/* * libata-scsi.c - helper library for ATA * * Maintained by: Tejun Heo * Please ALWAYS copy linux-ide@vger.kernel.org * on emails. * * Copyright 2003-2004 Red Hat, Inc. All rights reserved. * Copyright 2003-2004 Jeff Garzik * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/DocBook/libata.* * * Hardware documentation available from * - http://www.t10.org/ * - http://www.t13.org/ * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libata.h" #include "libata-transport.h" #define ATA_SCSI_RBUF_SIZE 4096 static DEFINE_SPINLOCK(ata_scsi_rbuf_lock); static u8 ata_scsi_rbuf[ATA_SCSI_RBUF_SIZE]; typedef unsigned int (*ata_xlat_func_t)(struct ata_queued_cmd *qc); static struct ata_device *__ata_scsi_find_dev(struct ata_port *ap, const struct scsi_device *scsidev); static struct ata_device *ata_scsi_find_dev(struct ata_port *ap, const struct scsi_device *scsidev); #define RW_RECOVERY_MPAGE 0x1 #define RW_RECOVERY_MPAGE_LEN 12 #define CACHE_MPAGE 0x8 #define CACHE_MPAGE_LEN 20 #define CONTROL_MPAGE 0xa #define CONTROL_MPAGE_LEN 12 #define ALL_MPAGES 0x3f #define ALL_SUB_MPAGES 0xff static const u8 def_rw_recovery_mpage[RW_RECOVERY_MPAGE_LEN] = { RW_RECOVERY_MPAGE, RW_RECOVERY_MPAGE_LEN - 2, (1 << 7), /* AWRE */ 0, /* read retry count */ 0, 0, 0, 0, 0, /* write retry count */ 0, 0, 0 }; static const u8 def_cache_mpage[CACHE_MPAGE_LEN] = { CACHE_MPAGE, CACHE_MPAGE_LEN - 2, 0, /* contains WCE, needs to be 0 for logic */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* contains DRA, needs to be 0 for logic */ 0, 0, 0, 0, 0, 0, 0 }; static const u8 def_control_mpage[CONTROL_MPAGE_LEN] = { CONTROL_MPAGE, CONTROL_MPAGE_LEN - 2, 2, /* DSENSE=0, GLTSD=1 */ 0, /* [QAM+QERR may be 1, see 05-359r1] */ 0, 0, 0, 0, 0xff, 0xff, 0, 30 /* extended self test time, see 05-359r1 */ }; static const char *ata_lpm_policy_names[] = { [ATA_LPM_UNKNOWN] = "max_performance", [ATA_LPM_MAX_POWER] = "max_performance", [ATA_LPM_MED_POWER] = "medium_power", [ATA_LPM_MIN_POWER] = "min_power", }; static ssize_t ata_scsi_lpm_store(struct device *device, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(device); struct ata_port *ap = ata_shost_to_port(shost); struct ata_link *link; struct ata_device *dev; enum ata_lpm_policy policy; unsigned long flags; /* UNKNOWN is internal state, iterate from MAX_POWER */ for (policy = ATA_LPM_MAX_POWER; policy < ARRAY_SIZE(ata_lpm_policy_names); policy++) { const char *name = ata_lpm_policy_names[policy]; if (strncmp(name, buf, strlen(name)) == 0) break; } if (policy == ARRAY_SIZE(ata_lpm_policy_names)) return -EINVAL; spin_lock_irqsave(ap->lock, flags); ata_for_each_link(link, ap, EDGE) { ata_for_each_dev(dev, &ap->link, ENABLED) { if (dev->horkage & ATA_HORKAGE_NOLPM) { count = -EOPNOTSUPP; goto out_unlock; } } } ap->target_lpm_policy = policy; ata_port_schedule_eh(ap); out_unlock: spin_unlock_irqrestore(ap->lock, flags); return count; } static ssize_t ata_scsi_lpm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct ata_port *ap = ata_shost_to_port(shost); if (ap->target_lpm_policy >= ARRAY_SIZE(ata_lpm_policy_names)) return -EINVAL; return snprintf(buf, PAGE_SIZE, "%s\n", ata_lpm_policy_names[ap->target_lpm_policy]); } DEVICE_ATTR(link_power_management_policy, S_IRUGO | S_IWUSR, ata_scsi_lpm_show, ata_scsi_lpm_store); EXPORT_SYMBOL_GPL(dev_attr_link_power_management_policy); static ssize_t ata_scsi_park_show(struct device *device, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(device); struct ata_port *ap; struct ata_link *link; struct ata_device *dev; unsigned long flags, now; unsigned int uninitialized_var(msecs); int rc = 0; ap = ata_shost_to_port(sdev->host); spin_lock_irqsave(ap->lock, flags); dev = ata_scsi_find_dev(ap, sdev); if (!dev) { rc = -ENODEV; goto unlock; } if (dev->flags & ATA_DFLAG_NO_UNLOAD) { rc = -EOPNOTSUPP; goto unlock; } link = dev->link; now = jiffies; if (ap->pflags & ATA_PFLAG_EH_IN_PROGRESS && link->eh_context.unloaded_mask & (1 << dev->devno) && time_after(dev->unpark_deadline, now)) msecs = jiffies_to_msecs(dev->unpark_deadline - now); else msecs = 0; unlock: spin_unlock_irq(ap->lock); return rc ? rc : snprintf(buf, 20, "%u\n", msecs); } static ssize_t ata_scsi_park_store(struct device *device, struct device_attribute *attr, const char *buf, size_t len) { struct scsi_device *sdev = to_scsi_device(device); struct ata_port *ap; struct ata_device *dev; long int input; unsigned long flags; int rc; rc = kstrtol(buf, 10, &input); if (rc) return rc; if (input < -2) return -EINVAL; if (input > ATA_TMOUT_MAX_PARK) { rc = -EOVERFLOW; input = ATA_TMOUT_MAX_PARK; } ap = ata_shost_to_port(sdev->host); spin_lock_irqsave(ap->lock, flags); dev = ata_scsi_find_dev(ap, sdev); if (unlikely(!dev)) { rc = -ENODEV; goto unlock; } if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) { rc = -EOPNOTSUPP; goto unlock; } if (input >= 0) { if (dev->flags & ATA_DFLAG_NO_UNLOAD) { rc = -EOPNOTSUPP; goto unlock; } dev->unpark_deadline = ata_deadline(jiffies, input); dev->link->eh_info.dev_action[dev->devno] |= ATA_EH_PARK; ata_port_schedule_eh(ap); complete(&ap->park_req_pending); } else { switch (input) { case -1: dev->flags &= ~ATA_DFLAG_NO_UNLOAD; break; case -2: dev->flags |= ATA_DFLAG_NO_UNLOAD; break; } } unlock: spin_unlock_irqrestore(ap->lock, flags); return rc ? rc : len; } DEVICE_ATTR(unload_heads, S_IRUGO | S_IWUSR, ata_scsi_park_show, ata_scsi_park_store); EXPORT_SYMBOL_GPL(dev_attr_unload_heads); static void ata_scsi_set_sense(struct scsi_cmnd *cmd, u8 sk, u8 asc, u8 ascq) { cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION; scsi_build_sense_buffer(0, cmd->sense_buffer, sk, asc, ascq); } static ssize_t ata_scsi_em_message_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(dev); struct ata_port *ap = ata_shost_to_port(shost); if (ap->ops->em_store && (ap->flags & ATA_FLAG_EM)) return ap->ops->em_store(ap, buf, count); return -EINVAL; } static ssize_t ata_scsi_em_message_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct ata_port *ap = ata_shost_to_port(shost); if (ap->ops->em_show && (ap->flags & ATA_FLAG_EM)) return ap->ops->em_show(ap, buf); return -EINVAL; } DEVICE_ATTR(em_message, S_IRUGO | S_IWUSR, ata_scsi_em_message_show, ata_scsi_em_message_store); EXPORT_SYMBOL_GPL(dev_attr_em_message); static ssize_t ata_scsi_em_message_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct ata_port *ap = ata_shost_to_port(shost); return snprintf(buf, 23, "%d\n", ap->em_message_type); } DEVICE_ATTR(em_message_type, S_IRUGO, ata_scsi_em_message_type_show, NULL); EXPORT_SYMBOL_GPL(dev_attr_em_message_type); static ssize_t ata_scsi_activity_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct ata_port *ap = ata_shost_to_port(sdev->host); struct ata_device *atadev = ata_scsi_find_dev(ap, sdev); if (atadev && ap->ops->sw_activity_show && (ap->flags & ATA_FLAG_SW_ACTIVITY)) return ap->ops->sw_activity_show(atadev, buf); return -EINVAL; } static ssize_t ata_scsi_activity_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_device *sdev = to_scsi_device(dev); struct ata_port *ap = ata_shost_to_port(sdev->host); struct ata_device *atadev = ata_scsi_find_dev(ap, sdev); enum sw_activity val; int rc; if (atadev && ap->ops->sw_activity_store && (ap->flags & ATA_FLAG_SW_ACTIVITY)) { val = simple_strtoul(buf, NULL, 0); switch (val) { case OFF: case BLINK_ON: case BLINK_OFF: rc = ap->ops->sw_activity_store(atadev, val); if (!rc) return count; else return rc; } } return -EINVAL; } DEVICE_ATTR(sw_activity, S_IWUSR | S_IRUGO, ata_scsi_activity_show, ata_scsi_activity_store); EXPORT_SYMBOL_GPL(dev_attr_sw_activity); struct device_attribute *ata_common_sdev_attrs[] = { &dev_attr_unload_heads, NULL }; EXPORT_SYMBOL_GPL(ata_common_sdev_attrs); static void ata_scsi_invalid_field(struct scsi_cmnd *cmd) { ata_scsi_set_sense(cmd, ILLEGAL_REQUEST, 0x24, 0x0); /* "Invalid field in cbd" */ cmd->scsi_done(cmd); } /** * ata_std_bios_param - generic bios head/sector/cylinder calculator used by sd. * @sdev: SCSI device for which BIOS geometry is to be determined * @bdev: block device associated with @sdev * @capacity: capacity of SCSI device * @geom: location to which geometry will be output * * Generic bios head/sector/cylinder calculator * used by sd. Most BIOSes nowadays expect a XXX/255/16 (CHS) * mapping. Some situations may arise where the disk is not * bootable if this is not used. * * LOCKING: * Defined by the SCSI layer. We don't really care. * * RETURNS: * Zero. */ int ata_std_bios_param(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]) { geom[0] = 255; geom[1] = 63; sector_div(capacity, 255*63); geom[2] = capacity; return 0; } /** * ata_scsi_unlock_native_capacity - unlock native capacity * @sdev: SCSI device to adjust device capacity for * * This function is called if a partition on @sdev extends beyond * the end of the device. It requests EH to unlock HPA. * * LOCKING: * Defined by the SCSI layer. Might sleep. */ void ata_scsi_unlock_native_capacity(struct scsi_device *sdev) { struct ata_port *ap = ata_shost_to_port(sdev->host); struct ata_device *dev; unsigned long flags; spin_lock_irqsave(ap->lock, flags); dev = ata_scsi_find_dev(ap, sdev); if (dev && dev->n_sectors < dev->n_native_sectors) { dev->flags |= ATA_DFLAG_UNLOCK_HPA; dev->link->eh_info.action |= ATA_EH_RESET; ata_port_schedule_eh(ap); } spin_unlock_irqrestore(ap->lock, flags); ata_port_wait_eh(ap); } /** * ata_get_identity - Handler for HDIO_GET_IDENTITY ioctl * @ap: target port * @sdev: SCSI device to get identify data for * @arg: User buffer area for identify data * * LOCKING: * Defined by the SCSI layer. We don't really care. * * RETURNS: * Zero on success, negative errno on error. */ static int ata_get_identity(struct ata_port *ap, struct scsi_device *sdev, void __user *arg) { struct ata_device *dev = ata_scsi_find_dev(ap, sdev); u16 __user *dst = arg; char buf[40]; if (!dev) return -ENOMSG; if (copy_to_user(dst, dev->id, ATA_ID_WORDS * sizeof(u16))) return -EFAULT; ata_id_string(dev->id, buf, ATA_ID_PROD, ATA_ID_PROD_LEN); if (copy_to_user(dst + ATA_ID_PROD, buf, ATA_ID_PROD_LEN)) return -EFAULT; ata_id_string(dev->id, buf, ATA_ID_FW_REV, ATA_ID_FW_REV_LEN); if (copy_to_user(dst + ATA_ID_FW_REV, buf, ATA_ID_FW_REV_LEN)) return -EFAULT; ata_id_string(dev->id, buf, ATA_ID_SERNO, ATA_ID_SERNO_LEN); if (copy_to_user(dst + ATA_ID_SERNO, buf, ATA_ID_SERNO_LEN)) return -EFAULT; return 0; } /** * ata_cmd_ioctl - Handler for HDIO_DRIVE_CMD ioctl * @scsidev: Device to which we are issuing command * @arg: User provided data for issuing command * * LOCKING: * Defined by the SCSI layer. We don't really care. * * RETURNS: * Zero on success, negative errno on error. */ int ata_cmd_ioctl(struct scsi_device *scsidev, void __user *arg) { int rc = 0; u8 scsi_cmd[MAX_COMMAND_SIZE]; u8 args[4], *argbuf = NULL, *sensebuf = NULL; int argsize = 0; enum dma_data_direction data_dir; int cmd_result; if (arg == NULL) return -EINVAL; if (copy_from_user(args, arg, sizeof(args))) return -EFAULT; sensebuf = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); if (!sensebuf) return -ENOMEM; memset(scsi_cmd, 0, sizeof(scsi_cmd)); if (args[3]) { argsize = ATA_SECT_SIZE * args[3]; argbuf = kmalloc(argsize, GFP_KERNEL); if (argbuf == NULL) { rc = -ENOMEM; goto error; } scsi_cmd[1] = (4 << 1); /* PIO Data-in */ scsi_cmd[2] = 0x0e; /* no off.line or cc, read from dev, block count in sector count field */ data_dir = DMA_FROM_DEVICE; } else { scsi_cmd[1] = (3 << 1); /* Non-data */ scsi_cmd[2] = 0x20; /* cc but no off.line or data xfer */ data_dir = DMA_NONE; } scsi_cmd[0] = ATA_16; scsi_cmd[4] = args[2]; if (args[0] == ATA_CMD_SMART) { /* hack -- ide driver does this too */ scsi_cmd[6] = args[3]; scsi_cmd[8] = args[1]; scsi_cmd[10] = 0x4f; scsi_cmd[12] = 0xc2; } else { scsi_cmd[6] = args[1]; } scsi_cmd[14] = args[0]; /* Good values for timeout and retries? Values below from scsi_ioctl_send_command() for default case... */ cmd_result = scsi_execute(scsidev, scsi_cmd, data_dir, argbuf, argsize, sensebuf, (10*HZ), 5, 0, NULL); if (driver_byte(cmd_result) == DRIVER_SENSE) {/* sense data available */ u8 *desc = sensebuf + 8; cmd_result &= ~(0xFF<<24); /* DRIVER_SENSE is not an error */ /* If we set cc then ATA pass-through will cause a * check condition even if no error. Filter that. */ if (cmd_result & SAM_STAT_CHECK_CONDITION) { struct scsi_sense_hdr sshdr; scsi_normalize_sense(sensebuf, SCSI_SENSE_BUFFERSIZE, &sshdr); if (sshdr.sense_key == RECOVERED_ERROR && sshdr.asc == 0 && sshdr.ascq == 0x1d) cmd_result &= ~SAM_STAT_CHECK_CONDITION; } /* Send userspace a few ATA registers (same as drivers/ide) */ if (sensebuf[0] == 0x72 && /* format is "descriptor" */ desc[0] == 0x09) { /* code is "ATA Descriptor" */ args[0] = desc[13]; /* status */ args[1] = desc[3]; /* error */ args[2] = desc[5]; /* sector count (0:7) */ if (copy_to_user(arg, args, sizeof(args))) rc = -EFAULT; } } if (cmd_result) { rc = -EIO; goto error; } if ((argbuf) && copy_to_user(arg + sizeof(args), argbuf, argsize)) rc = -EFAULT; error: kfree(sensebuf); kfree(argbuf); return rc; } /** * ata_task_ioctl - Handler for HDIO_DRIVE_TASK ioctl * @scsidev: Device to which we are issuing command * @arg: User provided data for issuing command * * LOCKING: * Defined by the SCSI layer. We don't really care. * * RETURNS: * Zero on success, negative errno on error. */ int ata_task_ioctl(struct scsi_device *scsidev, void __user *arg) { int rc = 0; u8 scsi_cmd[MAX_COMMAND_SIZE]; u8 args[7], *sensebuf = NULL; int cmd_result; if (arg == NULL) return -EINVAL; if (copy_from_user(args, arg, sizeof(args))) return -EFAULT; sensebuf = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); if (!sensebuf) return -ENOMEM; memset(scsi_cmd, 0, sizeof(scsi_cmd)); scsi_cmd[0] = ATA_16; scsi_cmd[1] = (3 << 1); /* Non-data */ scsi_cmd[2] = 0x20; /* cc but no off.line or data xfer */ scsi_cmd[4] = args[1]; scsi_cmd[6] = args[2]; scsi_cmd[8] = args[3]; scsi_cmd[10] = args[4]; scsi_cmd[12] = args[5]; scsi_cmd[13] = args[6] & 0x4f; scsi_cmd[14] = args[0]; /* Good values for timeout and retries? Values below from scsi_ioctl_send_command() for default case... */ cmd_result = scsi_execute(scsidev, scsi_cmd, DMA_NONE, NULL, 0, sensebuf, (10*HZ), 5, 0, NULL); if (driver_byte(cmd_result) == DRIVER_SENSE) {/* sense data available */ u8 *desc = sensebuf + 8; cmd_result &= ~(0xFF<<24); /* DRIVER_SENSE is not an error */ /* If we set cc then ATA pass-through will cause a * check condition even if no error. Filter that. */ if (cmd_result & SAM_STAT_CHECK_CONDITION) { struct scsi_sense_hdr sshdr; scsi_normalize_sense(sensebuf, SCSI_SENSE_BUFFERSIZE, &sshdr); if (sshdr.sense_key == RECOVERED_ERROR && sshdr.asc == 0 && sshdr.ascq == 0x1d) cmd_result &= ~SAM_STAT_CHECK_CONDITION; } /* Send userspace ATA registers */ if (sensebuf[0] == 0x72 && /* format is "descriptor" */ desc[0] == 0x09) {/* code is "ATA Descriptor" */ args[0] = desc[13]; /* status */ args[1] = desc[3]; /* error */ args[2] = desc[5]; /* sector count (0:7) */ args[3] = desc[7]; /* lbal */ args[4] = desc[9]; /* lbam */ args[5] = desc[11]; /* lbah */ args[6] = desc[12]; /* select */ if (copy_to_user(arg, args, sizeof(args))) rc = -EFAULT; } } if (cmd_result) { rc = -EIO; goto error; } error: kfree(sensebuf); return rc; } static int ata_ioc32(struct ata_port *ap) { if (ap->flags & ATA_FLAG_PIO_DMA) return 1; if (ap->pflags & ATA_PFLAG_PIO32) return 1; return 0; } int ata_sas_scsi_ioctl(struct ata_port *ap, struct scsi_device *scsidev, int cmd, void __user *arg) { int val = -EINVAL, rc = -EINVAL; unsigned long flags; switch (cmd) { case ATA_IOC_GET_IO32: spin_lock_irqsave(ap->lock, flags); val = ata_ioc32(ap); spin_unlock_irqrestore(ap->lock, flags); if (copy_to_user(arg, &val, 1)) return -EFAULT; return 0; case ATA_IOC_SET_IO32: val = (unsigned long) arg; rc = 0; spin_lock_irqsave(ap->lock, flags); if (ap->pflags & ATA_PFLAG_PIO32CHANGE) { if (val) ap->pflags |= ATA_PFLAG_PIO32; else ap->pflags &= ~ATA_PFLAG_PIO32; } else { if (val != ata_ioc32(ap)) rc = -EINVAL; } spin_unlock_irqrestore(ap->lock, flags); return rc; case HDIO_GET_IDENTITY: return ata_get_identity(ap, scsidev, arg); case HDIO_DRIVE_CMD: if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) return -EACCES; return ata_cmd_ioctl(scsidev, arg); case HDIO_DRIVE_TASK: if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) return -EACCES; return ata_task_ioctl(scsidev, arg); default: rc = -ENOTTY; break; } return rc; } EXPORT_SYMBOL_GPL(ata_sas_scsi_ioctl); int ata_scsi_ioctl(struct scsi_device *scsidev, int cmd, void __user *arg) { return ata_sas_scsi_ioctl(ata_shost_to_port(scsidev->host), scsidev, cmd, arg); } EXPORT_SYMBOL_GPL(ata_scsi_ioctl); /** * ata_scsi_qc_new - acquire new ata_queued_cmd reference * @dev: ATA device to which the new command is attached * @cmd: SCSI command that originated this ATA command * * Obtain a reference to an unused ata_queued_cmd structure, * which is the basic libata structure representing a single * ATA command sent to the hardware. * * If a command was available, fill in the SCSI-specific * portions of the structure with information on the * current command. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Command allocated, or %NULL if none available. */ static struct ata_queued_cmd *ata_scsi_qc_new(struct ata_device *dev, struct scsi_cmnd *cmd) { struct ata_queued_cmd *qc; qc = ata_qc_new_init(dev); if (qc) { qc->scsicmd = cmd; qc->scsidone = cmd->scsi_done; qc->sg = scsi_sglist(cmd); qc->n_elem = scsi_sg_count(cmd); } else { cmd->result = (DID_OK << 16) | (QUEUE_FULL << 1); cmd->scsi_done(cmd); } return qc; } static void ata_qc_set_pc_nbytes(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; qc->extrabytes = scmd->request->extra_len; qc->nbytes = scsi_bufflen(scmd) + qc->extrabytes; } /** * ata_dump_status - user friendly display of error info * @id: id of the port in question * @tf: ptr to filled out taskfile * * Decode and dump the ATA error/status registers for the user so * that they have some idea what really happened at the non * make-believe layer. * * LOCKING: * inherited from caller */ static void ata_dump_status(unsigned id, struct ata_taskfile *tf) { u8 stat = tf->command, err = tf->feature; printk(KERN_WARNING "ata%u: status=0x%02x { ", id, stat); if (stat & ATA_BUSY) { printk("Busy }\n"); /* Data is not valid in this case */ } else { if (stat & 0x40) printk("DriveReady "); if (stat & 0x20) printk("DeviceFault "); if (stat & 0x10) printk("SeekComplete "); if (stat & 0x08) printk("DataRequest "); if (stat & 0x04) printk("CorrectedError "); if (stat & 0x02) printk("Index "); if (stat & 0x01) printk("Error "); printk("}\n"); if (err) { printk(KERN_WARNING "ata%u: error=0x%02x { ", id, err); if (err & 0x04) printk("DriveStatusError "); if (err & 0x80) { if (err & 0x04) printk("BadCRC "); else printk("Sector "); } if (err & 0x40) printk("UncorrectableError "); if (err & 0x10) printk("SectorIdNotFound "); if (err & 0x02) printk("TrackZeroNotFound "); if (err & 0x01) printk("AddrMarkNotFound "); printk("}\n"); } } } /** * ata_to_sense_error - convert ATA error to SCSI error * @id: ATA device number * @drv_stat: value contained in ATA status register * @drv_err: value contained in ATA error register * @sk: the sense key we'll fill out * @asc: the additional sense code we'll fill out * @ascq: the additional sense code qualifier we'll fill out * @verbose: be verbose * * Converts an ATA error into a SCSI error. Fill out pointers to * SK, ASC, and ASCQ bytes for later use in fixed or descriptor * format sense blocks. * * LOCKING: * spin_lock_irqsave(host lock) */ static void ata_to_sense_error(unsigned id, u8 drv_stat, u8 drv_err, u8 *sk, u8 *asc, u8 *ascq, int verbose) { int i; /* Based on the 3ware driver translation table */ static const unsigned char sense_table[][4] = { /* BBD|ECC|ID|MAR */ {0xd1, ABORTED_COMMAND, 0x00, 0x00}, // Device busy Aborted command /* BBD|ECC|ID */ {0xd0, ABORTED_COMMAND, 0x00, 0x00}, // Device busy Aborted command /* ECC|MC|MARK */ {0x61, HARDWARE_ERROR, 0x00, 0x00}, // Device fault Hardware error /* ICRC|ABRT */ /* NB: ICRC & !ABRT is BBD */ {0x84, ABORTED_COMMAND, 0x47, 0x00}, // Data CRC error SCSI parity error /* MC|ID|ABRT|TRK0|MARK */ {0x37, NOT_READY, 0x04, 0x00}, // Unit offline Not ready /* MCR|MARK */ {0x09, NOT_READY, 0x04, 0x00}, // Unrecovered disk error Not ready /* Bad address mark */ {0x01, MEDIUM_ERROR, 0x13, 0x00}, // Address mark not found Address mark not found for data field /* TRK0 */ {0x02, HARDWARE_ERROR, 0x00, 0x00}, // Track 0 not found Hardware error /* Abort: 0x04 is not translated here, see below */ /* Media change request */ {0x08, NOT_READY, 0x04, 0x00}, // Media change request FIXME: faking offline /* SRV/IDNF */ {0x10, ILLEGAL_REQUEST, 0x21, 0x00}, // ID not found Logical address out of range /* MC */ {0x20, UNIT_ATTENTION, 0x28, 0x00}, // Media Changed Not ready to ready change, medium may have changed /* ECC */ {0x40, MEDIUM_ERROR, 0x11, 0x04}, // Uncorrectable ECC error Unrecovered read error /* BBD - block marked bad */ {0x80, MEDIUM_ERROR, 0x11, 0x04}, // Block marked bad Medium error, unrecovered read error {0xFF, 0xFF, 0xFF, 0xFF}, // END mark }; static const unsigned char stat_table[][4] = { /* Must be first because BUSY means no other bits valid */ {0x80, ABORTED_COMMAND, 0x47, 0x00}, // Busy, fake parity for now {0x20, HARDWARE_ERROR, 0x44, 0x00}, // Device fault, internal target failure {0x08, ABORTED_COMMAND, 0x47, 0x00}, // Timed out in xfer, fake parity for now {0x04, RECOVERED_ERROR, 0x11, 0x00}, // Recovered ECC error Medium error, recovered {0xFF, 0xFF, 0xFF, 0xFF}, // END mark }; /* * Is this an error we can process/parse */ if (drv_stat & ATA_BUSY) { drv_err = 0; /* Ignore the err bits, they're invalid */ } if (drv_err) { /* Look for drv_err */ for (i = 0; sense_table[i][0] != 0xFF; i++) { /* Look for best matches first */ if ((sense_table[i][0] & drv_err) == sense_table[i][0]) { *sk = sense_table[i][1]; *asc = sense_table[i][2]; *ascq = sense_table[i][3]; goto translate_done; } } } /* * Fall back to interpreting status bits. Note that if the drv_err * has only the ABRT bit set, we decode drv_stat. ABRT by itself * is not descriptive enough. */ for (i = 0; stat_table[i][0] != 0xFF; i++) { if (stat_table[i][0] & drv_stat) { *sk = stat_table[i][1]; *asc = stat_table[i][2]; *ascq = stat_table[i][3]; goto translate_done; } } /* * We need a sensible error return here, which is tricky, and one * that won't cause people to do things like return a disk wrongly. */ *sk = ABORTED_COMMAND; *asc = 0x00; *ascq = 0x00; translate_done: if (verbose) printk(KERN_ERR "ata%u: translated ATA stat/err 0x%02x/%02x " "to SCSI SK/ASC/ASCQ 0x%x/%02x/%02x\n", id, drv_stat, drv_err, *sk, *asc, *ascq); return; } /* * ata_gen_passthru_sense - Generate check condition sense block. * @qc: Command that completed. * * This function is specific to the ATA descriptor format sense * block specified for the ATA pass through commands. Regardless * of whether the command errored or not, return a sense * block. Copy all controller registers into the sense * block. If there was no error, we get the request from an ATA * passthrough command, so we use the following sense data: * sk = RECOVERED ERROR * asc,ascq = ATA PASS-THROUGH INFORMATION AVAILABLE * * * LOCKING: * None. */ static void ata_gen_passthru_sense(struct ata_queued_cmd *qc) { struct scsi_cmnd *cmd = qc->scsicmd; struct ata_taskfile *tf = &qc->result_tf; unsigned char *sb = cmd->sense_buffer; unsigned char *desc = sb + 8; int verbose = qc->ap->ops->error_handler == NULL; memset(sb, 0, SCSI_SENSE_BUFFERSIZE); cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION; /* * Use ata_to_sense_error() to map status register bits * onto sense key, asc & ascq. */ if (qc->err_mask || tf->command & (ATA_BUSY | ATA_DF | ATA_ERR | ATA_DRQ)) { ata_to_sense_error(qc->ap->print_id, tf->command, tf->feature, &sb[1], &sb[2], &sb[3], verbose); sb[1] &= 0x0f; } else { sb[1] = RECOVERED_ERROR; sb[2] = 0; sb[3] = 0x1D; } /* * Sense data is current and format is descriptor. */ sb[0] = 0x72; desc[0] = 