0x10 + pin*2); reg &= ~IO_APIC_REDIR_VECTOR_MASK; reg |= vector; io_apic_modify(apic, reg); if (!entry->next) break; entry = entry->next; } } static int assign_irq_vector(int irq, cpumask_t mask); static void set_ioapic_affinity_irq(unsigned int irq, cpumask_t mask) { struct irq_cfg *cfg = irq_cfg(irq); unsigned long flags; unsigned int dest; cpumask_t tmp; struct irq_desc *desc; cpus_and(tmp, mask, cpu_online_map); if (cpus_empty(tmp)) return; if (assign_irq_vector(irq, mask)) return; cpus_and(tmp, cfg->domain, mask); dest = cpu_mask_to_apicid(tmp); /* * Only the high 8 bits are valid. */ dest = SET_APIC_LOGICAL_ID(dest); desc = irq_to_desc(irq); spin_lock_irqsave(&ioapic_lock, flags); __target_IO_APIC_irq(irq, dest, cfg->vector); desc->affinity = mask; spin_unlock_irqrestore(&ioapic_lock, flags); } #endif /* * The common case is 1:1 IRQ<->pin mappings. Sometimes there are * shared ISA-space IRQs, so we have to support them. We are super * fast in the common case, and fast for shared ISA-space IRQs. */ static void add_pin_to_irq(unsigned int irq, int apic, int pin) { struct irq_cfg *cfg; struct irq_pin_list *entry; /* first time to refer irq_cfg, so with new */ cfg = irq_cfg_alloc(irq); entry = cfg->irq_2_pin; if (!entry) { entry = get_one_free_irq_2_pin(); cfg->irq_2_pin = entry; entry->apic = apic; entry->pin = pin; printk(KERN_DEBUG " 0 add_pin_to_irq: irq %d --> apic %d pin %d\n", irq, apic, pin); return; } while (entry->next) { /* not again, please */ if (entry->apic == apic && entry->pin == pin) return; entry = entry->next; } entry->next = get_one_free_irq_2_pin(); entry = entry->next; entry->apic = apic; entry->pin = pin; printk(KERN_DEBUG " x add_pin_to_irq: irq %d --> apic %d pin %d\n", irq, apic, pin); } /* * Reroute an IRQ to a different pin. */ static void __init replace_pin_at_irq(unsigned int irq, int oldapic, int oldpin, int newapic, int newpin) { struct irq_cfg *cfg = irq_cfg(irq); struct irq_pin_list *entry = cfg->irq_2_pin; int replaced = 0; while (entry) { if (entry->apic == oldapic && entry->pin == oldpin) { entry->apic = newapic; entry->pin = newpin; replaced = 1; /* every one is different, right? */ break; } entry = entry->next; } /* why? call replace before add? */ if (!replaced) add_pin_to_irq(irq, newapic, newpin); } /* * Synchronize the IO-APIC and the CPU by doing * a dummy read from the IO-APIC */ static inline void io_apic_sync(unsigned int apic) { struct io_apic __iomem *io_apic = io_apic_base(apic); readl(&io_apic->data); } #define __DO_ACTION(R, ACTION, FINAL) \ \ { \ int pin; \ struct irq_cfg *cfg; \ struct irq_pin_list *entry; \ \ cfg = irq_cfg(irq); \ entry = cfg->irq_2_pin; \ for (;;) { \ unsigned int reg; \ if (!entry) \ break; \ pin = entry->pin; \ reg = io_apic_read(entry->apic, 0x10 + R + pin*2); \ reg ACTION; \ io_apic_modify(entry->apic, reg); \ FINAL; \ if (!entry->next) \ break; \ entry = entry->next; \ } \ } #define DO_ACTION(name,R,ACTION, FINAL) \ \ static void name##_IO_APIC_irq (unsigned int irq) \ __DO_ACTION(R, ACTION, FINAL) /* mask = 1 */ DO_ACTION(__mask, 0, |= IO_APIC_REDIR_MASKED, io_apic_sync(entry->apic)) /* mask = 0 */ DO_ACTION(__unmask, 0, &= ~IO_APIC_REDIR_MASKED, ) static void mask_IO_APIC_irq (unsigned int irq) { unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); __mask_IO_APIC_irq(irq); spin_unlock_irqrestore(&ioapic_lock, flags); } static void unmask_IO_APIC_irq (unsigned int irq) { unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); __unmask_IO_APIC_irq(irq); spin_unlock_irqrestore(&ioapic_lock, flags); } static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin) { struct IO_APIC_route_entry entry; /* Check delivery_mode to be sure we're not clearing an SMI pin */ entry = ioapic_read_entry(apic, pin); if (entry.delivery_mode == dest_SMI) return; /* * Disable it in the IO-APIC irq-routing table: */ ioapic_mask_entry(apic, pin); } static void clear_IO_APIC (void) { int apic, pin; for (apic = 0; apic < nr_ioapics; apic++) for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) clear_IO_APIC_pin(apic, pin); } #ifdef CONFIG_INTR_REMAP /* I/O APIC RTE contents at the OS boot up */ static struct IO_APIC_route_entry *early_ioapic_entries[MAX_IO_APICS]; /* * Saves and masks all the unmasked IO-APIC RTE's */ int save_mask_IO_APIC_setup(void) { union IO_APIC_reg_01 reg_01; unsigned long flags; int apic, pin; /* * The number of IO-APIC IRQ registers (== #pins): */ for (apic = 0; apic < nr_ioapics; apic++) { spin_lock_irqsave(&ioapic_lock, flags); reg_01.raw = io_apic_read(apic, 1); spin_unlock_irqrestore(&ioapic_lock, flags); nr_ioapic_registers[apic] = reg_01.bits.entries+1; } for (apic = 0; apic < nr_ioapics; apic++) { early_ioapic_entries[apic] = kzalloc(sizeof(struct IO_APIC_route_entry) * nr_ioapic_registers[apic], GFP_KERNEL); if (!early_ioapic_entries[apic]) return -ENOMEM; } for (apic = 0; apic < nr_ioapics; apic++) for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { struct IO_APIC_route_entry entry; entry = early_ioapic_entries[apic][pin] = ioapic_read_entry(apic, pin); if (!entry.mask) { entry.mask = 1; ioapic_write_entry(apic, pin, entry); } } return 0; } void restore_IO_APIC_setup(void) { int apic, pin; for (apic = 0; apic < nr_ioapics; apic++) for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) ioapic_write_entry(apic, pin, early_ioapic_entries[apic][pin]); } void reinit_intr_remapped_IO_APIC(int intr_remapping) { /* * for now plain restore of previous settings. * TBD: In the case of OS enabling interrupt-remapping, * IO-APIC RTE's need to be setup to point to interrupt-remapping * table entries. for now, do a plain restore, and wait for * the setup_IO_APIC_irqs() to do proper initialization. */ restore_IO_APIC_setup(); } #endif /* * Find the IRQ entry number of a certain pin. */ static int find_irq_entry(int apic, int pin, int type) { int i; for (i = 0; i < mp_irq_entries; i++) if (mp_irqs[i].mp_irqtype == type && (mp_irqs[i].mp_dstapic == mp_ioapics[apic].mp_apicid || mp_irqs[i].mp_dstapic == MP_APIC_ALL) && mp_irqs[i].mp_dstirq == pin) return i; return -1; } /* * Find the pin to which IRQ[irq] (ISA) is connected */ static int __init find_isa_irq_pin(int irq, int type) { int i; for (i = 0; i < mp_irq_entries; i++) { int lbus = mp_irqs[i].mp_srcbus; if (test_bit(lbus, mp_bus_not_pci) && (mp_irqs[i].mp_irqtype == type) && (mp_irqs[i].mp_srcbusirq == irq)) return mp_irqs[i].mp_dstirq; } return -1; } static int __init find_isa_irq_apic(int irq, int type) { int i; for (i = 0; i < mp_irq_entries; i++) { int lbus = mp_irqs[i].mp_srcbus; if (test_bit(lbus, mp_bus_not_pci) && (mp_irqs[i].mp_irqtype == type) && (mp_irqs[i].mp_srcbusirq == irq)) break; } if (i < mp_irq_entries) { int apic; for(apic = 0; apic < nr_ioapics; apic++) { if (mp_ioapics[apic].mp_apicid == mp_irqs[i].mp_dstapic) return apic; } } return -1; } /* * Find a specific PCI IRQ entry. * Not an __init, possibly needed by modules */ static int pin_2_irq(int idx, int apic, int pin); int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin) { int apic, i, best_guess = -1; apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n", bus, slot, pin); if (test_bit(bus, mp_bus_not_pci)) { apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus); return -1; } for (i = 0; i < mp_irq_entries; i++) { int lbus = mp_irqs[i].mp_srcbus; for (apic = 0; apic < nr_ioapics; apic++) if (mp_ioapics[apic].mp_apicid == mp_irqs[i].mp_dstapic || mp_irqs[i].mp_dstapic == MP_APIC_ALL) break; if (!test_bit(lbus, mp_bus_not_pci) && !mp_irqs[i].mp_irqtype && (bus == lbus) && (slot == ((mp_irqs[i].mp_srcbusirq >> 2) & 0x1f))) { int irq = pin_2_irq(i,apic,mp_irqs[i].mp_dstirq); if (!