/* * linux/arch/x86-64/kernel/time.c * * "High Precision Event Timer" based timekeeping. * * Copyright (c) 1991,1992,1995 Linus Torvalds * Copyright (c) 1994 Alan Modra * Copyright (c) 1995 Markus Kuhn * Copyright (c) 1996 Ingo Molnar * Copyright (c) 1998 Andrea Arcangeli * Copyright (c) 2002,2006 Vojtech Pavlik * Copyright (c) 2003 Andi Kleen * RTC support code taken from arch/i386/kernel/timers/time_hpet.c */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_ACPI #include /* for PM timer frequency */ #include #endif #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_CPU_FREQ extern void cpufreq_delayed_get(void); #endif extern void i8254_timer_resume(void); extern int using_apic_timer; static char *timename = NULL; DEFINE_SPINLOCK(rtc_lock); EXPORT_SYMBOL(rtc_lock); DEFINE_SPINLOCK(i8253_lock); unsigned long vxtime_hz = PIT_TICK_RATE; int report_lost_ticks; /* command line option */ unsigned long long monotonic_base; struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */ volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES; struct timespec __xtime __section_xtime; struct timezone __sys_tz __section_sys_tz; unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc; /* * This version of gettimeofday() has microsecond resolution and better than * microsecond precision, as we're using at least a 10 MHz (usually 14.31818 * MHz) HPET timer. */ void do_gettimeofday(struct timeval *tv) { unsigned long seq; unsigned int sec, usec; do { seq = read_seqbegin(&xtime_lock); sec = xtime.tv_sec; usec = xtime.tv_nsec / NSEC_PER_USEC; /* i386 does some correction here to keep the clock monotonous even when ntpd is fixing drift. But they didn't work for me, there is a non monotonic clock anyways with ntp. I dropped all corrections now until a real solution can be found. Note when you fix it here you need to do the same in arch/x86_64/kernel/vsyscall.c and export all needed variables in vmlinux.lds. -AK */ usec += do_gettimeoffset(); } while (read_seqretry(&xtime_lock, seq)); tv->tv_sec = sec + usec / USEC_PER_SEC; tv->tv_usec = usec % USEC_PER_SEC; } EXPORT_SYMBOL(do_gettimeofday); /* * settimeofday() first undoes the correction that gettimeofday would do * on the time, and then saves it. This is ugly, but has been like this for * ages already. */ int do_settimeofday(struct timespec *tv) { time_t wtm_sec, sec = tv->tv_sec; long wtm_nsec, nsec = tv->tv_nsec; if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) return -EINVAL; write_seqlock_irq(&xtime_lock); nsec -= do_gettimeoffset() * NSEC_PER_USEC; wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); set_normalized_timespec(&xtime, sec, nsec); set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); ntp_clear(); write_sequnlock_irq(&xtime_lock); clock_was_set(); return 0; } EXPORT_SYMBOL(do_settimeofday); unsigned long profile_pc(struct pt_regs *regs) { unsigned long pc = instruction_pointer(regs); /* Assume the lock function has either no stack frame or a copy of eflags from PUSHF Eflags always has bits 22 and up cleared unlike kernel addresses. */ if (!user_mode(regs) && in_lock_functions(pc)) { unsigned long *sp = (unsigned long *)regs->rsp; if (sp[0] >> 22) return sp[0]; if (sp[1] >> 22) return sp[1]; } return pc; } EXPORT_SYMBOL(profile_pc); /* * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500 * ms after the second nowtime has started, because when nowtime is written * into the registers of the CMOS clock, it will jump to the next second * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data * sheet for details. */ static void set_rtc_mmss(unsigned long nowtime) { int real_seconds, real_minutes, cmos_minutes; unsigned char control, freq_select; /* * IRQs are disabled when we're called from the timer interrupt, * no need for spin_lock_irqsave() */ spin_lock(&rtc_lock); /* * Tell the clock it's being set and stop it. */ control = CMOS_READ(RTC_CONTROL); CMOS_WRITE(control | RTC_SET, RTC_CONTROL); freq_select = CMOS_READ(RTC_FREQ_SELECT); CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT); cmos_minutes = CMOS_READ(RTC_MINUTES); BCD_TO_BIN(cmos_minutes); /* * since we're only adjusting minutes and seconds, don't interfere with hour * overflow. This avoids messing with unknown time zones but requires your RTC * not to be off by more than 15 