/* * mrst.c: Intel Moorestown platform specific setup code * * (C) Copyright 2008 Intel Corporation * Author: Jacob Pan (jacob.jun.pan@intel.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * the clockevent devices on Moorestown/Medfield can be APBT or LAPIC clock, * cmdline option x86_mrst_timer can be used to override the configuration * to prefer one or the other. * at runtime, there are basically three timer configurations: * 1. per cpu apbt clock only * 2. per cpu always-on lapic clocks only, this is Penwell/Medfield only * 3. per cpu lapic clock (C3STOP) and one apbt clock, with broadcast. * * by default (without cmdline option), platform code first detects cpu type * to see if we are on lincroft or penwell, then set up both lapic or apbt * clocks accordingly. * i.e. by default, medfield uses configuration #2, moorestown uses #1. * config #3 is supported but not recommended on medfield. * * rating and feature summary: * lapic (with C3STOP) --------- 100 * apbt (always-on) ------------ 110 * lapic (always-on,ARAT) ------ 150 */ int mrst_timer_options __cpuinitdata; static u32 sfi_mtimer_usage[SFI_MTMR_MAX_NUM]; static struct sfi_timer_table_entry sfi_mtimer_array[SFI_MTMR_MAX_NUM]; static int mrst_cpu_chip; int sfi_mtimer_num; struct sfi_rtc_table_entry sfi_mrtc_array[SFI_MRTC_MAX]; EXPORT_SYMBOL_GPL(sfi_mrtc_array); int sfi_mrtc_num; static inline void assign_to_mp_irq(struct mpc_intsrc *m, struct mpc_intsrc *mp_irq) { memcpy(mp_irq, m, sizeof(struct mpc_intsrc)); } static inline int mp_irq_cmp(struct mpc_intsrc *mp_irq, struct mpc_intsrc *m) { return memcmp(mp_irq, m, sizeof(struct mpc_intsrc)); } static void save_mp_irq(struct mpc_intsrc *m) { int i; for (i = 0; i < mp_irq_entries; i++) { if (!mp_irq_cmp(&mp_irqs[i], m)) return; } assign_to_mp_irq(m, &mp_irqs[mp_irq_entries]); if (++mp_irq_entries == MAX_IRQ_SOURCES) panic("Max # of irq sources exceeded!!\n"); } /* parse all the mtimer info to a static mtimer array */ static int __init sfi_parse_mtmr(struct sfi_table_header *table) { struct sfi_table_simple *sb; struct sfi_timer_table_entry *pentry; struct mpc_intsrc mp_irq; int totallen; sb = (struct sfi_table_simple *)table; if (!sfi_mtimer_num) { sfi_mtimer_num = SFI_GET_NUM_ENTRIES(sb, struct sfi_timer_table_entry); pentry = (struct sfi_timer_table_entry *) sb->pentry; totallen = sfi_mtimer_num * sizeof(*pentry); memcpy(sfi_mtimer_array, pentry, totallen); } printk(KERN_INFO "SFI: MTIMER info (num = %d):\n", sfi_mtimer_num); pentry = sfi_mtimer_array; for (totallen = 0; totallen < sfi_mtimer_num; totallen++, pentry++) { printk(KERN_INFO "timer[%d]: paddr = 0x%08x, freq = %dHz," " irq = %d\n", totallen, (u32)pentry->phys_addr, pentry->freq_hz, pentry->irq); if (!pentry->irq) continue; mp_irq.type = MP_IOAPIC; mp_irq.irqtype = mp_INT; /* triggering mode edge bit 2-3, active high polarity bit 0-1 */ mp_irq.irqflag = 5; mp_irq.srcbus = 0; mp_irq.srcbusirq = pentry->irq; /* IRQ */ mp_irq.dstapic = MP_APIC_ALL; mp_irq.dstirq = pentry->irq; save_mp_irq(&mp_irq); } return 0; } struct sfi_timer_table_entry *sfi_get_mtmr(int hint) { int i; if (hint < sfi_mtimer_num) { if (!sfi_mtimer_usage[hint]) { pr_debug("hint taken for timer %d irq %d\n",\ hint, sfi_mtimer_array[hint].irq); sfi_mtimer_usage[hint] = 1; return &sfi_mtimer_array[hint]; } } /* take the first timer available */ for (i = 0; i < sfi_mtimer_num;) { if (!sfi_mtimer_usage[i]) { sfi_mtimer_usage[i] = 1; return &sfi_mtimer_array[i]; } i++; } return NULL; } void sfi_free_mtmr(struct sfi_timer_table_entry *mtmr) { int i; for (i = 0; i < sfi_mtimer_num;) { if (mtmr->irq == sfi_mtimer_array[i].irq) { sfi_mtimer_usage[i] = 0; return; } i++; } } /* parse all the mrtc info to a global mrtc array */ int __init sfi_parse_mrtc(struct sfi_table_header *table) { struct sfi_table_simple *sb; struct sfi_rtc_table_entry *pentry; struct mpc_intsrc mp_irq; int totallen; sb = (struct sfi_table_simple *)table; if (!sfi_mrtc_num) { sfi_mrtc_num = SFI_GET_NUM_ENTRIES(sb, struct sfi_rtc_table_entry); pentry = (struct sfi_rtc_table_entry *)sb->pentry; totallen = sfi_mrtc_num * sizeof(*pentry); memcpy(sfi_mrtc_array, pentry, totallen); } printk(KERN_INFO "SFI: RTC info (num = %d):\n", sfi_mrtc_num); pentry = sfi_mrtc_array; for (totallen = 0; totallen < sfi_mrtc_num; totallen++, pentry++) { printk(KERN_INFO "RTC[%d]: paddr = 0x%08x, irq = %d\n", totallen, (u32)pentry->phys_addr, pentry->irq); mp_irq.type = MP_IOAPIC; mp_irq.irqtype = mp_INT; mp_irq.irqflag = 0; mp_irq.srcbus = 0; mp_irq.srcbusirq = pentry->irq; /* IRQ */ mp_irq.dstapic = MP_APIC_ALL; mp_irq.dstirq = pentry->irq; save_mp_irq(&mp_irq); } return 0; } static unsigned long __init mrst_calibrate_tsc(void) { unsigned long flags, fast_calibrate; local_irq_save(flags); fast_calibrate = apbt_quick_calibrate(); local_irq_restore(flags); if (fast_calibrate) return fast_calibrate; return 0; } void __init mrst_time_init(void) { switch (mrst_timer_options) { case MRST_TIMER_APBT_ONLY: break; case MRST_TIMER_LAPIC_APBT: x86_init.timers.setup_percpu_clockev = setup_boot_APIC_clock; x86_cpuinit.setup_percpu_clockev = setup_secondary_APIC_clock; break; default: if (!boot_cpu_has(X86_FEATURE_ARAT)) break; x86_init.timers.setup_percpu_clockev = setup_boot_APIC_clock; x86_cpuinit.setup_percpu_clockev = setup_secondary_APIC_clock; return; } /* we need at least one APB timer */ sfi_table_parse(SFI_SIG_MTMR, NULL, NULL, sfi_parse_mtmr); pre_init_apic_IRQ0(); apbt_time_init(); } void __init mrst_rtc_init(void) { sfi_table_parse(SFI_SIG_MRTC, NULL, NULL, sfi_parse_mrtc); } int mrst_identify_cpu(void) { return mrst_cpu_chip; } EXPORT_SYMBOL_GPL(mrst_identify_cpu); void __cpuinit mrst_arch_setup(void) { if (boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 0x27) mrst_cpu_chip = MRST_CPU_CHIP_PENWELL; else if (boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 0x26) mrst_cpu_chip = MRST_CPU_CHIP_LINCROFT; else { pr_err("Unknown Moorestown CPU (%d:%d), default to Lincroft\n", boot_cpu_data.x86, boot_cpu_data.x86_model); mrst_cpu_chip = MRST_CPU_CHIP_LINCROFT; } pr_debug("Moorestown CPU %s identified\n", (mrst_cpu_chip == MRST_CPU_CHIP_LINCROFT) ? "Lincroft" : "Penwell"); } /* * Moorestown specific x86_init function overrides and early setup * calls. */ void __init x86_mrst_early_setup(void) { x86_init.resources.probe_roms = x86_init_noop; x86_init.resources.reserve_resources = x86_init_noop; x86_init.timers.timer_init = mrst_time_init; x86_init.timers.setup_percpu_clockev = x86_init_noop; x86_init.irqs.pre_vector_init = x86_init_noop; x86_init.oem.arch_setup = mrst_arch_setup; x86_cpuinit.setup_percpu_clockev = apbt_setup_secondary_clock; x86_platform.calibrate_tsc = mrst_calibrate_tsc; x86_init.pci.init = pci_mrst_init; x86_init.pci.fixup_irqs = x86_init_noop; legacy_pic = &null_legacy_pic; /* Avoid searching for BIOS MP tables */ x86_init.mpparse.find_smp_config = x86_init_noop; x86_init.mpparse.get_smp_config = x86_init_uint_noop; } /* * if user does not want to use per CPU apb timer, just give it a lower rating * than local apic timer and skip the late per cpu timer init. */ static inline int __init setup_x86_mrst_timer(char *arg) { if (!arg) return -EINVAL; if (strcmp("apbt_only", arg) == 0) mrst_timer_options = MRST_TIMER_APBT_ONLY; else if (strcmp("lapic_and_apbt", arg) == 0) mrst_timer_options = MRST_TIMER_LAPIC_APBT; else { pr_warning("X86 MRST timer option %s not recognised" " use x86_mrst_timer=apbt_only or lapic_and_apbt\n", arg); return -EINVAL; } return 0; } __setup("x86_mrst_timer=", setup_x86_mrst_timer);