(apic || IO_APIC_IRQ(irq))) continue; if (pin == (mp_irqs[i].mp_srcbusirq & 3)) return irq; /* * Use the first all-but-pin matching entry as a * best-guess fuzzy result for broken mptables. */ if (best_guess < 0) best_guess = irq; } } return best_guess; } /* ISA interrupts are always polarity zero edge triggered, * when listed as conforming in the MP table. */ #define default_ISA_trigger(idx) (0) #define default_ISA_polarity(idx) (0) /* PCI interrupts are always polarity one level triggered, * when listed as conforming in the MP table. */ #define default_PCI_trigger(idx) (1) #define default_PCI_polarity(idx) (1) static int MPBIOS_polarity(int idx) { int bus = mp_irqs[idx].mp_srcbus; int polarity; /* * Determine IRQ line polarity (high active or low active): */ switch (mp_irqs[idx].mp_irqflag & 3) { case 0: /* conforms, ie. bus-type dependent polarity */ if (test_bit(bus, mp_bus_not_pci)) polarity = default_ISA_polarity(idx); else polarity = default_PCI_polarity(idx); break; case 1: /* high active */ { polarity = 0; break; } case 2: /* reserved */ { printk(KERN_WARNING "broken BIOS!!\n"); polarity = 1; break; } case 3: /* low active */ { polarity = 1; break; } default: /* invalid */ { printk(KERN_WARNING "broken BIOS!!\n"); polarity = 1; break; } } return polarity; } static int MPBIOS_trigger(int idx) { int bus = mp_irqs[idx].mp_srcbus; int trigger; /* * Determine IRQ trigger mode (edge or level sensitive): */ switch ((mp_irqs[idx].mp_irqflag>>2) & 3) { case 0: /* conforms, ie. bus-type dependent */ if (test_bit(bus, mp_bus_not_pci)) trigger = default_ISA_trigger(idx); else trigger = default_PCI_trigger(idx); break; case 1: /* edge */ { trigger = 0; break; } case 2: /* reserved */ { printk(KERN_WARNING "broken BIOS!!\n"); trigger = 1; break; } case 3: /* level */ { trigger = 1; break; } default: /* invalid */ { printk(KERN_WARNING "broken BIOS!!\n"); trigger = 0; break; } } return trigger; } static inline int irq_polarity(int idx) { return MPBIOS_polarity(idx); } static inline int irq_trigger(int idx) { return MPBIOS_trigger(idx); } static int pin_2_irq(int idx, int apic, int pin) { int irq, i; int bus = mp_irqs[idx].mp_srcbus; /* * Debugging check, we are in big trouble if this message pops up! */ if (mp_irqs[idx].mp_dstirq != pin) printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n"); if (test_bit(bus, mp_bus_not_pci)) { irq = mp_irqs[idx].mp_srcbusirq; } else { /* * PCI IRQs are mapped in order */ i = irq = 0; while (i < apic) irq += nr_ioapic_registers[i++]; irq += pin; } return irq; } void lock_vector_lock(void) { /* Used to the online set of cpus does not change * during assign_irq_vector. */ spin_lock(&vector_lock); } void unlock_vector_lock(void) { spin_unlock(&vector_lock); } static int __assign_irq_vector(int irq, cpumask_t mask) { /* * NOTE! The local APIC isn't very good at handling * multiple interrupts at the same interrupt level. * As the interrupt level is determined by taking the * vector number and shifting that right by 4, we * want to spread these out a bit so that they don't * all fall in the same interrupt level. * * Also, we've got to be careful not to trash gate * 0x80, because int 0x80 is hm, kind of importantish. ;) */ static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0; unsigned int old_vector; int cpu; struct irq_cfg *cfg; cfg = irq_cfg(irq); /* Only try and allocate irqs on cpus that are present */ cpus_and(mask, mask, cpu_online_map); if ((cfg->move_in_progress) || cfg->move_cleanup_count) return -EBUSY; old_vector = cfg->vector; if (old_vector) { cpumask_t tmp; cpus_and(tmp, cfg->domain, mask); if (!cpus_empty(tmp)) return 0; } for_each_cpu_mask_nr(cpu, mask) { cpumask_t domain, new_mask; int new_cpu; int vector, offset; domain = vector_allocation_domain(cpu); cpus_and(new_mask, domain, cpu_online_map); vector = current_vector; offset = current_offset; next: vector += 8; if (vector >= first_system_vector) { /* If we run out of vectors on large boxen, must share them. */ offset = (offset + 1) % 8; vector = FIRST_DEVICE_VECTOR + offset; } if (unlikely(current_vector == vector)) continue; if (vector == IA32_SYSCALL_VECTOR) goto next; for_each_cpu_mask_nr(new_cpu, new_mask) if (per_cpu(vector_irq, new_cpu)[vector] != -1) goto next; /* Found one! */ current_vector = vector; current_offset = offset; if (old_vector) { cfg->move_in_progress = 1; cfg->old_domain = cfg->domain; } for_each_cpu_mask_nr(new_cpu, new_mask) per_cpu(vector_irq, new_cpu)[vector] = irq; cfg->vector = vector; cfg->domain = domain; return 0; } return -ENOSPC; } static int assign_irq_vector(int irq, cpumask_t mask) { int err; unsigned long flags; spin_lock_irqsave(&vector_lock, flags); err = __assign_irq_vector(irq, mask); spin_unlock_irqrestore(&vector_lock, flags); return err; } static void __clear_irq_vector(int irq) { struct irq_cfg *cfg; cpumask_t mask; int cpu, vector; cfg = irq_cfg(irq); BUG_ON(!cfg->vector); vector = cfg->vector; cpus_and(mask, cfg->domain, cpu_online_map); for_each_cpu_mask_nr(cpu, mask) per_cpu(vector_irq, cpu)[vector] = -1; cfg->vector = 0; cpus_clear(cfg->domain); } void __setup_vector_irq(int cpu) { /* Initialize vector_irq on a new cpu */ /* This function must be called with vector_lock held */ int irq, vector; struct irq_cfg *cfg; /* Mark the inuse vectors */ for_each_irq_cfg(cfg) { if (!cpu_isset(cpu, cfg->domain)) continue; vector = cfg->vector; irq = cfg->irq; per_cpu(vector_irq, cpu)[vector] = irq; } /* Mark the free vectors */ for (vector = 0; vector < NR_VECTORS; ++vector) { irq = per_cpu(vector_irq, cpu)[vector]; if (irq < 0) continue; cfg = irq_cfg(irq); if (!cpu_isset(cpu, cfg->domain)) per_cpu(vector_irq, cpu)[vector] = -1; } } static struct irq_chip ioapic_chip; #ifdef CONFIG_INTR_REMAP static struct irq_chip ir_ioapic_chip; #endif static void ioapic_register_intr(int irq, unsigned long trigger) { struct irq_desc *desc; /* first time to use this irq_desc */ if (irq < 16) desc = irq_to_desc(irq); else desc = irq_to_desc_alloc(irq); if (trigger) desc->status |= IRQ_LEVEL; else desc->status &= ~IRQ_LEVEL; #ifdef CONFIG_INTR_REMAP if (irq_remapped(irq)) { desc->status |= IRQ_MOVE_PCNTXT; if (trigger) set_irq_chip_and_handler_name(irq, &ir_ioapic_chip, handle_fasteoi_irq, "fasteoi"); else set_irq_chip_and_handler_name(irq, &ir_ioapic_chip, handle_edge_irq, "edge"); return; } #endif if (trigger) set_irq_chip_and_handler_name(irq, &ioapic_chip, handle_fasteoi_irq, "fasteoi"); else set_irq_chip_and_handler_name(irq, &ioapic_chip, handle_edge_irq, "edge"); } static int setup_ioapic_entry(int apic, int irq, struct IO_APIC_route_entry *entry, unsigned int destination, int trigger, int polarity, int vector) { /* * add it to the IO-APIC irq-routing table: */ memset(entry,0,sizeof(*entry)); #ifdef CONFIG_INTR_REMAP if (intr_remapping_enabled) { struct intel_iommu *iommu = map_ioapic_to_ir(apic); struct irte irte; struct IR_IO_APIC_route_entry *ir_entry = (struct IR_IO_APIC_route_entry *) entry; int index; if (!iommu) panic("No mapping iommu for ioapic %d\n", apic); index = alloc_irte(iommu, irq, 1); if (index < 0) panic("Failed to allocate IRTE for ioapic %d\n", apic); memset(&irte, 0, sizeof(irte)); irte.present = 1; irte.dst_mode = INT_DEST_MODE; irte.trigger_mode = trigger; irte.dlvry_mode = INT_DELIVERY_MODE; irte.vector = vector; irte.dest_id = IRTE_DEST(destination); modify_irte(irq, &irte); ir_entry->index2 = (index >> 15) & 0x1; ir_entry->zero = 0; ir_entry->format = 1; ir_entry->index = (index & 0x7fff); } else #endif { entry->delivery_mode = INT_DELIVERY_MODE; entry->dest_mode = INT_DEST_MODE; entry->dest = destination; } entry->mask = 0; /* enable IRQ */ entry->trigger = trigger; entry->polarity = polarity; entry->vector = vector; /* Mask level triggered irqs. * Use IRQ_DELAYED_DISABLE for edge triggered irqs. */ if (trigger) entry->mask = 1; return 0; } static void setup_IO_APIC_irq(int apic, int pin, unsigned int irq, int trigger, int polarity) { struct irq_cfg *cfg; struct IO_APIC_route_entry entry; cpumask_t mask; if (!IO_APIC_IRQ(irq)) return; cfg = irq_cfg(irq); mask = TARGET_CPUS; if (assign_irq_vector(irq, mask)) return; cpus_and(mask, cfg->domain, mask); apic_printk(APIC_VERBOSE,KERN_DEBUG "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> " "IRQ %d Mode:%i Active:%i)\n", apic, mp_ioapics[apic].mp_apicid, pin, cfg->vector, irq, trigger, polarity); if (setup_ioapic_entry(mp_ioapics[apic].mp_apicid, irq, &entry, cpu_mask_to_apicid(mask), trigger, polarity, cfg->vector)) { printk("Failed to setup ioapic entry for ioapic %d, pin %d\n", mp_ioapics[apic].mp_apicid, pin); __clear_irq_vector(irq); return; } ioapic_register_intr(irq, trigger); if (irq < 16) disable_8259A_irq(irq); ioapic_write_entry(apic, pin, entry); } static void __init setup_IO_APIC_irqs(void) { int apic, pin, idx, irq, first_notcon = 1; apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n"); for (apic = 0; apic < nr_ioapics; apic++) { for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { idx = find_irq_entry(apic,pin,mp_INT); if (idx == -1) { if (first_notcon) { apic_printk(APIC_VERBOSE, KERN_DEBUG " IO-APIC (apicid-pin) %d-%d", mp_ioapics[apic].mp_apicid, pin); first_notcon = 0; } else apic_printk(APIC_VERBOSE, ", %d-%d", mp_ioapics[apic].mp_apicid, pin); continue; } if (!first_notcon) { apic_printk(APIC_VERBOSE, " not connected.\n"); first_notcon = 1; } irq = pin_2_irq(idx, apic, pin); add_pin_to_irq(irq, apic, pin); setup_IO_APIC_irq(apic, pin, irq, irq_trigger(idx), irq_polarity(idx)); } } if (!first_notcon) apic_printk(APIC_VERBOSE, " not connected.\n"); } /* * Set up the timer pin, possibly with the 8259A-master behind. */ static void __init setup_timer_IRQ0_pin(unsigned int apic, unsigned int pin, int vector) { struct IO_APIC_route_entry entry; #ifdef CONFIG_INTR_REMAP if (intr_remapping_enabled) return; #endif memset(&entry, 0, sizeof(entry)); /* * We use logical delivery to get the timer IRQ * to the first CPU. */ entry.dest_mode = INT_DEST_MODE; entry.mask = 1; /* mask IRQ now */ entry.dest = cpu_mask_to_apicid(TARGET_CPUS); entry.delivery_mode = INT_DELIVERY_MODE; entry.polarity = 0; entry.trigger = 0; entry.vector = vector; /* * The timer IRQ doesn't have to know that behind the * scene we may have a 8259A-master in AEOI mode ... */ set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge"); /* * Add it to the IO-APIC irq-routing table: */ ioapic_write_entry(apic, pin, entry); } __apicdebuginit(void) print_IO_APIC(void) { int apic, i; union IO_APIC_reg_00 reg_00; union IO_APIC_reg_01 reg_01; union IO_APIC_reg_02 reg_02; unsigned long flags; struct irq_cfg *cfg; if (apic_verbosity == APIC_QUIET) return; printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries); for (i = 0; i < nr_ioapics; i++) printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n", mp_ioapics[i].mp_apicid, nr_ioapic_registers[i]); /* * We are a bit conservative about what we expect. We have to * know about every hardware change ASAP. */ printk(KERN_INFO "testing the IO APIC.......................\n"); for (apic = 0; apic < nr_ioapics; apic++) { spin_lock_irqsave(&ioapic_lock, flags); reg_00.raw = io_apic_read(apic, 0); reg_01.raw = io_apic_read(apic, 1); if (reg_01.bits.version >= 0x10) reg_02.raw = io_apic_read(apic, 2); spin_unlock_irqrestore(&ioapic_lock, flags); printk("\n"); printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].mp_apicid); printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw); printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID); printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type); printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS); printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)®_01); printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries); printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ); printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version); if (reg_01.bits.version >= 0x10) { printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw); printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration); } printk(KERN_DEBUG ".... IRQ redirection table:\n"); printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol" " Stat Dmod Deli Vect: \n"); for (i = 0; i <= reg_01.bits.entries; i++) { struct IO_APIC_route_entry entry; entry = ioapic_read_entry(apic, i); printk(KERN_DEBUG " %02x %03X ", i, entry.dest ); printk("%1d %1d %1d %1d %1d %1d %1d %02X\n", entry.mask, entry.trigger, entry.irr, entry.polarity, entry.delivery_status, entry.dest_mode, entry.delivery_mode, entry.vector ); } } printk(KERN_DEBUG "IRQ to pin mappings:\n"); for_each_irq_cfg(cfg) { struct irq_pin_list *entry = cfg->irq_2_pin; if (!entry) continue; printk(KERN_DEBUG "IRQ%d ", cfg->irq); for (;;) { printk("-> %d:%d", entry->apic, entry->pin); if (!entry->next) break; entry = entry->next; } printk("\n"); } printk(KERN_INFO ".................................... done.\n"); return; } __apicdebuginit(void) print_APIC_bitfield(int base) { unsigned int v; int i, j; if (apic_verbosity == APIC_QUIET) return; printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG); for (i = 0; i < 8; i++) { v = apic_read(base + i*0x10); for (j = 0; j < 32; j++) { if (v & (1<> 32)); v = apic_read(APIC_LVTT); printk(KERN_DEBUG "... APIC LVTT: %08x\n", v); if (maxlvt > 3) { /* PC is LVT#4. */ v = apic_read(APIC_LVTPC); printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v); } v = apic_read(APIC_LVT0); printk(KERN_DEBUG "... APIC LVT0: %08x\n", v); v = apic_read(APIC_LVT1); printk(KERN_DEBUG "... APIC LVT1: %08x\n", v); if (maxlvt > 2) { /* ERR is LVT#3. */ v = apic_read(APIC_LVTERR); printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v); } v = apic_read(APIC_TMICT); printk(KERN_DEBUG "... APIC TMICT: %08x\n", v); v = apic_read(APIC_TMCCT); printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v); v = apic_read(APIC_TDCR); printk(KERN_DEBUG "... APIC TDCR: %08x\n", v); printk("\n"); } __apicdebuginit(void) print_all_local_APICs(void) { on_each_cpu(print_local_APIC, NULL, 1); } __apicdebuginit(void) print_PIC(void) { unsigned int v; unsigned long flags; if (apic_verbosity == APIC_QUIET) return; printk(KERN_DEBUG "\nprinting PIC contents\n"); spin_lock_irqsave(&i8259A_lock, flags); v = inb(0xa1) << 8 | inb(0x21); printk(KERN_DEBUG "... PIC IMR: %04x\n", v); v = inb(0xa0) << 8 | inb(0x20); printk(KERN_DEBUG "... PIC IRR: %04x\n", v); outb(0x0b,0xa0); outb(0x0b,0x20); v = inb(0xa0) << 8 | inb(0x20); outb(0x0a,0xa0); outb(0x0a,0x20); spin_unlock_irqrestore(&i8259A_lock, flags); printk(KERN_DEBUG "... PIC ISR: %04x\n", v); v = inb(0x4d1) << 8 | inb(0x4d0); printk(KERN_DEBUG "... PIC ELCR: %04x\n", v); } __apicdebuginit(int) print_all_ICs(void) { print_PIC(); print_all_local_APICs(); print_IO_APIC(); return 0; } fs_initcall(print_all_ICs); /* Where if anywhere is the i8259 connect in external int mode */ static struct { int pin, apic; } ioapic_i8259 = { -1, -1 }; void __init enable_IO_APIC(void) { union IO_APIC_reg_01 reg_01; int i8259_apic, i8259_pin; int apic; unsigned long flags; /* * The number of IO-APIC IRQ registers (== #pins): */ for (apic = 0; apic < nr_ioapics; apic++) { spin_lock_irqsave(&ioapic_lock, flags); reg_01.raw = io_apic_read(apic, 1); spin_unlock_irqrestore(&ioapic_lock, flags); nr_ioapic_registers[apic] = reg_01.bits.entries+1; } for(apic = 0; apic < nr_ioapics; apic++) { int pin; /* See if any of the pins is in ExtINT mode */ for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { struct IO_APIC_route_entry entry; entry = ioapic_read_entry(apic, pin); /* If the interrupt line is enabled and in ExtInt mode * I have found the pin where the i8259 is connected. */ if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) { ioapic_i8259.apic = apic; ioapic_i8259.pin = pin; goto found_i8259; } } } found_i8259: /* Look to see what if the MP table has reported the ExtINT */ i8259_pin = find_isa_irq_pin(0, mp_ExtINT); i8259_apic = find_isa_irq_apic(0, mp_ExtINT); /* Trust the MP table if nothing is setup in the hardware */ if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) { printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n"); ioapic_i8259.pin = i8259_pin; ioapic_i8259.apic = i8259_apic; } /* Complain if the MP table and the hardware disagree */ if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) && (i8259_pin >= 0) && (ioapic_i8259.pin >= 0)) { printk(KERN_WARNING "ExtINT in hardware and MP table differ\n"); } /* * Do not trust the IO-APIC being empty at bootup */ clear_IO_APIC(); } /* * Not an __init, needed by the reboot code */ void disable_IO_APIC(void) { /* * Clear the IO-APIC before rebooting: */ clear_IO_APIC(); /* * If the i8259 is routed through an IOAPIC * Put that IOAPIC in virtual wire mode * so legacy interrupts can be delivered. */ if (ioapic_i8259.pin != -1) { struct IO_APIC_route_entry entry; memset(&entry, 0, sizeof(entry)); entry.mask = 0; /* Enabled */ entry.trigger = 0; /* Edge */ entry.irr = 0; entry.polarity = 0; /* High */ entry.delivery_status = 0; entry.dest_mode = 0; /* Physical */ entry.delivery_mode = dest_ExtINT; /* ExtInt */ entry.vector = 0; entry.dest = read_apic_id(); /* * Add it to the IO-APIC irq-routing table: */ ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry); } disconnect_bsp_APIC(ioapic_i8259.pin != -1); } int no_timer_check __initdata; static int __init notimercheck(char *s) { no_timer_check = 1; return 1; } __setup("no_timer_check", notimercheck); /* * There is a nasty bug in some older SMP boards, their mptable lies * about the timer IRQ. We do the following to work around the situation: * * - timer IRQ defaults to IO-APIC IRQ * - if this function detects that timer IRQs are defunct, then we fall * back to ISA timer IRQs */ static int __init timer_irq_works(void) { unsigned long t1 = jiffies; unsigned long flags; if (no_timer_check) return 1; local_save_flags(flags); local_irq_enable(); /* Let ten ticks pass... */ mdelay((10 * 1000) / HZ); local_irq_restore(flags); /* * Expect a few ticks at least, to be sure some possible * glue logic does not lock up after one or two first * ticks in a non-ExtINT mode. Also the local APIC * might have cached one ExtINT interrupt. Finally, at * least one tick may be lost due to delays. */ /* jiffies wrap? */ if (time_after(jiffies, t1 + 4)) return 1; return 0; } /* * In the SMP+IOAPIC case it might happen that there are an unspecified * number of pending IRQ events unhandled. These cases are very rare, * so we 'resend' these IRQs via IPIs, to the same CPU. It's much * better to do it this way as thus we do not have to be aware of * 'pending' interrupts in the IRQ path, except at this point. */ /* * Edge triggered needs to resend any interrupt * that was delayed but this is now handled in the device * independent code. */ /* * Starting up a edge-triggered IO-APIC interrupt is * nasty - we need to make sure that we get the edge. * If it is already asserted for some reason, we need * return 1 to indicate that is was pending. * * This is not complete - we should be able to fake * an edge even if it isn't on the 8259A... */ static unsigned int startup_ioapic_irq(unsigned int irq) { int was_pending = 0; unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); if (irq < 16) { disable_8259A_irq(irq); if (i8259A_irq_pending(irq)) was_pending = 1; } __unmask_IO_APIC_irq(irq); spin_unlock_irqrestore(&ioapic_lock, flags); return was_pending; } static int ioapic_retrigger_irq(unsigned int irq) { struct irq_cfg *cfg = irq_cfg(irq); unsigned long flags; spin_lock_irqsave(&vector_lock, flags); send_IPI_mask(cpumask_of_cpu(first_cpu(cfg->domain)), cfg->vector); spin_unlock_irqrestore(&vector_lock, flags); return 1; } /* * Level and edge triggered IO-APIC interrupts need different handling, * so we use two separate IRQ descriptors. Edge triggered IRQs can be * handled with the level-triggered descriptor, but that one has slightly * more overhead. Level-triggered interrupts cannot be handled with the * edge-triggered handler, without risking IRQ storms and other ugly * races. */ #ifdef CONFIG_SMP #ifdef CONFIG_INTR_REMAP static void ir_irq_migration(struct work_struct *work); static DECLARE_DELAYED_WORK(ir_migration_work, ir_irq_migration); /* * Migrate the IO-APIC irq in the presence of intr-remapping. * * For edge triggered, irq migration is a simple atomic update(of vector * and cpu destination) of IRTE and flush the hardware cache. * * For level triggered, we need to modify the io-apic RTE aswell with the update * vector information, along with modifying IRTE with vector and destination. * So irq migration for level triggered is little bit more complex compared to * edge triggered migration. But the good news is, we use the same algorithm * for level triggered migration as we have today, only difference being, * we now initiate the irq migration from process context instead of the * interrupt context. * * In future, when we do a directed EOI (combined with cpu EOI broadcast * suppression) to the IO-APIC, level triggered irq migration will also be * as simple as edge triggered migration and we can do the irq migration * with a simple atomic update to IO-APIC RTE. */ static void migrate_ioapic_irq(int irq, cpumask_t mask) { struct irq_cfg *cfg; struct irq_desc *desc; cpumask_t tmp, cleanup_mask; struct irte irte; int modify_ioapic_rte; unsigned int dest; unsigned long flags; cpus_and(tmp, mask, cpu_online_map); if (cpus_empty(tmp)) return; if (get_irte(irq, &irte)) return; if (assign_irq_vector(irq, mask)) return; cfg = irq_cfg(irq); cpus_and(tmp, cfg->domain, mask); dest = cpu_mask_to_apicid(tmp); desc = irq_to_desc(irq); modify_ioapic_rte = desc->status & IRQ_LEVEL; if (modify_ioapic_rte) { spin_lock_irqsave(&ioapic_lock, flags); __target_IO_APIC_irq(irq, dest, cfg->vector); spin_unlock_irqrestore(&ioapic_lock, flags); } irte.vector = cfg->vector; irte.dest_id = IRTE_DEST(dest); /* * Modified the IRTE and flushes the Interrupt entry cache. */ modify_irte(irq, &irte); if (cfg->move_in_progress) { cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map); cfg->move_cleanup_count = cpus_weight(cleanup_mask); send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR); cfg->move_in_progress = 0; } desc->affinity = mask; } static int migrate_irq_remapped_level(int irq) { int ret = -1; struct irq_desc *desc = irq_to_desc(irq); mask_IO_APIC_irq(irq); if (io_apic_level_ack_pending(irq)) { /* * Interrupt in progress. Migrating irq now will change the * vector information in the IO-APIC RTE and that will confuse * the EOI broadcast performed by cpu. * So, delay the irq migration to the next instance. */ schedule_delayed_work(&ir_migration_work, 1); goto unmask; } /* everthing is clear. we have right of way */ migrate_ioapic_irq(irq, desc->pending_mask); ret = 0; desc->status &= ~IRQ_MOVE_PENDING; cpus_clear(desc->pending_mask); unmask: unmask_IO_APIC_irq(irq); return ret; } static void ir_irq_migration(struct work_struct *work) { unsigned int irq; struct irq_desc *desc; for_each_irq_desc(irq, desc) { if (desc->status & IRQ_MOVE_PENDING) { unsigned long flags; spin_lock_irqsave(&desc->lock, flags); if (!desc->chip->set_affinity || !