/* * 8253/8254 interval timer emulation * * Copyright (c) 2003-2004 Fabrice Bellard * Copyright (c) 2006 Intel Corporation * Copyright (c) 2007 Keir Fraser, XenSource Inc * Copyright (c) 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * Authors: * Sheng Yang * Based on QEMU and Xen. */ #include #include "irq.h" #include "i8254.h" #ifndef CONFIG_X86_64 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) #else #define mod_64(x, y) ((x) % (y)) #endif #define RW_STATE_LSB 1 #define RW_STATE_MSB 2 #define RW_STATE_WORD0 3 #define RW_STATE_WORD1 4 /* Compute with 96 bit intermediate result: (a*b)/c */ static u64 muldiv64(u64 a, u32 b, u32 c) { union { u64 ll; struct { u32 low, high; } l; } u, res; u64 rl, rh; u.ll = a; rl = (u64)u.l.low * (u64)b; rh = (u64)u.l.high * (u64)b; rh += (rl >> 32); res.l.high = div64_u64(rh, c); res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c); return res.ll; } static void pit_set_gate(struct kvm *kvm, int channel, u32 val) { struct kvm_kpit_channel_state *c = &kvm->arch.vpit->pit_state.channels[channel]; WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); switch (c->mode) { default: case 0: case 4: /* XXX: just disable/enable counting */ break; case 1: case 2: case 3: case 5: /* Restart counting on rising edge. */ if (c->gate < val) c->count_load_time = ktime_get(); break; } c->gate = val; } static int pit_get_gate(struct kvm *kvm, int channel) { WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); return kvm->arch.vpit->pit_state.channels[channel].gate; } static s64 __kpit_elapsed(struct kvm *kvm) { s64 elapsed; ktime_t remaining; struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; if (!ps->pit_timer.period) return 0; /* * The Counter does not stop when it reaches zero. In * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to * the highest count, either FFFF hex for binary counting * or 9999 for BCD counting, and continues counting. * Modes 2 and 3 are periodic; the Counter reloads * itself with the initial count and continues counting * from there. */ remaining = hrtimer_expires_remaining(&ps->pit_timer.timer); elapsed = ps->pit_timer.period - ktime_to_ns(remaining); elapsed = mod_64(elapsed, ps->pit_timer.period); return elapsed; } static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c, int channel) { if (channel == 0) return __kpit_elapsed(kvm); return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time)); } static int pit_get_count(struct kvm *kvm, int channel) { struct kvm_kpit_channel_state *c = &kvm->arch.vpit->pit_state.channels[channel]; s64 d, t; int counter; WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); t = kpit_elapsed(kvm, c, channel); d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); switch (c->mode) { case 0: case 1: case 4: case 5: counter = (c->count - d) & 0xffff; break; case 3: /* XXX: may be incorrect for odd counts */ counter = c->count - (mod_64((2 * d), c->count)); break; default: counter = c->count - mod_64(d, c->count); break; } return counter; } static int pit_get_out(struct kvm *kvm, int channel) { struct kvm_kpit_channel_state *c = &kvm->arch.vpit->pit_state.channels[channel]; s64 d, t; int out; WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); t = kpit_elapsed(kvm, c, channel); d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); switch (c->mode) { default: case 0: out = (d >= c->count); break; case 1: out = (d < c->count); break; case 2: out = ((mod_64(d, c->count) == 0) && (d != 0)); break; case 3: out = (mod_64(d, c->count) < ((c->count + 1) >> 1)); break; case 4: case 5: out = (d == c->count); break; } return out; } static void pit_latch_count(struct kvm *kvm, int channel) { struct kvm_kpit_channel_state *c = &kvm->arch.vpit->pit_state.channels[channel]; WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); if (!c->count_latched) { c->latched_count = pit_get_count(kvm, channel); c->count_latched = c->rw_mode; } } static void pit_latch_status(struct kvm *kvm, int channel) { struct kvm_kpit_channel_state *c = &kvm->arch.vpit->pit_state.channels[channel]; WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); if (!c->status_latched) { /* TODO: Return NULL COUNT (bit 6). */ c->status = ((pit_get_out(kvm, channel) << 7) | (c->rw_mode << 4) | (c->mode << 1) | c->bcd); c->status_latched = 1; } } int pit_has_pending_timer(struct kvm_vcpu *vcpu) { struct kvm_pit *pit = vcpu->kvm->arch.vpit; if (pit && kvm_vcpu_is_bsp(vcpu) && pit->pit_state.irq_ack) return atomic_read(&pit->pit_state.pit_timer.pending); return 0; } static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian) { struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state, irq_ack_notifier); spin_lock(&ps->inject_lock); if (atomic_dec_return(&ps->pit_timer.pending) < 0) atomic_inc(&ps->pit_timer.pending); ps->irq_ack = 1; spin_unlock(&ps->inject_lock); } void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu) { struct kvm_pit *pit = vcpu->kvm->arch.vpit; struct hrtimer *timer; if (!kvm_vcpu_is_bsp(vcpu) || !pit) return; timer = &pit->pit_state.pit_timer.timer; if (hrtimer_cancel(timer)) hrtimer_start_expires(timer, HRTIMER_MODE_ABS); } static void destroy_pit_timer(struct kvm_timer *pt) { pr_debug("pit: execute del timer!\n"); hrtimer_cancel(&pt->timer); } static bool kpit_is_periodic(struct kvm_timer *ktimer) { struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state, pit_timer); return ps->is_periodic; } static struct kvm_timer_ops kpit_ops = { .is_periodic = kpit_is_periodic, }; static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period) { struct kvm_timer *pt = &ps->pit_timer; s64 interval; interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ); pr_debug("pit: create pit timer, interval is %llu nsec\n", interval); /* TODO The new value only affected after the retriggered */ hrtimer_cancel(&pt->timer); pt->period = interval; ps->is_periodic = is_period; pt->timer.function = kvm_timer_fn; pt->t_ops = &kpit_ops; pt->kvm = ps->pit->kvm; pt->vcpu = pt->kvm->bsp_vcpu; atomic_set(&pt->pending, 0); ps->irq_ack = 1; hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval), HRTIMER_MODE_ABS); } static void pit_load_count(struct kvm *kvm, int channel, u32 val) { struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; WARN_ON(!mutex_is_locked(&ps->lock)); pr_debug("pit: load_count val is %d, channel is %d\n", val, channel); /* * The largest possible initial count is 0; this is equivalent * to 216 for binary counting and 104 for BCD counting. */ if (val == 0) val = 0x10000; ps->channels[channel].count = val; if (channel != 0) { ps->channels[channel].count_load_time = ktime_get(); return; } /* Two types of timer * mode 1 is one shot, mode 2 is period, otherwise del timer */ switch (ps->channels[0].mode) { case 0: case 1: /* FIXME: enhance mode 4 precision */ case 4: create_pit_timer(ps, val, 0); break; case 2: case 3: create_pit_timer(ps, val, 1); break; default: destroy_pit_timer(&ps->pit_timer); } } void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val) { pit_load_count(kvm, channel, val); } static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev) { return container_of(dev, struct kvm_pit, dev); } static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev) { return container_of(dev, struct kvm_pit, speaker_dev); } static void pit_ioport_write(struct kvm_io_device *this, gpa_t addr, int len, const void *data) { struct kvm_pit *pit = dev_to_pit(this); struct kvm_kpit_state *pit_state = &pit->pit_state; struct kvm *kvm = pit->kvm; int channel, access; struct kvm_kpit_channel_state *s; u32 val = *(u32 *) data; val &= 0xff; addr &= KVM_PIT_CHANNEL_MASK; mutex_lock(&pit_state->lock); if (val != 0) pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n", (unsigned int)addr, len, val); if (addr == 3) { channel = val >> 6; if (channel == 3) { /* Read-Back Command. */ for (channel = 0; channel < 3; channel++) { s = &pit_state->channels[channel]; if (val & (2 << channel)) { if (!