#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * per-CPU TSS segments. Threads are completely 'soft' on Linux, * no more per-task TSS's. The TSS size is kept cacheline-aligned * so they are allowed to end up in the .data..cacheline_aligned * section. Since TSS's are completely CPU-local, we want them * on exact cacheline boundaries, to eliminate cacheline ping-pong. */ DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS; #ifdef CONFIG_X86_64 static DEFINE_PER_CPU(unsigned char, is_idle); static ATOMIC_NOTIFIER_HEAD(idle_notifier); void idle_notifier_register(struct notifier_block *n) { atomic_notifier_chain_register(&idle_notifier, n); } EXPORT_SYMBOL_GPL(idle_notifier_register); void idle_notifier_unregister(struct notifier_block *n) { atomic_notifier_chain_unregister(&idle_notifier, n); } EXPORT_SYMBOL_GPL(idle_notifier_unregister); #endif struct kmem_cache *task_xstate_cachep; EXPORT_SYMBOL_GPL(task_xstate_cachep); int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { int ret; *dst = *src; if (fpu_allocated(&src->thread.fpu)) { memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); ret = fpu_alloc(&dst->thread.fpu); if (ret) return ret; fpu_copy(&dst->thread.fpu, &src->thread.fpu); } return 0; } void free_thread_xstate(struct task_struct *tsk) { fpu_free(&tsk->thread.fpu); } void arch_release_task_struct(struct task_struct *tsk) { free_thread_xstate(tsk); } void arch_task_cache_init(void) { task_xstate_cachep = kmem_cache_create("task_xstate", xstate_size, __alignof__(union thread_xstate), SLAB_PANIC | SLAB_NOTRACK, NULL); } /* * Free current thread data structures etc.. */ void exit_thread(void) { struct task_struct *me = current; struct thread_struct *t = &me->thread; unsigned long *bp = t->io_bitmap_ptr; if (bp) { struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); t->io_bitmap_ptr = NULL; clear_thread_flag(TIF_IO_BITMAP); /* * Careful, clear this in the TSS too: */ memset(tss->io_bitmap, 0xff, t->io_bitmap_max); t->io_bitmap_max = 0; put_cpu(); kfree(bp); } } void show_regs(struct pt_regs *regs) { show_registers(regs); show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0); } void show_regs_common(void) { const char *vendor, *product, *board; vendor = dmi_get_system_info(DMI_SYS_VENDOR); if (!vendor) vendor = ""; product = dmi_get_system_info(DMI_PRODUCT_NAME); if (!product) product = ""; /* Board Name is optional */ board = dmi_get_system_info(DMI_BOARD_NAME); printk(KERN_CONT "\n"); printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s", current->pid, current->comm, print_tainted(), init_utsname()->release, (int)strcspn(init_utsname()->version, " "), init_utsname()->version); printk(KERN_CONT " %s %s", vendor, product); if (board) printk(KERN_CONT "/%s", board); printk(KERN_CONT "\n"); } void flush_thread(void) { struct task_struct *tsk = current; flush_ptrace_hw_breakpoint(tsk); memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); /* * Forget coprocessor state.. */ tsk->fpu_counter = 0; clear_fpu(tsk); clear_used_math(); } static void hard_disable_TSC(void) { write_cr4(read_cr4() | X86_CR4_TSD); } void disable_TSC(void) { preempt_disable(); if (!test_and_set_thread_flag(TIF_NOTSC)) /* * Must flip the CPU state synchronously with * TIF_NOTSC in the current running context. */ hard_disable_TSC(); preempt_enable(); } static void hard_enable_TSC(void) { write_cr4(read_cr4() & ~X86_CR4_TSD); } static void enable_TSC(void) { preempt_disable(); if (test_and_clear_thread_flag(TIF_NOTSC)) /* * Must flip the CPU state synchronously with * TIF_NOTSC in the current running context. */ hard_enable_TSC(); preempt_enable(); } int get_tsc_mode(unsigned long adr) { unsigned int val; if (test_thread_flag(TIF_NOTSC)) val = PR_TSC_SIGSEGV; else val = PR_TSC_ENABLE; return put_user(val, (unsigned int __user *)adr); } int set_tsc_mode(unsigned int val) { if (val == PR_TSC_SIGSEGV) disable_TSC(); else if (val == PR_TSC_ENABLE) enable_TSC(); else return -EINVAL; return 0; } void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, struct