(desc->status & IRQ_MOVE_PENDING)) { desc->status &= ~IRQ_MOVE_PENDING; spin_unlock_irqrestore(&desc->lock, flags); continue; } desc->chip->set_affinity(irq, desc->pending_mask); spin_unlock_irqrestore(&desc->lock, flags); } } } /* * Migrates the IRQ destination in the process context. */ static void set_ir_ioapic_affinity_irq(unsigned int irq, cpumask_t mask) { struct irq_desc *desc = irq_to_desc(irq); if (desc->status & IRQ_LEVEL) { desc->status |= IRQ_MOVE_PENDING; desc->pending_mask = mask; migrate_irq_remapped_level(irq); return; } migrate_ioapic_irq(irq, mask); } #endif asmlinkage void smp_irq_move_cleanup_interrupt(void) { unsigned vector, me; ack_APIC_irq(); exit_idle(); irq_enter(); me = smp_processor_id(); for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { unsigned int irq; struct irq_desc *desc; struct irq_cfg *cfg; irq = __get_cpu_var(vector_irq)[vector]; desc = irq_to_desc(irq); if (!desc) continue; cfg = irq_cfg(irq); spin_lock(&desc->lock); if (!cfg->move_cleanup_count) goto unlock; if ((vector == cfg->vector) && cpu_isset(me, cfg->domain)) goto unlock; __get_cpu_var(vector_irq)[vector] = -1; cfg->move_cleanup_count--; unlock: spin_unlock(&desc->lock); } irq_exit(); } static void irq_complete_move(unsigned int irq) { struct irq_cfg *cfg = irq_cfg(irq); unsigned vector, me; if (likely(!cfg->move_in_progress)) return; vector = ~get_irq_regs()->orig_ax; me = smp_processor_id(); if ((vector == cfg->vector) && cpu_isset(me, cfg->domain)) { cpumask_t cleanup_mask; cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map); cfg->move_cleanup_count = cpus_weight(cleanup_mask); send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR); cfg->move_in_progress = 0; } } #else static inline void irq_complete_move(unsigned int irq) {} #endif #ifdef CONFIG_INTR_REMAP static void ack_x2apic_level(unsigned int irq) { ack_x2APIC_irq(); } static void ack_x2apic_edge(unsigned int irq) { ack_x2APIC_irq(); } #endif static void ack_apic_edge(unsigned int irq) { irq_complete_move(irq); move_native_irq(irq); ack_APIC_irq(); } static void ack_apic_level(unsigned int irq) { int do_unmask_irq = 0; irq_complete_move(irq); #ifdef CONFIG_GENERIC_PENDING_IRQ /* If we are moving the irq we need to mask it */ if (unlikely(irq_to_desc(irq)->status & IRQ_MOVE_PENDING)) { do_unmask_irq = 1; mask_IO_APIC_irq(irq); } #endif /* * We must acknowledge the irq before we move it or the acknowledge will * not propagate properly. */ ack_APIC_irq(); /* Now we can move and renable the irq */ if (unlikely(do_unmask_irq)) { /* Only migrate the irq if the ack has been received. * * On rare occasions the broadcast level triggered ack gets * delayed going to ioapics, and if we reprogram the * vector while Remote IRR is still set the irq will never * fire again. * * To prevent this scenario we read the Remote IRR bit * of the ioapic. This has two effects. * - On any sane system the read of the ioapic will * flush writes (and acks) going to the ioapic from * this cpu. * - We get to see if the ACK has actually been delivered. * * Based on failed experiments of reprogramming the * ioapic entry from outside of irq context starting * with masking the ioapic entry and then polling until * Remote IRR was clear before reprogramming the * ioapic I don't trust the Remote IRR bit to be * completey accurate. * * However there appears to be no other way to plug * this race, so if the Remote IRR bit is not * accurate and is causing problems then it is a hardware bug * and you can go talk to the chipset vendor about it. */ if (!io_apic_level_ack_pending(irq)) move_masked_irq(irq); unmask_IO_APIC_irq(irq); } } static struct irq_chip ioapic_chip __read_mostly = { .name = "IO-APIC", .startup = startup_ioapic_irq, .mask = mask_IO_APIC_irq, .unmask = unmask_IO_APIC_irq, .ack = ack_apic_edge, .eoi = ack_apic_level, #ifdef CONFIG_SMP .set_affinity = set_ioapic_affinity_irq, #endif .retrigger = ioapic_retrigger_irq, }; #ifdef CONFIG_INTR_REMAP static struct irq_chip ir_ioapic_chip __read_mostly = { .name = "IR-IO-APIC", .startup = startup_ioapic_irq, .mask = mask_IO_APIC_irq, .unmask = unmask_IO_APIC_irq, .ack = ack_x2apic_edge, .eoi = ack_x2apic_level, #ifdef CONFIG_SMP .set_affinity = set_ir_ioapic_affinity_irq, #endif .retrigger = ioapic_retrigger_irq, }; #endif static inline void init_IO_APIC_traps(void) { int irq; struct irq_desc *desc; struct irq_cfg *cfg; /* * NOTE! The local APIC isn't very good at handling * multiple interrupts at the same interrupt level. * As the interrupt level is determined by taking the * vector number and shifting that right by 4, we * want to spread these out a bit so that they don't * all fall in the same interrupt level. * * Also, we've got to be careful not to trash gate * 0x80, because int 0x80 is hm, kind of importantish. ;) */ for_each_irq_cfg(cfg) { irq = cfg->irq; if (IO_APIC_IRQ(irq) && !cfg->vector) { /* * Hmm.. We don't have an entry for this, * so default to an old-fashioned 8259 * interrupt if we can.. */ if (irq < 16) make_8259A_irq(irq); else { desc = irq_to_desc(irq); /* Strange. Oh, well.. */ desc->chip = &no_irq_chip; } } } } static void unmask_lapic_irq(unsigned int irq) { unsigned long v; v = apic_read(APIC_LVT0); apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED); } static void mask_lapic_irq(unsigned int irq) { unsigned long v; v = apic_read(APIC_LVT0); apic_write(APIC_LVT0, v | APIC_LVT_MASKED); } static void ack_lapic_irq (unsigned int irq) { ack_APIC_irq(); } static struct irq_chip lapic_chip __read_mostly = { .name = "local-APIC", .mask = mask_lapic_irq, .unmask = unmask_lapic_irq, .ack = ack_lapic_irq, }; static void lapic_register_intr(int irq) { struct irq_desc *desc; desc = irq_to_desc(irq); desc->status &= ~IRQ_LEVEL; set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq, "edge"); } static void __init setup_nmi(void) { /* * Dirty trick to enable the NMI watchdog ... * We put the 8259A master into AEOI mode and * unmask on all local APICs LVT0 as NMI. * * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire') * is from Maciej W. Rozycki - so we do not have to EOI from * the NMI handler or the timer interrupt. */ printk(KERN_INFO "activating NMI Watchdog ..."); enable_NMI_through_LVT0(); printk(" done.