(val & 0x20)) pit_latch_count(kvm, channel); if (!(val & 0x10)) pit_latch_status(kvm, channel); } } } else { /* Select Counter . */ s = &pit_state->channels[channel]; access = (val >> 4) & KVM_PIT_CHANNEL_MASK; if (access == 0) { pit_latch_count(kvm, channel); } else { s->rw_mode = access; s->read_state = access; s->write_state = access; s->mode = (val >> 1) & 7; if (s->mode > 5) s->mode -= 4; s->bcd = val & 1; } } } else { /* Write Count. */ s = &pit_state->channels[addr]; switch (s->write_state) { default: case RW_STATE_LSB: pit_load_count(kvm, addr, val); break; case RW_STATE_MSB: pit_load_count(kvm, addr, val << 8); break; case RW_STATE_WORD0: s->write_latch = val; s->write_state = RW_STATE_WORD1; break; case RW_STATE_WORD1: pit_load_count(kvm, addr, s->write_latch | (val << 8)); s->write_state = RW_STATE_WORD0; break; } } mutex_unlock(&pit_state->lock); } static void pit_ioport_read(struct kvm_io_device *this, gpa_t addr, int len, void *data) { struct kvm_pit *pit = dev_to_pit(this); struct kvm_kpit_state *pit_state = &pit->pit_state; struct kvm *kvm = pit->kvm; int ret, count; struct kvm_kpit_channel_state *s; addr &= KVM_PIT_CHANNEL_MASK; s = &pit_state->channels[addr]; mutex_lock(&pit_state->lock); if (s->status_latched) { s->status_latched = 0; ret = s->status; } else if (s->count_latched) { switch (s->count_latched) { default: case RW_STATE_LSB: ret = s->latched_count & 0xff; s->count_latched = 0; break; case RW_STATE_MSB: ret = s->latched_count >> 8; s->count_latched = 0; break; case RW_STATE_WORD0: ret = s->latched_count & 0xff; s->count_latched = RW_STATE_MSB; break; } } else { switch (s->read_state) { default: case RW_STATE_LSB: count = pit_get_count(kvm, addr); ret = count & 0xff; break; case RW_STATE_MSB: count = pit_get_count(kvm, addr); ret = (count >> 8) & 0xff; break; case RW_STATE_WORD0: count = pit_get_count(kvm, addr); ret = count & 0xff; s->read_state = RW_STATE_WORD1; break; case RW_STATE_WORD1: count = pit_get_count(kvm, addr); ret = (count >> 8) & 0xff; s->read_state = RW_STATE_WORD0; break; } } if (len > sizeof(ret)) len = sizeof(ret); memcpy(data, (char *)&ret, len); mutex_unlock(&pit_state->lock); } static int pit_in_range(struct kvm_io_device *this, gpa_t addr, int len, int is_write) { return ((addr >= KVM_PIT_BASE_ADDRESS) && (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH)); } static void speaker_ioport_write(struct kvm_io_device *this, gpa_t addr, int len, const void *data) { struct kvm_pit *pit = speaker_to_pit(this); struct kvm_kpit_state *pit_state = &pit->pit_state; struct kvm *kvm = pit->kvm; u32 val = *(u32 *) data; mutex_lock(&pit_state->lock); pit_state->speaker_data_on = (val >> 1) & 1; pit_set_gate(kvm, 2, val & 1); mutex_unlock(&pit_state->lock); } static void speaker_ioport_read(struct kvm_io_device *this, gpa_t addr, int len, void *data) { struct kvm_pit *pit = speaker_to_pit(this); struct kvm_kpit_state *pit_state = &pit->pit_state; struct kvm *kvm = pit->kvm; unsigned int refresh_clock; int ret; /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */ refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1; mutex_lock(&pit_state->lock); ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) | (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4)); if (len > sizeof(ret)) len = sizeof(ret); memcpy(data, (char *)&ret, len); mutex_unlock(&pit_state->lock); } static int speaker_in_range(struct kvm_io_device *this, gpa_t addr, int len, int