tss_struct *tss) { struct thread_struct *prev, *next; prev = &prev_p->thread; next = &next_p->thread; if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { unsigned long debugctl = get_debugctlmsr(); debugctl &= ~DEBUGCTLMSR_BTF; if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) debugctl |= DEBUGCTLMSR_BTF; update_debugctlmsr(debugctl); } if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ test_tsk_thread_flag(next_p, TIF_NOTSC)) { /* prev and next are different */ if (test_tsk_thread_flag(next_p, TIF_NOTSC)) hard_disable_TSC(); else hard_enable_TSC(); } if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { /* * Copy the relevant range of the IO bitmap. * Normally this is 128 bytes or less: */ memcpy(tss->io_bitmap, next->io_bitmap_ptr, max(prev->io_bitmap_max, next->io_bitmap_max)); } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { /* * Clear any possible leftover bits: */ memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); } propagate_user_return_notify(prev_p, next_p); } int sys_fork(struct pt_regs *regs) { return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); } /* * This is trivial, and on the face of it looks like it * could equally well be done in user mode. * * Not so, for quite unobvious reasons - register pressure. * In user mode vfork() cannot have a stack frame, and if * done by calling the "clone()" system call directly, you * do not have enough call-clobbered registers to hold all * the information you need. */ int sys_vfork(struct pt_regs *regs) { return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, NULL, NULL); } long sys_clone(unsigned long clone_flags, unsigned long newsp, void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) { if (!newsp) newsp = regs->sp; return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); } /* * This gets run with %si containing the * function to call, and %di containing * the "args". */ extern void kernel_thread_helper(void); /* * Create a kernel thread */ int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) { struct pt_regs regs; memset(®s, 0, sizeof(regs)); regs.si = (unsigned long) fn; regs.di = (unsigned long) arg; #ifdef CONFIG_X86_32 regs.ds = __USER_DS; regs.es = __USER_DS; regs.fs = __KERNEL_PERCPU; regs.gs = __KERNEL_STACK_CANARY; #else regs.ss = __KERNEL_DS; #endif regs.orig_ax = -1; regs.ip = (unsigned long) kernel_thread_helper; regs.cs = __KERNEL_CS | get_kernel_rpl(); regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1; /* Ok, create the new process.. */ return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); } EXPORT_SYMBOL(kernel_thread); /* * sys_execve() executes a new program. */ long sys_execve(const char __user *name, const char __user *const __user *argv, const char __user *const __user *envp, struct pt_regs *regs) { long error; char *filename; filename = getname(name); error = PTR_ERR(filename); if (IS_ERR(filename)) return error; error = do_execve(filename, argv, envp, regs); #ifdef CONFIG_X86_32 if (error == 0) { /* Make sure we don't return using sysenter.. */ set_thread_flag(TIF_IRET); } #endif putname(filename); return error; } /* * Idle related variables and functions */ unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; EXPORT_SYMBOL(boot_option_idle_override); /* * Powermanagement idle function, if any.. */ void (*pm_idle)(void); #ifdef CONFIG_APM_MODULE EXPORT_SYMBOL(pm_idle); #endif static inline int hlt_use_halt(void) { return 1; } #ifndef CONFIG_SMP static inline void play_dead(void) { BUG(); } #endif #ifdef CONFIG_X86_64 void enter_idle(void) { this_cpu_write(is_idle, 1); atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL); } static void __exit_idle(void) { if (x86_test_and_clear_bit_percpu(0, is_idle) == 0) return; atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL); } /* Called from interrupts to signify idle end */ void exit_idle(void) { /* idle loop has pid 0 */ if (current->pid) return; __exit_idle(); } #endif /* * The idle thread. There's no