minutes. Since we're calling it only when * our clock is externally synchronized using NTP, this shouldn't be a problem. */ real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1) real_minutes += 30; /* correct for half hour time zone */ real_minutes %= 60; if (abs(real_minutes - cmos_minutes) >= 30) { printk(KERN_WARNING "time.c: can't update CMOS clock " "from %d to %d\n", cmos_minutes, real_minutes); } else { BIN_TO_BCD(real_seconds); BIN_TO_BCD(real_minutes); CMOS_WRITE(real_seconds, RTC_SECONDS); CMOS_WRITE(real_minutes, RTC_MINUTES); } /* * The following flags have to be released exactly in this order, otherwise the * DS12887 (popular MC146818A clone with integrated battery and quartz) will * not reset the oscillator and will not update precisely 500 ms later. You * won't find this mentioned in the Dallas Semiconductor data sheets, but who * believes data sheets anyway ... -- Markus Kuhn */ CMOS_WRITE(control, RTC_CONTROL); CMOS_WRITE(freq_select, RTC_FREQ_SELECT); spin_unlock(&rtc_lock); } /* monotonic_clock(): returns # of nanoseconds passed since time_init() * Note: This function is required to return accurate * time even in the absence of multiple timer ticks. */ extern unsigned long long cycles_2_ns(unsigned long long cyc); unsigned long long monotonic_clock(void) { unsigned long seq; u32 last_offset, this_offset, offset; unsigned long long base; if (vxtime.mode == VXTIME_HPET) { do { seq = read_seqbegin(&xtime_lock); last_offset = vxtime.last; base = monotonic_base; this_offset = hpet_readl(HPET_COUNTER); } while (read_seqretry(&xtime_lock, seq)); offset = (this_offset - last_offset); offset *= NSEC_PER_TICK / hpet_tick; } else { do { seq = read_seqbegin(&xtime_lock); last_offset = vxtime.last_tsc; base = monotonic_base; } while (read_seqretry(&xtime_lock, seq)); this_offset = get_cycles_sync(); offset = cycles_2_ns(this_offset - last_offset); } return base + offset; } EXPORT_SYMBOL(monotonic_clock); static noinline void handle_lost_ticks(int lost) { static long lost_count; static int warned; if (report_lost_ticks) { printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost); print_symbol("rip %s)\n", get_irq_regs()->rip); } if (lost_count == 1000 && !warned) { printk(KERN_WARNING "warning: many lost ticks.\n" KERN_WARNING "Your time source seems to be instable or " "some driver is hogging interupts\n"); print_symbol("rip %s\n", get_irq_regs()->rip); if (vxtime.mode == VXTIME_TSC && hpet_address) { printk(KERN_WARNING "Falling back to HPET\n"); if (hpet_use_timer) vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick; else vxtime.last = hpet_readl(HPET_COUNTER); vxtime.mode = VXTIME_HPET; vxtime.hpet_address = hpet_address; do_gettimeoffset = do_gettimeoffset_hpet; } /* else should fall back to PIT, but code missing. */ warned = 1; } else lost_count++; #ifdef CONFIG_CPU_FREQ /* In some cases the CPU can change frequency without us noticing Give cpufreq a change to catch up. */ if ((lost_count+1) % 25 == 0) cpufreq_delayed_get(); #endif } void main_timer_handler(void) { static unsigned long rtc_update = 0; unsigned long tsc; int delay = 0, offset = 0, lost = 0; /* * Here we are in the timer irq handler. We have irqs locally disabled (so we * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running * on the other CPU, so we need a lock. We also need to lock the vsyscall * variables, because both do_timer() and us change them -arca+vojtech */ write_seqlock(&xtime_lock); if (hpet_address) offset = hpet_readl(HPET_COUNTER); if (hpet_use_timer) { /* if we're using the hpet timer functionality, * we can more accurately know the counter value * when the timer interrupt occured. */ offset = hpet_readl(HPET_T0_CMP) - hpet_tick; delay = hpet_readl(HPET_COUNTER) - offset; } else if (!pmtmr_ioport) { spin_lock(&i8253_lock); outb_p(0x00, 0x43); delay = inb_p(0x40); delay |= inb(0x40) << 8; spin_unlock(&i8253_lock); delay = LATCH - 1 - delay; } tsc = get_cycles_sync(); if (vxtime.mode == VXTIME_HPET) { if (offset - vxtime.last > hpet_tick) { lost = (offset - vxtime.last) / hpet_tick - 1; } monotonic_base += (offset - vxtime.last) * NSEC_PER_TICK / hpet_tick; vxtime.last = offset; #ifdef CONFIG_X86_PM_TIMER } else if (vxtime.mode == VXTIME_PMTMR) { lost = pmtimer_mark_offset(); #endif } else { offset = (((tsc - vxtime.last_tsc) * vxtime.tsc_quot) >> US_SCALE) - USEC_PER_TICK; if (offset < 0) offset = 0; if (offset > USEC_PER_TICK) { lost = offset / USEC_PER_TICK; offset %= USEC_PER_TICK; } monotonic_base += cycles_2_ns(tsc - vxtime.last_tsc); vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot; if ((((tsc - vxtime.last_tsc) * vxtime.tsc_quot) >> US_SCALE) < offset) vxtime.last_tsc = tsc - (((long) offset << US_SCALE) / vxtime.tsc_quot) - 1; } if (lost > 0) handle_lost_ticks(lost); else lost = 0; /* * Do the timer stuff. */ do_timer(lost + 1); #ifndef CONFIG_SMP update_process_times(user_mode(get_irq_regs())); #endif /* * In the SMP case we use the local APIC timer interrupt to do the profiling, * except when we simulate SMP mode on a uniprocessor system, in that case we * have to call the local interrupt handler. */ if (!using_apic_timer) smp_local_timer_interrupt(); /* * If we have an externally synchronized Linux clock, then update CMOS clock * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy * closest to exactly 500 ms before the next second. If the update fails, we * don't care, as it'll be updated on the next turn, and the problem (time way * off) isn't likely to go away much sooner anyway. */ if (ntp_synced() && xtime.tv_sec > rtc_update && abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) { set_rtc_mmss(xtime.tv_sec); rtc_update = xtime.tv_sec + 660; } write_sequnlock(&xtime_lock); } static irqreturn_t timer_interrupt(int irq, void *dev_id) { if (apic_runs_main_timer > 1) return IRQ_HANDLED; main_timer_handler(); if (using_apic_timer) smp_send_timer_broadcast_ipi(); return IRQ_HANDLED; } static unsigned long get_cmos_time(void) { unsigned int year, mon, day, hour, min, sec; unsigned long flags; unsigned century = 0; spin_lock_irqsave(&rtc_lock, flags); do { sec = CMOS_READ(RTC_SECONDS); min = CMOS_READ(RTC_MINUTES); hour = CMOS_READ(RTC_HOURS); day = CMOS_READ(RTC_DAY_OF_MONTH); mon = CMOS_READ(RTC_MONTH); year = CMOS_READ(RTC_YEAR); #ifdef CONFIG_ACPI if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID && acpi_gbl_FADT.century) century = CMOS_READ(acpi_gbl_FADT.century); #endif } while (sec != CMOS_READ(RTC_SECONDS)); spin_unlock_irqrestore(&rtc_lock, flags); /* * We know that x86-64 always uses BCD format, no need to check the * config register. */ BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); if (century) { BCD_TO_BIN(century); year += century * 100; printk(KERN_INFO "Extended CMOS year: %d\n", century * 100); } else { /* * x86-64 systems only exists since 2002. * This will work up to Dec 31, 2100 */ year += 2000; } return mktime(year, mon, day, hour, min, sec); } /* * pit_calibrate_tsc() uses the speaker output (channel 2) of * the PIT. This is better than using the timer interrupt output, * because we can read the value of the speaker with just one inb(), * where we need three i/o operations for the interrupt channel. * We count how many ticks the TSC does in 50 ms. */ static unsigned int __init pit_calibrate_tsc(void) { unsigned long start, end; unsigned long flags; spin_lock_irqsave(&i8253_lock, flags); outb((inb(0x61) & ~0x02) | 0x01, 0x61); outb(0xb0, 0x43); outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42); outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42); start = get_cycles_sync(); while ((inb(0x61) & 0x20) == 0); end = get_cycles_sync(); spin_unlock_irqrestore(&i8253_lock, flags); return (end - start) / 50; } #define PIT_MODE 0x43 #define PIT_CH0 0x40 static void __init __pit_init(int val, u8 mode) { unsigned long flags; spin_lock_irqsave(&i8253_lock, flags); outb_p(mode, PIT_MODE); outb_p(val & 0xff, PIT_CH0); /* LSB */ outb_p(val >> 8, PIT_CH0); /* MSB */ spin_unlock_irqrestore(&i8253_lock, flags); } void __init pit_init(void) { __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */ } void __init pit_stop_interrupt(void) { __pit_init(0, 0x30); /* mode 0 */ } void __init stop_timer_interrupt(void) { char *name; if (hpet_address) { name = "HPET"; hpet_timer_stop_set_go(0); } else { name = "PIT"; pit_stop_interrupt(); } printk(KERN_INFO "timer: %s interrupt stopped.