is_write) { return (addr == KVM_SPEAKER_BASE_ADDRESS); } void kvm_pit_reset(struct kvm_pit *pit) { int i; struct kvm_kpit_channel_state *c; mutex_lock(&pit->pit_state.lock); for (i = 0; i < 3; i++) { c = &pit->pit_state.channels[i]; c->mode = 0xff; c->gate = (i != 2); pit_load_count(pit->kvm, i, 0); } mutex_unlock(&pit->pit_state.lock); atomic_set(&pit->pit_state.pit_timer.pending, 0); pit->pit_state.irq_ack = 1; } static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask) { struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier); if (!mask) { atomic_set(&pit->pit_state.pit_timer.pending, 0); pit->pit_state.irq_ack = 1; } } static const struct kvm_io_device_ops pit_dev_ops = { .read = pit_ioport_read, .write = pit_ioport_write, .in_range = pit_in_range, }; static const struct kvm_io_device_ops speaker_dev_ops = { .read = speaker_ioport_read, .write = speaker_ioport_write, .in_range = speaker_in_range, }; /* Caller must have writers lock on slots_lock */ struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags) { struct kvm_pit *pit; struct kvm_kpit_state *pit_state; pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL); if (!pit) return NULL; pit->irq_source_id = kvm_request_irq_source_id(kvm); if (pit->irq_source_id < 0) { kfree(pit); return NULL; } mutex_init(&pit->pit_state.lock); mutex_lock(&pit->pit_state.lock); spin_lock_init(&pit->pit_state.inject_lock); kvm->arch.vpit = pit; pit->kvm = kvm; pit_state = &pit->pit_state; pit_state->pit = pit; hrtimer_init(&pit_state->pit_timer.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); pit_state->irq_ack_notifier.gsi = 0; pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq; kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier); pit_state->pit_timer.reinject = true; mutex_unlock(&pit->pit_state.lock); kvm_pit_reset(pit); pit->mask_notifier.func = pit_mask_notifer; kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier); kvm_iodevice_init(&pit->dev, &pit_dev_ops); __kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev); if (flags & KVM_PIT_SPEAKER_DUMMY) { kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops); __kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev); } return pit; } void kvm_free_pit(struct kvm *kvm) { struct hrtimer *timer; if (kvm->arch.vpit) { kvm_unregister_irq_mask_notifier(kvm, 0, &kvm->arch.vpit->mask_notifier); mutex_lock(&kvm->arch.vpit->pit_state.lock); timer = &kvm->arch.vpit->pit_state.pit_timer.timer; hrtimer_cancel(timer); kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id); mutex_unlock(&kvm->arch.vpit->pit_state.lock); kfree(kvm->arch.vpit); } } static void __inject_pit_timer_intr(struct kvm *kvm) { struct kvm_vcpu *vcpu; int i; mutex_lock(&kvm->irq_lock); kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1); kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0); mutex_unlock(&kvm->irq_lock); /* * Provides NMI watchdog support via Virtual Wire mode. * The route is: PIT -> PIC -> LVT0 in NMI mode. * * Note: Our Virtual Wire implementation is simplified, only * propagating PIT interrupts to all VCPUs when they have set * LVT0 to NMI delivery. Other PIC interrupts are just sent to * VCPU0, and only if its LVT0 is in EXTINT mode. */ if (kvm->arch.vapics_in_nmi_mode > 0) kvm_for_each_vcpu(i, vcpu, kvm) kvm_apic_nmi_wd_deliver(vcpu); } void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu) { struct kvm_pit *pit = vcpu->kvm->arch.vpit; struct kvm *kvm = vcpu->kvm; struct kvm_kpit_state *ps; if (vcpu && pit) { int inject = 0; ps = &pit->pit_state; /* Try to inject pending interrupts when * last one has been acked. */ spin_lock(&ps->inject_lock); if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) { ps->irq_ack = 0; inject = 1; } spin_unlock(&ps->inject_lock); if (inject) __inject_pit_timer_intr(kvm); } }