useful work to be * done, so just try to conserve power and have a * low exit latency (ie sit in a loop waiting for * somebody to say that they'd like to reschedule) */ void cpu_idle(void) { /* * If we're the non-boot CPU, nothing set the stack canary up * for us. CPU0 already has it initialized but no harm in * doing it again. This is a good place for updating it, as * we wont ever return from this function (so the invalid * canaries already on the stack wont ever trigger). */ boot_init_stack_canary(); current_thread_info()->status |= TS_POLLING; while (1) { tick_nohz_idle_enter(); while (!need_resched()) { rmb(); if (cpu_is_offline(smp_processor_id())) play_dead(); /* * Idle routines should keep interrupts disabled * from here on, until they go to idle. * Otherwise, idle callbacks can misfire. */ local_touch_nmi(); local_irq_disable(); enter_idle(); /* Don't trace irqs off for idle */ stop_critical_timings(); /* enter_idle() needs rcu for notifiers */ rcu_idle_enter(); if (cpuidle_idle_call()) pm_idle(); rcu_idle_exit(); start_critical_timings(); /* In many cases the interrupt that ended idle has already called exit_idle. But some idle loops can be woken up without interrupt. */ __exit_idle(); } tick_nohz_idle_exit(); preempt_enable_no_resched(); schedule(); preempt_disable(); } } /* * We use this if we don't have any better * idle routine.. */ void default_idle(void) { if (hlt_use_halt()) { trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id()); trace_cpu_idle_rcuidle(1, smp_processor_id()); current_thread_info()->status &= ~TS_POLLING; /* * TS_POLLING-cleared state must be visible before we * test NEED_RESCHED: */ smp_mb(); if (!need_resched()) safe_halt(); /* enables interrupts racelessly */ else local_irq_enable(); current_thread_info()->status |= TS_POLLING; trace_power_end_rcuidle(smp_processor_id()); trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); } else { local_irq_enable(); /* loop is done by the caller */ cpu_relax(); } } #ifdef CONFIG_APM_MODULE EXPORT_SYMBOL(default_idle); #endif bool set_pm_idle_to_default(void) { bool ret = !!pm_idle; pm_idle = default_idle; return ret; } void stop_this_cpu(void *dummy) { local_irq_disable(); /* * Remove this CPU: */ set_cpu_online(smp_processor_id(), false); disable_local_APIC(); for (;;) { if (hlt_works(smp_processor_id())) halt(); } } /* Default MONITOR/MWAIT with no hints, used for default C1 state */ static void mwait_idle(void) { if (!need_resched()) { trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id()); trace_cpu_idle_rcuidle(1, smp_processor_id()); if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR)) clflush((void *)¤t_thread_info()->flags); __monitor((void *)¤t_thread_info()->flags, 0, 0); smp_mb(); if (!need_resched()) __sti_mwait(0, 0); else local_irq_enable(); trace_power_end_rcuidle(smp_processor_id()); trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); } else local_irq_enable(); } /* * On SMP it's slightly faster (but much more power-consuming!) * to poll the ->work.need_resched flag instead of waiting for the * cross-CPU IPI to arrive. Use this option with caution. */ static void poll_idle(void) { trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id()); trace_cpu_idle_rcuidle(0, smp_processor_id()); local_irq_enable(); while (!need_resched()) cpu_relax(); trace_power_end_rcuidle(smp_processor_id()); trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); } /* * mwait selection logic: * * It depends on the CPU. For AMD CPUs that support MWAIT this is * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings * then depend on a clock divisor and current Pstate of the core. If * all cores of a processor are in halt state (C1) the processor can * enter the C1E (C1 enhanced) state. If mwait is used this will never * happen. * * idle=mwait overrides this decision and forces the usage of mwait. */ #define MWAIT_INFO 0x05 #define MWAIT_ECX_EXTENDED_INFO 0x01 #define MWAIT_EDX_C1 0xf0 int mwait_usable(const struct cpuinfo_x86 *c) { u32 