\n", name); } int __init time_setup(char *str) { report_lost_ticks = 1; return 1; } static struct irqaction irq0 = { timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL }; void __init time_init(void) { if (nohpet) hpet_address = 0; xtime.tv_sec = get_cmos_time(); xtime.tv_nsec = 0; set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); if (!hpet_arch_init()) vxtime_hz = (FSEC_PER_SEC + hpet_period / 2) / hpet_period; else hpet_address = 0; if (hpet_use_timer) { /* set tick_nsec to use the proper rate for HPET */ tick_nsec = TICK_NSEC_HPET; cpu_khz = hpet_calibrate_tsc(); timename = "HPET"; #ifdef CONFIG_X86_PM_TIMER } else if (pmtmr_ioport && !hpet_address) { vxtime_hz = PM_TIMER_FREQUENCY; timename = "PM"; pit_init(); cpu_khz = pit_calibrate_tsc(); #endif } else { pit_init(); cpu_khz = pit_calibrate_tsc(); timename = "PIT"; } vxtime.mode = VXTIME_TSC; vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz; vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz; vxtime.last_tsc = get_cycles_sync(); set_cyc2ns_scale(cpu_khz); setup_irq(0, &irq0); #ifndef CONFIG_SMP time_init_gtod(); #endif } /* * Decide what mode gettimeofday should use. */ void time_init_gtod(void) { char *timetype; if (unsynchronized_tsc()) notsc = 1; if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP)) vgetcpu_mode = VGETCPU_RDTSCP; else vgetcpu_mode = VGETCPU_LSL; if (hpet_address && notsc) { timetype = hpet_use_timer ? "HPET" : "PIT/HPET"; if (hpet_use_timer) vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick; else vxtime.last = hpet_readl(HPET_COUNTER); vxtime.mode = VXTIME_HPET; vxtime.hpet_address = hpet_address; do_gettimeoffset = do_gettimeoffset_hpet; #ifdef CONFIG_X86_PM_TIMER /* Using PM for gettimeofday is quite slow, but we have no other choice because the TSC is too unreliable on some systems. */ } else if (pmtmr_ioport && !hpet_address && notsc) { timetype = "PM"; do_gettimeoffset = do_gettimeoffset_pm; vxtime.mode = VXTIME_PMTMR; sysctl_vsyscall = 0; printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n"); #endif } else { timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC"; vxtime.mode = VXTIME_TSC; } printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n", vxtime_hz / 1000000, vxtime_hz % 1000000, timename, timetype); printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n", cpu_khz / 1000, cpu_khz % 1000); vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz; vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz; vxtime.last_tsc = get_cycles_sync(); set_cyc2ns_scale(cpu_khz); } __setup("report_lost_ticks", time_setup); static long clock_cmos_diff; static unsigned long sleep_start; /* * sysfs support for the timer. */ static int timer_suspend(struct sys_device *dev, pm_message_t state) { /* * Estimate time zone so that set_time can update the clock */ long cmos_time = get_cmos_time(); clock_cmos_diff = -cmos_time; clock_cmos_diff += get_seconds(); sleep_start = cmos_time; return 0; } static int timer_resume(struct sys_device *dev) { unsigned long flags; unsigned long sec; unsigned long ctime = get_cmos_time(); long sleep_length = (ctime - sleep_start) * HZ; if (sleep_length < 0) { printk(KERN_WARNING "Time skew detected in timer resume!\n"); /* The time after the resume must not be earlier than the time * before the suspend or some nasty things will happen */ sleep_length = 0; ctime = sleep_start; } if (hpet_address) hpet_reenable(); else i8254_timer_resume(); sec = ctime + clock_cmos_diff; write_seqlock_irqsave(&xtime_lock,flags); xtime.tv_sec = sec; xtime.tv_nsec = 0; if (vxtime.mode == VXTIME_HPET) { if (hpet_use_timer) vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick; else vxtime.last = hpet_readl(HPET_COUNTER); #ifdef CONFIG_X86_PM_TIMER } else if (vxtime.mode == VXTIME_PMTMR) { pmtimer_resume(); #endif } else vxtime.last_tsc = get_cycles_sync(); write_sequnlock_irqrestore(&xtime_lock,flags); jiffies += sleep_length; monotonic_base += sleep_length * (NSEC_PER_SEC/HZ); touch_softlockup_watchdog(); return 0; } static struct sysdev_class timer_sysclass = { .resume = timer_resume, .suspend = timer_suspend, set_kset_name("timer"), }; /* XXX this driverfs stuff should probably go elsewhere later -john */ static struct sys_device device_timer = { .id = 0, .cls = &timer_sysclass, }; static int time_init_device(void) { int error = sysdev_class_register(&timer_sysclass); if (!error) error = sysdev_register(&device_timer); return error; } device_initcall(time_init_device);