\n"); } /* * This looks a bit hackish but it's about the only one way of sending * a few INTA cycles to 8259As and any associated glue logic. ICR does * not support the ExtINT mode, unfortunately. We need to send these * cycles as some i82489DX-based boards have glue logic that keeps the * 8259A interrupt line asserted until INTA. --macro */ static inline void __init unlock_ExtINT_logic(void) { int apic, pin, i; struct IO_APIC_route_entry entry0, entry1; unsigned char save_control, save_freq_select; pin = find_isa_irq_pin(8, mp_INT); apic = find_isa_irq_apic(8, mp_INT); if (pin == -1) return; entry0 = ioapic_read_entry(apic, pin); clear_IO_APIC_pin(apic, pin); memset(&entry1, 0, sizeof(entry1)); entry1.dest_mode = 0; /* physical delivery */ entry1.mask = 0; /* unmask IRQ now */ entry1.dest = hard_smp_processor_id(); entry1.delivery_mode = dest_ExtINT; entry1.polarity = entry0.polarity; entry1.trigger = 0; entry1.vector = 0; ioapic_write_entry(apic, pin, entry1); save_control = CMOS_READ(RTC_CONTROL); save_freq_select = CMOS_READ(RTC_FREQ_SELECT); CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6, RTC_FREQ_SELECT); CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL); i = 100; while (i-- > 0) { mdelay(10); if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF) i -= 10; } CMOS_WRITE(save_control, RTC_CONTROL); CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); clear_IO_APIC_pin(apic, pin); ioapic_write_entry(apic, pin, entry0); } static int disable_timer_pin_1 __initdata; /* Actually the next is obsolete, but keep it for paranoid reasons -AK */ static int __init disable_timer_pin_setup(char *arg) { disable_timer_pin_1 = 1; return 0; } early_param("disable_timer_pin_1", disable_timer_pin_setup); int timer_through_8259 __initdata; /* * This code may look a bit paranoid, but it's supposed to cooperate with * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ * is so screwy. Thanks to Brian Perkins for testing/hacking this beast * fanatically on his truly buggy board. * * FIXME: really need to revamp this for modern platforms only. */ static inline void __init check_timer(void) { struct irq_cfg *cfg = irq_cfg(0); int apic1, pin1, apic2, pin2; unsigned long flags; int no_pin1 = 0; local_irq_save(flags); /* * get/set the timer IRQ vector: */ disable_8259A_irq(0); assign_irq_vector(0, TARGET_CPUS); /* * As IRQ0 is to be enabled in the 8259A, the virtual * wire has to be disabled in the local APIC. */ apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT); init_8259A(1); pin1 = find_isa_irq_pin(0, mp_INT); apic1 = find_isa_irq_apic(0, mp_INT); pin2 = ioapic_i8259.pin; apic2 = ioapic_i8259.apic; apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X " "apic1=%d pin1=%d apic2=%d pin2=%d\n", cfg->vector, apic1, pin1, apic2, pin2); /* * Some BIOS writers are clueless and report the ExtINTA * I/O APIC input from the cascaded 8259A as the timer * interrupt input. So just in case, if only one pin * was found above, try it both directly and through the * 8259A. */ if (pin1 == -1) { #ifdef CONFIG_INTR_REMAP if (intr_remapping_enabled) panic("BIOS bug: timer not connected to IO-APIC"); #endif pin1 = pin2; apic1 = apic2; no_pin1 = 1; } else if (pin2 == -1) { pin2 = pin1; apic2 = apic1; } if (pin1 != -1) { /* * Ok, does IRQ0 through the IOAPIC work? */ if (no_pin1) { add_pin_to_irq(0, apic1, pin1); setup_timer_IRQ0_pin(apic1, pin1, cfg->vector); } unmask_IO_APIC_irq(0); if (timer_irq_works()) { if (nmi_watchdog == NMI_IO_APIC) { setup_nmi(); enable_8259A_irq(0); } if (disable_timer_pin_1 > 0) clear_IO_APIC_pin(0, pin1); goto out; } #ifdef CONFIG_INTR_REMAP if (intr_remapping_enabled) panic("timer doesn't work through Interrupt-remapped IO-APIC"); #endif clear_IO_APIC_pin(apic1, pin1); if (!no_pin1) apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: " "8254 timer not connected to IO-APIC\n"); apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer " "(IRQ0) through the 8259A ...\n"); apic_printk(APIC_QUIET, KERN_INFO "..... (found apic %d pin %d) ...\n", apic2, pin2); /* * legacy devices should be connected to IO APIC #0 */ replace_pin_at_irq(0, apic1, pin1, apic2, pin2); setup_timer_IRQ0_pin(apic2, pin2, cfg->vector); unmask_IO_APIC_irq(0); enable_8259A_irq(0); if (timer_irq_works()) { apic_printk(APIC_QUIET, KERN_INFO "....... works.\n"); timer_through_8259 = 1; if (nmi_watchdog == NMI_IO_APIC) { disable_8259A_irq(0); setup_nmi(); enable_8259A_irq(0); } goto out; } /* * Cleanup, just in case ... */ disable_8259A_irq(0); clear_IO_APIC_pin(apic2, pin2); apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n"); } if (nmi_watchdog == NMI_IO_APIC) { apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work " "through the IO-APIC - disabling NMI Watchdog!\n"); nmi_watchdog = NMI_NONE; } apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer as Virtual Wire IRQ...\n"); lapic_register_intr(0); apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */ enable_8259A_irq(0); if (timer_irq_works()) { apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); goto out; } disable_8259A_irq(0); apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector); apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n"); apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer as ExtINT IRQ...\n"); init_8259A(0); make_8259A_irq(0); apic_write(APIC_LVT0, APIC_DM_EXTINT); unlock_ExtINT_logic(); if (timer_irq_works()) { apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); goto out; } apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n"); panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a " "report. Then try booting with the 'noapic' option.\n"); out: local_irq_restore(flags); } /* * Traditionally ISA IRQ2 is the cascade IRQ, and is not available * to devices. However there may be an I/O APIC pin available for * this interrupt regardless. The pin may be left unconnected, but * typically it will be reused as an ExtINT cascade interrupt for * the master 8259A. In the MPS case such a pin will normally be * reported as an ExtINT interrupt in the MP table. With ACPI * there is no provision for ExtINT interrupts, and in the absence * of an override it would be treated as an ordinary ISA I/O APIC * interrupt, that is edge-triggered and unmasked by default. We * used to do this, but it caused problems on some systems because * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using * the same ExtINT cascade interrupt to drive the local APIC of the * bootstrap processor. Therefore we refrain from routing IRQ2 to * the I/O APIC in all cases now. No actual device should request * it anyway. --macro */ #define PIC_IRQS (1<<2) void __init setup_IO_APIC(void) { /* * calling enable_IO_APIC() is moved to setup_local_APIC for BP */ io_apic_irqs = ~PIC_IRQS; apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n"); sync_Arb_IDs(); setup_IO_APIC_irqs(); init_IO_APIC_traps(); check_timer(); } struct sysfs_ioapic_data { struct sys_device dev; struct IO_APIC_route_entry entry[0]; }; static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS]; static int ioapic_suspend(struct sys_device *dev, pm_message_t state) { struct IO_APIC_route_entry *entry; struct sysfs_ioapic_data *data; int i; data = container_of(dev, struct sysfs_ioapic_data, dev); entry = data->entry; for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ ) *entry = ioapic_read_entry(dev->id, i); return 0; } static int ioapic_resume(struct sys_device *dev) { struct IO_APIC_route_entry *entry; struct sysfs_ioapic_data *data; unsigned long flags; union IO_APIC_reg_00 reg_00; int i; data = container_of(dev, struct sysfs_ioapic_data, dev); entry = data->entry; spin_lock_irqsave(&ioapic_lock, flags); reg_00.raw = io_apic_read(dev->id, 0); if (reg_00.bits.ID != mp_ioapics[dev->id].mp_apicid) { reg_00.bits.ID = mp_ioapics[dev->id].mp_apicid; io_apic_write(dev->id, 0, reg_00.raw); } spin_unlock_irqrestore(&ioapic_lock, flags); for (i = 0; i < nr_ioapic_registers[dev->id]; i++) ioapic_write_entry(dev->id, i, entry[i]); return 0; } static struct sysdev_class ioapic_sysdev_class = { .name = "ioapic", .suspend = ioapic_suspend, .resume = ioapic_resume, }; static int __init ioapic_init_sysfs(void) { struct sys_device * dev; int i, size, error; error = sysdev_class_register(&ioapic_sysdev_class); if (error) return error; for (i = 0; i < nr_ioapics; i++ ) { size = sizeof(struct sys_device) + nr_ioapic_registers[i] * sizeof(struct IO_APIC_route_entry); mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL); if (!mp_ioapic_data[i]) { printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i); continue; } dev = &mp_ioapic_data[i]->dev; dev->id = i; dev->cls = &ioapic_sysdev_class; error = sysdev_register(dev); if (error) { kfree(mp_ioapic_data[i]); mp_ioapic_data[i] = NULL; printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i); continue; } } return 0; } device_initcall(ioapic_init_sysfs); /* * Dynamic irq allocate and deallocation */ unsigned int create_irq_nr(unsigned int irq_want) { /* Allocate an unused irq */ unsigned int irq; unsigned int new; unsigned long flags; struct irq_cfg *cfg_new; #ifndef CONFIG_HAVE_SPARSE_IRQ irq_want = nr_irqs - 1; #endif irq = 0; spin_lock_irqsave(&vector_lock, flags); for (new = irq_want; new > 0; new--) { if (platform_legacy_irq(new)) continue; cfg_new = irq_cfg(new); if (cfg_new && cfg_new->vector != 0) continue; /* check if need to create one */ if (!cfg_new) cfg_new = irq_cfg_alloc(new); if (__assign_irq_vector(new, TARGET_CPUS) == 0) irq = new; break; } spin_unlock_irqrestore(&vector_lock, flags); if (irq > 0) { dynamic_irq_init(irq); } return irq; } int create_irq(void) { int irq; irq = create_irq_nr(nr_irqs - 1); if (irq == 0) irq = -1; return irq; } void destroy_irq(unsigned int irq) { unsigned long flags; dynamic_irq_cleanup(irq); #ifdef CONFIG_INTR_REMAP free_irte(irq); #endif spin_lock_irqsave(&vector_lock, flags); __clear_irq_vector(irq); spin_unlock_irqrestore(&vector_lock, flags); } /* * MSI message composition */ #ifdef CONFIG_PCI_MSI static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg) { struct irq_cfg *cfg; int err; unsigned dest; cpumask_t tmp; tmp = TARGET_CPUS; err = assign_irq_vector(irq, tmp); if (err) return err; cfg = irq_cfg(irq); cpus_and(tmp, cfg->domain, tmp); dest = cpu_mask_to_apicid(tmp); #ifdef CONFIG_INTR_REMAP if (irq_remapped(irq)) { struct irte irte; int ir_index; u16 sub_handle; ir_index = map_irq_to_irte_handle(irq, &sub_handle); BUG_ON(ir_index == -1); memset (&irte, 0, sizeof(irte)); irte.present = 1; irte.dst_mode = INT_DEST_MODE; irte.trigger_mode = 0; /* edge */ irte.dlvry_mode = INT_DELIVERY_MODE; irte.vector = cfg->vector; irte.dest_id = IRTE_DEST(dest); modify_irte(irq, &irte); msg->address_hi = MSI_ADDR_BASE_HI; msg->data = sub_handle; msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT | MSI_ADDR_IR_SHV | MSI_ADDR_IR_INDEX1(ir_index) | MSI_ADDR_IR_INDEX2(ir_index); } else #endif { msg->address_hi = MSI_ADDR_BASE_HI; msg->address_lo = MSI_ADDR_BASE_LO | ((INT_DEST_MODE == 0) ? MSI_ADDR_DEST_MODE_PHYSICAL: MSI_ADDR_DEST_MODE_LOGICAL) | ((INT_DELIVERY_MODE != dest_LowestPrio) ? MSI_ADDR_REDIRECTION_CPU: MSI_ADDR_REDIRECTION_LOWPRI) | MSI_ADDR_DEST_ID(dest); msg->data = MSI_DATA_TRIGGER_EDGE | MSI_DATA_LEVEL_ASSERT | ((INT_DELIVERY_MODE != dest_LowestPrio) ? MSI_DATA_DELIVERY_FIXED: MSI_DATA_DELIVERY_LOWPRI) | MSI_DATA_VECTOR(cfg->vector); } return err; } #ifdef CONFIG_SMP static void set_msi_irq_affinity(unsigned int irq, cpumask_t mask) { struct irq_cfg *cfg; struct msi_msg msg; unsigned int dest; cpumask_t tmp; struct irq_desc *desc; cpus_and(tmp, mask, cpu_online_map); if (cpus_empty(tmp)) return; if (assign_irq_vector(irq, mask)) return; cfg = irq_cfg(irq); cpus_and(tmp, cfg->domain, mask); dest = cpu_mask_to_apicid(tmp); read_msi_msg(irq, &msg); msg.data &= ~MSI_DATA_VECTOR_MASK; msg.data |= MSI_DATA_VECTOR(cfg->vector); msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; msg.address_lo |= MSI_ADDR_DEST_ID(dest); write_msi_msg(irq, &msg); desc = irq_to_desc(irq); desc->affinity = mask; } #ifdef CONFIG_INTR_REMAP /* * Migrate the MSI irq to another cpumask. This migration is * done in the process context using interrupt-remapping hardware. */ static void ir_set_msi_irq_affinity(unsigned int irq, cpumask_t mask) { struct irq_cfg *cfg; unsigned int dest; cpumask_t tmp, cleanup_mask; struct irte irte; struct irq_desc *desc; cpus_and(tmp, mask, cpu_online_map); if (cpus_empty(tmp)) return; if (get_irte(irq, &irte)) return; if (assign_irq_vector(irq, mask)) return; cfg = irq_cfg(irq); cpus_and(tmp, cfg->domain, mask); dest = cpu_mask_to_apicid(tmp); irte.vector = cfg->vector; irte.dest_id = IRTE_DEST(dest); /* * atomically update the IRTE with the new destination and vector. */ modify_irte(irq, &irte); /* * After this point, all the interrupts will start arriving * at the new destination. So, time to cleanup the previous * vector allocation. */ if (cfg->move_in_progress) { cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map); cfg->move_cleanup_count = cpus_weight(cleanup_mask); send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR); cfg->move_in_progress = 0; } desc = irq_to_desc(irq); desc->affinity = mask; } #endif #endif /* CONFIG_SMP */ /* * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices, * which implement the MSI or MSI-X Capability Structure. */ static struct irq_chip msi_chip = { .name = "PCI-MSI", .unmask = unmask_msi_irq, .mask = mask_msi_irq, .ack = ack_apic_edge, #ifdef CONFIG_SMP .set_affinity = set_msi_irq_affinity, #endif .retrigger = ioapic_retrigger_irq, }; #ifdef CONFIG_INTR_REMAP static struct irq_chip msi_ir_chip = { .name = "IR-PCI-MSI", .unmask = unmask_msi_irq, .mask = mask_msi_irq, .ack = ack_x2apic_edge, #ifdef CONFIG_SMP .set_affinity = ir_set_msi_irq_affinity, #endif .retrigger = ioapic_retrigger_irq, }; /* * Map the PCI dev to the corresponding remapping hardware unit * and allocate 'nvec' consecutive interrupt-remapping table entries * in it. */ static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec) { struct intel_iommu *iommu; int index; iommu = map_dev_to_ir(dev); if (!iommu) { printk(KERN_ERR "Unable to map PCI %s to iommu\n", pci_name(dev)); return -ENOENT; } index = alloc_irte(iommu, irq, nvec); if (index < 0) { printk(KERN_ERR "Unable to allocate %d IRTE for PCI %s\n", nvec, pci_name(dev)); return -ENOSPC; } return index; } #endif static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc, int irq) { int ret; struct msi_msg msg; ret = msi_compose_msg(dev, irq, &msg); if (ret < 0) return ret; set_irq_msi(irq, desc); write_msi_msg(irq, &msg); #ifdef CONFIG_INTR_REMAP if (irq_remapped(irq)) { struct irq_desc *desc = irq_to_desc(irq); /* * irq migration in process context */ desc->status |= IRQ_MOVE_PCNTXT; set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge"); } else #endif set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge"); return 0; } static unsigned int build_irq_for_pci_dev(struct pci_dev *dev) { unsigned int irq; irq = dev->bus->number; irq <<= 8; irq |= dev->devfn; irq <<= 12; return irq; } int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc) { unsigned int irq; int ret; unsigned int irq_want; irq_want = build_irq_for_pci_dev(dev) + 0x100; irq = create_irq_nr(irq_want); if (irq == 0) return -1; #ifdef CONFIG_INTR_REMAP if (!intr_remapping_enabled) goto no_ir; ret = msi_alloc_irte(dev, irq, 1); if (ret < 0) goto error; no_ir: #endif ret = setup_msi_irq(dev, desc, irq); if (ret < 0) { destroy_irq(irq); return ret; } return 0; #ifdef CONFIG_INTR_REMAP error: destroy_irq(irq); return ret; #endif } int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type) { unsigned int irq; int ret, sub_handle; struct msi_desc *desc; unsigned int irq_want; #ifdef CONFIG_INTR_REMAP struct intel_iommu *iommu = 0; int index = 0; #endif irq_want = build_irq_for_pci_dev(dev) + 0x100; sub_handle = 0; list_for_each_entry(desc, &dev->msi_list, list) { irq = create_irq_nr(irq_want--); if (irq == 0) return -1; #ifdef CONFIG_INTR_REMAP if (!intr_remapping_enabled) goto no_ir; if (!sub_handle) { /* * allocate the consecutive block of IRTE's * for 'nvec' */ index = msi_alloc_irte(dev, irq, nvec); if (index < 0) { ret = index; goto error; } } else { iommu = map_dev_to_ir(dev); if (!iommu) { ret = -ENOENT; goto error; } /* * setup the mapping between the irq and the IRTE * base index, the sub_handle pointing to the * appropriate interrupt remap table entry. */ set_irte_irq(irq, iommu, index, sub_handle); } no_ir: #endif ret = setup_msi_irq(dev, desc, irq); if (ret < 0) goto error; sub_handle++; } return 0; error: destroy_irq(irq); return ret; } void arch_teardown_msi_irq(unsigned int irq) { destroy_irq(irq); } #ifdef CONFIG_DMAR #ifdef CONFIG_SMP static void dmar_msi_set_affinity(unsigned int irq, cpumask_t mask) { struct irq_cfg *cfg; struct msi_msg msg; unsigned int dest; cpumask_t tmp; struct irq_desc *desc; cpus_and(tmp, mask, cpu_online_map); if (cpus_empty(tmp)) return; if (assign_irq_vector(irq, mask)) return; cfg = irq_cfg(irq); cpus_and(tmp, cfg->domain, mask); dest = cpu_mask_to_apicid(tmp); dmar_msi_read(irq, &msg); msg.data &= ~MSI_DATA_VECTOR_MASK; msg.data |= MSI_DATA_VECTOR(cfg->vector); msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; msg.address_lo |= MSI_ADDR_DEST_ID(dest); dmar_msi_write(irq, &msg); desc = irq_to_desc(irq); desc->affinity = mask; } #endif /* CONFIG_SMP */ struct irq_chip dmar_msi_type = { .name = "DMAR_MSI", .unmask = dmar_msi_unmask, .mask = dmar_msi_mask, .ack = ack_apic_edge, #ifdef CONFIG_SMP .set_affinity = dmar_msi_set_affinity, #endif .retrigger = ioapic_retrigger_irq, }; int arch_setup_dmar_msi(unsigned int irq) { int ret; struct msi_msg msg; ret = msi_compose_msg(NULL, irq, &msg); if (ret < 0) return ret; dmar_msi_write(irq, &msg); set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq, "edge"); return 0; } #endif #endif /* CONFIG_PCI_MSI */ /* * Hypertransport interrupt support */ #ifdef CONFIG_HT_IRQ #ifdef CONFIG_SMP static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector) { struct ht_irq_msg msg; fetch_ht_irq_msg(irq, &msg); msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK); msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK); msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest); msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest); write_ht_irq_msg(irq, &msg); } static void set_ht_irq_affinity(unsigned int irq, cpumask_t mask) { struct irq_cfg *cfg; unsigned int dest; cpumask_t tmp; struct irq_desc *desc; cpus_and(tmp, mask, cpu_online_map); if (cpus_empty(tmp)) return; if (assign_irq_vector(irq, mask)) return; cfg = irq_cfg(irq); cpus_and(tmp, cfg->domain, mask); dest = cpu_mask_to_apicid(tmp); target_ht_irq(irq, dest, cfg->vector); desc = irq_to_desc(irq); desc->affinity = mask; } #endif static struct irq_chip ht_irq_chip = { .name = "PCI-HT", .mask = mask_ht_irq, .unmask = unmask_ht_irq, .ack = ack_apic_edge, #ifdef CONFIG_SMP .set_affinity = set_ht_irq_affinity, #endif .retrigger = ioapic_retrigger_irq, }; int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev) { struct irq_cfg *cfg; int err; cpumask_t tmp; tmp = TARGET_CPUS; err = assign_irq_vector(irq, tmp); if (!err) { struct ht_irq_msg msg; unsigned dest; cfg = irq_cfg(irq); cpus_and(tmp, cfg->domain, tmp); dest = cpu_mask_to_apicid(tmp); msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest); msg.address_lo = HT_IRQ_LOW_BASE | HT_IRQ_LOW_DEST_ID(dest) | HT_IRQ_LOW_VECTOR(cfg->vector) | ((INT_DEST_MODE == 0) ? HT_IRQ_LOW_DM_PHYSICAL : HT_IRQ_LOW_DM_LOGICAL) | HT_IRQ_LOW_RQEOI_EDGE | ((INT_DELIVERY_MODE != dest_LowestPrio) ? HT_IRQ_LOW_MT_FIXED : HT_IRQ_LOW_MT_ARBITRATED) | HT_IRQ_LOW_IRQ_MASKED; write_ht_irq_msg(irq, &msg); set_irq_chip_and_handler_name(irq, &ht_irq_chip, handle_edge_irq, "edge"); } return err; } #endif /* CONFIG_HT_IRQ */ /* -------------------------------------------------------------------------- ACPI-based IOAPIC Configuration -------------------------------------------------------------------------- */ #ifdef CONFIG_ACPI #define IO_APIC_MAX_ID 0xFE int __init io_apic_get_redir_entries (int ioapic) { union IO_APIC_reg_01 reg_01; unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); reg_01.raw = io_apic_read(ioapic, 1); spin_unlock_irqrestore(&ioapic_lock, flags); return reg_01.bits.entries; } int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity) { if (!IO_APIC_IRQ(irq)) { apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n", ioapic); return -EINVAL; } /* * IRQs < 16 are already in the irq_2_pin[] map */ if (irq >= 16) add_pin_to_irq(irq, ioapic, pin); setup_IO_APIC_irq(ioapic, pin, irq, triggering, polarity); return 0; } int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity) { int i; if (skip_ioapic_setup) return -1; for (i = 0; i < mp_irq_entries; i++) if (mp_irqs[i].mp_irqtype == mp_INT && mp_irqs[i].mp_srcbusirq == bus_irq) break; if (i >= mp_irq_entries) return -1; *trigger = irq_trigger(i); *polarity = irq_polarity(i); return 0; } #endif /* CONFIG_ACPI */ /* * This function currently is only a helper for the i386 smp boot process where * we need to reprogram the ioredtbls to cater for the cpus which have come online * so mask in all cases should simply be TARGET_CPUS */ #ifdef CONFIG_SMP void __init setup_ioapic_dest(void) { int pin, ioapic, irq, irq_entry; struct irq_cfg *cfg; if (skip_ioapic_setup == 1) return; for (ioapic = 0; ioapic < nr_ioapics; ioapic++) { for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) { irq_entry = find_irq_entry(ioapic, pin, mp_INT); if (irq_entry == -1) continue; irq = pin_2_irq(irq_entry, ioapic, pin); /* setup_IO_APIC_irqs could fail to get vector for some device * when you have too many devices, because at that time only boot * cpu is online. */ cfg = irq_cfg(irq); if (!cfg->vector) setup_IO_APIC_irq(ioapic, pin, irq, irq_trigger(irq_entry), irq_polarity(irq_entry)); #ifdef CONFIG_INTR_REMAP else if (intr_remapping_enabled) set_ir_ioapic_affinity_irq(irq, TARGET_CPUS); #endif else set_ioapic_affinity_irq(irq, TARGET_CPUS); } } } #endif #define IOAPIC_RESOURCE_NAME_SIZE 11 static struct resource *ioapic_resources; static struct resource * __init ioapic_setup_resources(void) { unsigned long n; struct resource *res; char *mem; int i; if (nr_ioapics <= 0) return NULL; n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource); n *= nr_ioapics; mem = alloc_bootmem(n); res = (void *)mem; if (mem != NULL) { mem += sizeof(struct resource) * nr_ioapics; for (i = 0; i < nr_ioapics; i++) { res[i].name = mem; res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY; sprintf(mem, "IOAPIC %u", i); mem += IOAPIC_RESOURCE_NAME_SIZE; } } ioapic_resources = res; return res; } void __init ioapic_init_mappings(void) { unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0; struct resource *ioapic_res; int i; ioapic_res = ioapic_setup_resources(); for (i = 0; i < nr_ioapics; i++) { if (smp_found_config) { ioapic_phys = mp_ioapics[i].mp_apicaddr; } else { ioapic_phys = (unsigned long) alloc_bootmem_pages(PAGE_SIZE); ioapic_phys = __pa(ioapic_phys); } set_fixmap_nocache(idx, ioapic_phys); apic_printk(APIC_VERBOSE, "mapped IOAPIC to %016lx (%016lx)\n", __fix_to_virt(idx), ioapic_phys); idx++; if (ioapic_res != NULL) { ioapic_res->start = ioapic_phys; ioapic_res->end = ioapic_phys + (4 * 1024) - 1; ioapic_res++; } } } static int __init ioapic_insert_resources(void) { int i; struct resource *r = ioapic_resources; if (!r) { printk(KERN_ERR "IO APIC resources could be not be allocated.\n"); return -1; } for (i = 0; i < nr_ioapics; i++) { insert_resource(&iomem_resource, r); r++; } return 0; } /* Insert the IO APIC resources after PCI initialization has occured to handle * IO APICS that are mapped in on a BAR in PCI space. */ late_initcall(ioapic_insert_resources);