eax, ebx, ecx, edx; if (boot_option_idle_override == IDLE_FORCE_MWAIT) return 1; if (c->cpuid_level < MWAIT_INFO) return 0; cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); /* Check, whether EDX has extended info about MWAIT */ if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) return 1; /* * edx enumeratios MONITOR/MWAIT extensions. Check, whether * C1 supports MWAIT */ return (edx & MWAIT_EDX_C1); } bool amd_e400_c1e_detected; EXPORT_SYMBOL(amd_e400_c1e_detected); static cpumask_var_t amd_e400_c1e_mask; void amd_e400_remove_cpu(int cpu) { if (amd_e400_c1e_mask != NULL) cpumask_clear_cpu(cpu, amd_e400_c1e_mask); } /* * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt * pending message MSR. If we detect C1E, then we handle it the same * way as C3 power states (local apic timer and TSC stop) */ static void amd_e400_idle(void) { if (need_resched()) return; if (!amd_e400_c1e_detected) { u32 lo, hi; rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); if (lo & K8_INTP_C1E_ACTIVE_MASK) { amd_e400_c1e_detected = true; if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) mark_tsc_unstable("TSC halt in AMD C1E"); printk(KERN_INFO "System has AMD C1E enabled\n"); } } if (amd_e400_c1e_detected) { int cpu = smp_processor_id(); if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) { cpumask_set_cpu(cpu, amd_e400_c1e_mask); /* * Force broadcast so ACPI can not interfere. */ clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, &cpu); printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", cpu); } clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); default_idle(); /* * The switch back from broadcast mode needs to be * called with interrupts disabled. */ local_irq_disable(); clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); local_irq_enable(); } else default_idle(); } void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) { #ifdef CONFIG_SMP if (pm_idle == poll_idle && smp_num_siblings > 1) { printk_once(KERN_WARNING "WARNING: polling idle and HT enabled," " performance may degrade.\n"); } #endif if (pm_idle) return; if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { /* * One CPU supports mwait => All CPUs supports mwait */ printk(KERN_INFO "using mwait in idle threads.\n"); pm_idle = mwait_idle; } else if (cpu_has_amd_erratum(amd_erratum_400)) { /* E400: APIC timer interrupt does not wake up CPU from C1e */ printk(KERN_INFO "using AMD E400 aware idle routine\n"); pm_idle = amd_e400_idle; } else pm_idle = default_idle; } void __init init_amd_e400_c1e_mask(void) { /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */ if (pm_idle == amd_e400_idle) zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL); } static int __init idle_setup(char *str) { if (!str) return -EINVAL; if (!strcmp(str, "poll")) { printk("using polling idle threads.\n"); pm_idle = poll_idle; boot_option_idle_override = IDLE_POLL; } else if (!strcmp(str, "mwait")) { boot_option_idle_override = IDLE_FORCE_MWAIT; WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n"); } else if (!strcmp(str, "halt")) { /* * When the boot option of idle=halt is added, halt is * forced to be used for CPU idle. In such case CPU C2/C3 * won't be used again. * To continue to load the CPU idle driver, don't touch * the boot_option_idle_override. */ pm_idle = default_idle; boot_option_idle_override = IDLE_HALT; } else if (!strcmp(str, "nomwait")) { /* * If the boot option of "idle=nomwait" is added, * it means that mwait will be disabled for CPU C2/C3 * states. In such case it won't touch the variable * of boot_option_idle_override. */ boot_option_idle_override = IDLE_NOMWAIT; } else return -1; return 0; } early_param("idle", idle_setup); unsigned long arch_align_stack(unsigned long sp) { if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) sp -= get_random_int() % 8192; return sp & ~0xf; } unsigned long arch_randomize_brk(struct mm_struct *mm) { unsigned long range_end = mm->brk + 0x02000000; return randomize_range(mm->brk, range_end, 0) ? : mm->brk; }