0x09; /* set length of additional sense data */ sb[7] = 14; desc[1] = 12; /* * Copy registers into sense buffer. */ desc[2] = 0x00; desc[3] = tf->feature; /* == error reg */ desc[5] = tf->nsect; desc[7] = tf->lbal; desc[9] = tf->lbam; desc[11] = tf->lbah; desc[12] = tf->device; desc[13] = tf->command; /* == status reg */ /* * Fill in Extend bit, and the high order bytes * if applicable. */ if (tf->flags & ATA_TFLAG_LBA48) { desc[2] |= 0x01; desc[4] = tf->hob_nsect; desc[6] = tf->hob_lbal; desc[8] = tf->hob_lbam; desc[10] = tf->hob_lbah; } } /** * ata_gen_ata_sense - generate a SCSI fixed sense block * @qc: Command that we are erroring out * * Generate sense block for a failed ATA command @qc. Descriptor * format is used to accommodate LBA48 block address. * * LOCKING: * None. */ static void ata_gen_ata_sense(struct ata_queued_cmd *qc) { struct ata_device *dev = qc->dev; struct scsi_cmnd *cmd = qc->scsicmd; struct ata_taskfile *tf = &qc->result_tf; unsigned char *sb = cmd->sense_buffer; unsigned char *desc = sb + 8; int verbose = qc->ap->ops->error_handler == NULL; u64 block; memset(sb, 0, SCSI_SENSE_BUFFERSIZE); cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION; /* sense data is current and format is descriptor */ sb[0] = 0x72; /* Use ata_to_sense_error() to map status register bits * onto sense key, asc & ascq. */ if (qc->err_mask || tf->command & (ATA_BUSY | ATA_DF | ATA_ERR | ATA_DRQ)) { ata_to_sense_error(qc->ap->print_id, tf->command, tf->feature, &sb[1], &sb[2], &sb[3], verbose); sb[1] &= 0x0f; } block = ata_tf_read_block(&qc->result_tf, dev); /* information sense data descriptor */ sb[7] = 12; desc[0] = 0x00; desc[1] = 10; desc[2] |= 0x80; /* valid */ desc[6] = block >> 40; desc[7] = block >> 32; desc[8] = block >> 24; desc[9] = block >> 16; desc[10] = block >> 8; desc[11] = block; } static void ata_scsi_sdev_config(struct scsi_device *sdev) { sdev->use_10_for_rw = 1; sdev->use_10_for_ms = 1; sdev->no_report_opcodes = 1; sdev->no_write_same = 1; /* Schedule policy is determined by ->qc_defer() callback and * it needs to see every deferred qc. Set dev_blocked to 1 to * prevent SCSI midlayer from automatically deferring * requests. */ sdev->max_device_blocked = 1; } /** * atapi_drain_needed - Check whether data transfer may overflow * @rq: request to be checked * * ATAPI commands which transfer variable length data to host * might overflow due to application error or hardare bug. This * function checks whether overflow should be drained and ignored * for @request. * * LOCKING: * None. * * RETURNS: * 1 if ; otherwise, 0. */ static int atapi_drain_needed(struct request *rq) { if (likely(rq->cmd_type != REQ_TYPE_BLOCK_PC)) return 0; if (!blk_rq_bytes(rq) || (rq->cmd_flags & REQ_WRITE)) return 0; return atapi_cmd_type(rq->cmd[0]) == ATAPI_MISC; } static int ata_scsi_dev_config(struct scsi_device *sdev, struct ata_device *dev) { struct request_queue *q = sdev->request_queue; if (!ata_id_has_unload(dev->id)) dev->flags |= ATA_DFLAG_NO_UNLOAD; /* configure max sectors */ blk_queue_max_hw_sectors(q, dev->max_sectors); if (dev->class == ATA_DEV_ATAPI) { void *buf; sdev->sector_size = ATA_SECT_SIZE; /* set DMA padding */ blk_queue_update_dma_pad(q, ATA_DMA_PAD_SZ - 1); /* configure draining */ buf = kmalloc(ATAPI_MAX_DRAIN, q->bounce_gfp | GFP_KERNEL); if (!buf) { ata_dev_err(dev, "drain buffer allocation failed\n"); return -ENOMEM; } blk_queue_dma_drain(q, atapi_drain_needed, buf, ATAPI_MAX_DRAIN); } else { sdev->sector_size = ata_id_logical_sector_size(dev->id); sdev->manage_start_stop = 1; } /* * ata_pio_sectors() expects buffer for each sector to not cross * page boundary. Enforce it by requiring buffers to be sector * aligned, which works iff sector_size is not larger than * PAGE_SIZE. ATAPI devices also need the alignment as * IDENTIFY_PACKET is executed as ATA_PROT_PIO. */ if (sdev->sector_size > PAGE_SIZE) ata_dev_warn(dev, "sector_size=%u > PAGE_SIZE, PIO may malfunction\n", sdev->sector_size); blk_queue_update_dma_alignment(q, sdev->sector_size - 1); if (dev->flags & ATA_DFLAG_AN) set_bit(SDEV_EVT_MEDIA_CHANGE, sdev->supported_events); if (dev->flags & ATA_DFLAG_NCQ) { int depth; depth = min(sdev->host->can_queue, ata_id_queue_depth(dev->id)); depth = min(ATA_MAX_QUEUE - 1, depth); scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, depth); } blk_queue_flush_queueable(q, false); dev->sdev = sdev; return 0; } /** * ata_scsi_slave_config - Set SCSI device attributes * @sdev: SCSI device to examine * * This is called before we actually start reading * and writing to the device, to configure certain * SCSI mid-layer behaviors. * * LOCKING: * Defined by SCSI layer. We don't really care. */ int ata_scsi_slave_config(struct scsi_device *sdev) { struct ata_port *ap = ata_shost_to_port(sdev->host); struct ata_device *dev = __ata_scsi_find_dev(ap, sdev); int rc = 0; ata_scsi_sdev_config(sdev); if (dev) rc = ata_scsi_dev_config(sdev, dev); return rc; } /** * ata_scsi_slave_destroy - SCSI device is about to be destroyed * @sdev: SCSI device to be destroyed * * @sdev is about to be destroyed for hot/warm unplugging. If * this unplugging was initiated by libata as indicated by NULL * dev->sdev, this function doesn't have to do anything. * Otherwise, SCSI layer initiated warm-unplug is in progress. * Clear dev->sdev, schedule the device for ATA detach and invoke * EH. * * LOCKING: * Defined by SCSI layer. We don't really care. */ void ata_scsi_slave_destroy(struct scsi_device *sdev) { struct ata_port *ap = ata_shost_to_port(sdev->host); struct request_queue *q = sdev->request_queue; unsigned long flags; struct ata_device *dev; if (!ap->ops->error_handler) return; spin_lock_irqsave(ap->lock, flags); dev = __ata_scsi_find_dev(ap, sdev); if (dev && dev->sdev) { /* SCSI device already in CANCEL state, no need to offline it */ dev->sdev = NULL; dev->flags |= ATA_DFLAG_DETACH; ata_port_schedule_eh(ap); } spin_unlock_irqrestore(ap->lock, flags); kfree(q->dma_drain_buffer); q->dma_drain_buffer = NULL; q->dma_drain_size = 0; } /** * __ata_change_queue_depth - helper for ata_scsi_change_queue_depth * @ap: ATA port to which the device change the queue depth * @sdev: SCSI device to configure queue depth for * @queue_depth: new queue depth * @reason: calling context * * libsas and libata have different approaches for associating a sdev to * its ata_port. * */ int __ata_change_queue_depth(struct ata_port *ap, struct scsi_device *sdev, int queue_depth, int reason) { struct ata_device *dev; unsigned long flags; if (reason != SCSI_QDEPTH_DEFAULT) return -EOPNOTSUPP; if (queue_depth < 1 || queue_depth == sdev->queue_depth) return sdev->queue_depth; dev = ata_scsi_find_dev(ap, sdev); if (!dev || !ata_dev_enabled(dev)) return sdev->queue_depth; /* NCQ enabled? */ spin_lock_irqsave(ap->lock, flags); dev->flags &= ~ATA_DFLAG_NCQ_OFF; if (queue_depth == 1 || !ata_ncq_enabled(dev)) { dev->flags |= ATA_DFLAG_NCQ_OFF; queue_depth = 1; } spin_unlock_irqrestore(ap->lock, flags); /* limit and apply queue depth */ queue_depth = min(queue_depth, sdev->host->can_queue); queue_depth = min(queue_depth, ata_id_queue_depth(dev->id)); queue_depth = min(queue_depth, ATA_MAX_QUEUE - 1); if (sdev->queue_depth == queue_depth) return -EINVAL; scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, queue_depth); return queue_depth; } /** * ata_scsi_change_queue_depth - SCSI callback for queue depth config * @sdev: SCSI device to configure queue depth for * @queue_depth: new queue depth * @reason: calling context * * This is libata standard hostt->change_queue_depth callback. * SCSI will call into this callback when user tries to set queue * depth via sysfs. * * LOCKING: * SCSI layer (we don't care) * * RETURNS: * Newly configured queue depth. */ int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth, int reason) { struct ata_port *ap = ata_shost_to_port(sdev->host); return __ata_change_queue_depth(ap, sdev, queue_depth, reason); } /** * ata_scsi_start_stop_xlat - Translate SCSI START STOP UNIT command * @qc: Storage for translated ATA taskfile * * Sets up an ATA taskfile to issue STANDBY (to stop) or READ VERIFY * (to start). Perhaps these commands should be preceded by * CHECK POWER MODE to see what power mode the device is already in. * [See SAT revision 5 at www.t10.org] * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Zero on success, non-zero on error. */ static unsigned int ata_scsi_start_stop_xlat(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; struct ata_taskfile *tf = &qc->tf; const u8 *cdb = scmd->cmnd; if (scmd->cmd_len < 5) goto invalid_fld; tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; tf->protocol = ATA_PROT_NODATA; if (cdb[1] & 0x1) { ; /* ignore IMMED bit, violates sat-r05 */ } if (cdb[4] & 0x2) goto invalid_fld; /* LOEJ bit set not supported */ if (((cdb[4] >> 4) & 0xf) != 0) goto invalid_fld; /* power conditions not supported */ if (cdb[4] & 0x1) { tf->nsect = 1; /* 1 sector, lba=0 */ if (qc->dev->flags & ATA_DFLAG_LBA) { tf->flags |= ATA_TFLAG_LBA; tf->lbah = 0x0; tf->lbam = 0x0; tf->lbal = 0x0; tf->device |= ATA_LBA; } else { /* CHS */ tf->lbal = 0x1; /* sect */ tf->lbam = 0x0; /* cyl low */ tf->lbah = 0x0; /* cyl high */ } tf->command = ATA_CMD_VERIFY; /* READ VERIFY */ } else { /* Some odd clown BIOSen issue spindown on power off (ACPI S4 * or S5) causing some drives to spin up and down again. */ if ((qc->ap->flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) && system_state == SYSTEM_POWER_OFF) goto skip; if ((qc->ap->flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) && system_entering_hibernation()) goto skip; /* Issue ATA STANDBY IMMEDIATE command */ tf->command = ATA_CMD_STANDBYNOW1; } /* * Standby and Idle condition timers could be implemented but that * would require libata to implement the Power condition mode page * and allow the user to change it. Changing mode pages requires * MODE SELECT to be implemented. */ return 0; invalid_fld: ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x0); /* "Invalid field in cbd" */ return 1; skip: scmd->result = SAM_STAT_GOOD; return 1; } /** * ata_scsi_flush_xlat - Translate SCSI SYNCHRONIZE CACHE command * @qc: Storage for translated ATA taskfile * * Sets up an ATA taskfile to issue FLUSH CACHE or * FLUSH CACHE EXT. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Zero on success, non-zero on error. */ static unsigned int ata_scsi_flush_xlat(struct ata_queued_cmd *qc) { struct ata_taskfile *tf = &qc->tf; tf->flags |= ATA_TFLAG_DEVICE; tf->protocol = ATA_PROT_NODATA; if (qc->dev->flags & ATA_DFLAG_FLUSH_EXT) tf->command = ATA_CMD_FLUSH_EXT; else tf->command = ATA_CMD_FLUSH; /* flush is critical for IO integrity, consider it an IO command */ qc->flags |= ATA_QCFLAG_IO; return 0; } /** * scsi_6_lba_len - Get LBA and transfer length * @cdb: SCSI command to translate * * Calculate LBA and transfer length for 6-byte commands. * * RETURNS: * @plba: the LBA * @plen: the transfer length */ static void scsi_6_lba_len(const u8 *cdb, u64 *plba, u32 *plen) { u64 lba = 0; u32 len; VPRINTK("six-byte command\n"); lba |= ((u64)(cdb[1] & 0x1f)) << 16; lba |= ((u64)cdb[2]) << 8; lba |= ((u64)cdb[3]); len = cdb[4]; *plba = lba; *plen = len; } /** * scsi_10_lba_len - Get LBA and transfer length * @cdb: SCSI command to translate * * Calculate LBA and transfer length for 10-byte commands. * * RETURNS: * @plba: the LBA * @plen: the transfer length */ static void scsi_10_lba_len(const u8 *cdb, u64 *plba, u32 *plen) { u64 lba = 0; u32 len = 0; VPRINTK("ten-byte command\n"); lba |= ((u64)cdb[2]) << 24; lba |= ((u64)cdb[3]) << 16; lba |= ((u64)cdb[4]) << 8; lba |= ((u64)cdb[5]); len |= ((u32)cdb[7]) << 8; len |= ((u32)cdb[8]); *plba = lba; *plen = len; } /** * scsi_16_lba_len - Get LBA and transfer length * @cdb: SCSI command to translate * * Calculate LBA and transfer length for 16-byte commands. * * RETURNS: * @plba: the LBA * @plen: the transfer length */ static void scsi_16_lba_len(const u8 *cdb, u64 *plba, u32 *plen) { u64 lba = 0; u32 len = 0; VPRINTK("sixteen-byte command\n"); lba |= ((u64)cdb[2]) << 56; lba |= ((u64)cdb[3]) << 48; lba |= ((u64)cdb[4]) << 40; lba |= ((u64)cdb[5]) << 32; lba |= ((u64)cdb[6]) << 24; lba |= ((u64)cdb[7]) << 16; lba |= ((u64)cdb[8]) << 8; lba |= ((u64)cdb[9]); len |= ((u32)cdb[10]) << 24; len |= ((u32)cdb[11]) << 16; len |= ((u32)cdb[12]) << 8; len |= ((u32)cdb[13]); *plba = lba; *plen = len; } /** * ata_scsi_verify_xlat - Translate SCSI VERIFY command into an ATA one * @qc: Storage for translated ATA taskfile * * Converts SCSI VERIFY command to an ATA READ VERIFY command. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Zero on success, non-zero on error. */ static unsigned int ata_scsi_verify_xlat(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; struct ata_taskfile *tf = &qc->tf; struct ata_device *dev = qc->dev; u64 dev_sectors = qc->dev->n_sectors; const u8 *cdb = scmd->cmnd; u64 block; u32 n_block; tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; tf->protocol = ATA_PROT_NODATA; if (cdb[0] == VERIFY) { if (scmd->cmd_len < 10) goto invalid_fld; scsi_10_lba_len(cdb, &block, &n_block); } else if (cdb[0] == VERIFY_16) { if (scmd->cmd_len < 16) goto invalid_fld; scsi_16_lba_len(cdb, &block, &n_block); } else goto invalid_fld; if (!n_block) goto nothing_to_do; if (block >= dev_sectors) goto out_of_range; if ((block + n_block) > dev_sectors) goto out_of_range; if (dev->flags & ATA_DFLAG_LBA) { tf->flags |= ATA_TFLAG_LBA; if (lba_28_ok(block, n_block)) { /* use LBA28 */ tf->command = ATA_CMD_VERIFY; tf->device |= (block >> 24) & 0xf; } else if (lba_48_ok(block, n_block)) { if (!(dev->flags & ATA_DFLAG_LBA48)) goto out_of_range; /* use LBA48 */ tf->flags |= ATA_TFLAG_LBA48; tf->command = ATA_CMD_VERIFY_EXT; tf->hob_nsect = (n_block >> 8) & 0xff; tf->hob_lbah = (block >> 40) & 0xff; tf->hob_lbam = (block >> 32) & 0xff; tf->hob_lbal = (block >> 24) & 0xff; } else /* request too large even for LBA48 */ goto out_of_range; tf->nsect = n_block & 0xff; tf->lbah = (block >> 16) & 0xff; tf->lbam = (block >> 8) & 0xff; tf->lbal = block & 0xff; tf->device |= ATA_LBA; } else { /* CHS */ u32 sect, head, cyl, track; if (!lba_28_ok(block, n_block)) goto out_of_range; /* Convert LBA to CHS */ track = (u32)block / dev->sectors; cyl = track / dev->heads; head = track % dev->heads; sect = (u32)block % dev->sectors + 1; DPRINTK("block %u track %u cyl %u head %u sect %u\n", (u32)block, track, cyl, head, sect); /* Check whether the converted CHS can fit. Cylinder: 0-65535 Head: 0-15 Sector: 1-255*/ if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) goto out_of_range; tf->command = ATA_CMD_VERIFY; tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ tf->lbal = sect; tf->lbam = cyl; tf->lbah = cyl >> 8; tf->device |= head; } return 0; invalid_fld: ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x0); /* "Invalid field in cbd" */ return 1; out_of_range: ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x21, 0x0); /* "Logical Block Address out of range" */ return 1; nothing_to_do: scmd->result = SAM_STAT_GOOD; return 1; } /** * ata_scsi_rw_xlat - Translate SCSI r/w command into an ATA one * @qc: Storage for translated ATA taskfile * * Converts any of six SCSI read/write commands into the * ATA counterpart, including starting sector (LBA), * sector count, and taking into account the device's LBA48 * support. * * Commands %READ_6, %READ_10, %READ_16, %WRITE_6, %WRITE_10, and * %WRITE_16 are currently supported. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Zero on success, non-zero on error. */ static unsigned int ata_scsi_rw_xlat(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; const u8 *cdb = scmd->cmnd; unsigned int tf_flags = 0; u64 block; u32 n_block; int rc; if (cdb[0] == WRITE_10 || cdb[0] == WRITE_6 || cdb[0] == WRITE_16) tf_flags |= ATA_TFLAG_WRITE; /* Calculate the SCSI LBA, transfer length and FUA. */ switch (cdb[0]) { case READ_10: case WRITE_10: if (unlikely(scmd->cmd_len < 10)) goto invalid_fld; scsi_10_lba_len(cdb, &block, &n_block); if (cdb[1] & (1 << 3)) tf_flags |= ATA_TFLAG_FUA; break; case READ_6: case WRITE_6: if (unlikely(scmd->cmd_len < 6)) goto invalid_fld; scsi_6_lba_len(cdb, &block, &n_block); /* for 6-byte r/w commands, transfer length 0 * means 256 blocks of data, not 0 block. */ if (!n_block) n_block = 256; break; case READ_16: case WRITE_16: if (unlikely(scmd->cmd_len < 16)) goto invalid_fld; scsi_16_lba_len(cdb, &block, &n_block); if (cdb[1] & (1 << 3)) tf_flags |= ATA_TFLAG_FUA; break; default: DPRINTK("no-byte command\n"); goto invalid_fld; } /* Check and compose ATA command */ if (!n_block) /* For 10-byte and 16-byte SCSI R/W commands, transfer * length 0 means transfer 0 block of data. * However, for ATA R/W commands, sector count 0 means * 256 or 65536 sectors, not 0 sectors as in SCSI. * * WARNING: one or two older ATA drives treat 0 as 0... */ goto nothing_to_do; qc->flags |= ATA_QCFLAG_IO; qc->nbytes = n_block * scmd->device->sector_size; rc = ata_build_rw_tf(&qc->tf, qc->dev, block, n_block, tf_flags, qc->tag); if (likely(rc == 0)) return 0; if (rc == -ERANGE) goto out_of_range; /* treat all other errors as -EINVAL, fall through */ invalid_fld: ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x0); /* "Invalid field in cbd" */ return 1; out_of_range: ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x21, 0x0); /* "Logical Block Address out of range" */ return 1; nothing_to_do: scmd->result = SAM_STAT_GOOD; return 1; } static void ata_scsi_qc_complete(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scsi_cmnd *cmd = qc->scsicmd; u8 *cdb = cmd->cmnd; int need_sense = (qc->err_mask != 0); /* For ATA pass thru (SAT) commands, generate a sense block if * user mandated it or if there's an error. Note that if we * generate because the user forced us to [CK_COND =1], a check * condition is generated and the ATA register values are returned * whether the command completed successfully or not. If there * was no error, we use the following sense data: * sk = RECOVERED ERROR * asc,ascq = ATA PASS-THROUGH INFORMATION AVAILABLE */ if (((cdb[0] == ATA_16) || (cdb[0] == ATA_12)) && ((cdb[2] & 0x20) || need_sense)) { ata_gen_passthru_sense(qc); } else { if (!need_sense) { cmd->result = SAM_STAT_GOOD; } else { /* TODO: decide which descriptor format to use * for 48b LBA devices and call that here * instead of the fixed desc, which is only * good for smaller LBA (and maybe CHS?) * devices. */ ata_gen_ata_sense(qc); } } if (need_sense && !ap->ops->error_handler) ata_dump_status(ap->print_id, &qc->result_tf); qc->scsidone(cmd); ata_qc_free(qc); } /** * ata_scsi_translate - Translate then issue SCSI command to ATA device * @dev: ATA device to which the command is addressed * @cmd: SCSI command to execute * @xlat_func: Actor which translates @cmd to an ATA taskfile * * Our ->queuecommand() function has decided that the SCSI * command issued can be directly translated into an ATA * command, rather than handled internally. * * This function sets up an ata_queued_cmd structure for the * SCSI command, and sends that ata_queued_cmd to the hardware. * * The xlat_func argument (actor) returns 0 if ready to execute * ATA command, else 1 to finish translation. If 1 is returned * then cmd->result (and possibly cmd->sense_buffer) are assumed * to be set reflecting an error condition or clean (early) * termination. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * 0 on success, SCSI_ML_QUEUE_DEVICE_BUSY if the command * needs to be deferred. */ static int ata_scsi_translate(struct ata_device *dev, struct scsi_cmnd *cmd, ata_xlat_func_t xlat_func) { struct ata_port *ap = dev->link->ap; struct ata_queued_cmd *qc; int rc; VPRINTK("ENTER\n"); qc = ata_scsi_qc_new(dev, cmd); if (!qc) goto err_mem; /* data is present; dma-map it */ if (cmd->sc_data_direction == DMA_FROM_DEVICE || cmd->sc_data_direction == DMA_TO_DEVICE) { if (unlikely(scsi_bufflen(cmd) < 1)) { ata_dev_warn(dev, "WARNING: zero len r/w req\n"); goto err_did; } ata_sg_init(qc, scsi_sglist(cmd), scsi_sg_count(cmd)); qc->dma_dir = cmd->sc_data_direction; } qc->complete_fn = ata_scsi_qc_complete; if (xlat_func(qc)) goto early_finish; if (ap->ops->qc_defer) { if ((rc = ap->ops->qc_defer(qc))) goto defer; } /* select device, send command to hardware */ ata_qc_issue(qc); VPRINTK("EXIT\n"); return 0; early_finish: ata_qc_free(qc); cmd->scsi_done(cmd); DPRINTK("EXIT - early finish (good or error)\n"); return 0; err_did: ata_qc_free(qc); cmd->result = (DID_ERROR << 16); cmd->scsi_done(cmd); err_mem: DPRINTK("EXIT - internal\n"); return 0; defer: ata_qc_free(qc); DPRINTK("EXIT - defer\n"); if (rc == ATA_DEFER_LINK) return SCSI_MLQUEUE_DEVICE_BUSY; else return SCSI_MLQUEUE_HOST_BUSY; } /** * ata_scsi_rbuf_get - Map response buffer. * @cmd: SCSI command containing buffer to be mapped. * @flags: unsigned long variable to store irq enable status * @copy_in: copy in from user buffer * * Prepare buffer for simulated SCSI commands. * * LOCKING: * spin_lock_irqsave(ata_scsi_rbuf_lock) on success * * RETURNS: * Pointer to response buffer. */ static void *ata_scsi_rbuf_get(struct scsi_cmnd *cmd, bool copy_in, unsigned long *flags) { spin_lock_irqsave(&ata_scsi_rbuf_lock, *flags); memset(ata_scsi_rbuf, 0, ATA_SCSI_RBUF_SIZE); if (copy_in) sg_copy_to_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), ata_scsi_rbuf, ATA_SCSI_RBUF_SIZE); return ata_scsi_rbuf; } /** * ata_scsi_rbuf_put - Unmap response buffer. * @cmd: SCSI command containing buffer to be unmapped. * @copy_out: copy out result * @flags: @flags passed to ata_scsi_rbuf_get() * * Returns rbuf buffer. The result is copied to @cmd's buffer if * @copy_back is true. * * LOCKING: * Unlocks ata_scsi_rbuf_lock. */ static inline void ata_scsi_rbuf_put(struct scsi_cmnd *cmd, bool copy_out, unsigned long *flags) { if (copy_out) sg_copy_from_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), ata_scsi_rbuf, ATA_SCSI_RBUF_SIZE); spin_unlock_irqrestore(&ata_scsi_rbuf_lock, *flags); } /** * ata_scsi_rbuf_fill - wrapper for SCSI command simulators * @args: device IDENTIFY data / SCSI command of interest. * @actor: Callback hook for desired SCSI command simulator * * Takes care of the hard work of simulating a SCSI command... * Mapping the response buffer, calling the command's handler, * and handling the handler's return value. This return value * indicates whether the handler wishes the SCSI command to be * completed successfully (0), or not (in which case cmd->result * and sense buffer are assumed to be set). * * LOCKING: * spin_lock_irqsave(host lock) */ static void ata_scsi_rbuf_fill(struct ata_scsi_args *args, unsigned int (*actor)(struct ata_scsi_args *args, u8 *rbuf)) { u8 *rbuf; unsigned int rc; struct scsi_cmnd *cmd = args->cmd; unsigned long flags; rbuf = ata_scsi_rbuf_get(cmd, false, &flags); rc = actor(args, rbuf); ata_scsi_rbuf_put(cmd, rc == 0, &flags); if (rc == 0) cmd->result = SAM_STAT_GOOD; args->done(cmd); } /** * ata_scsiop_inq_std - Simulate INQUIRY command * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Returns standard device identification data associated * with non-VPD INQUIRY command output. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_inq_std(struct ata_scsi_args *args, u8 *rbuf) { const u8 versions[] = { 0x00, 0x60, /* SAM-3 (no version claimed) */ 0x03, 0x20, /* SBC-2 (no version claimed) */ 0x02, 0x60 /* SPC-3 (no version claimed) */ }; const u8 versions_zbc[] = { 0x00, 0xA0, /* SAM-5 (no version claimed) */ 0x04, 0xC0, /* SBC-3 (no version claimed) */ 0x04, 0x60, /* SPC-4 (no version claimed) */ 0x60, 0x20, /* ZBC (no version claimed) */ }; u8 hdr[] = { TYPE_DISK, 0, 0x5, /* claim SPC-3 version compatibility */ 2, 95 - 4 }; VPRINTK("ENTER\n"); /* set scsi removeable (RMB) bit per ata bit */ if (ata_id_removeable(args->id)) hdr[1] |= (1 << 7); if (args->dev->class == ATA_DEV_ZAC) { hdr[0] = TYPE_ZBC; hdr[2] = 0x6; /* ZBC is defined in SPC-4 */ } memcpy(rbuf, hdr, sizeof(hdr)); memcpy(&rbuf[8], "ATA ", 8); ata_id_string(args->id, &rbuf[16], ATA_ID_PROD, 16); /* From SAT, use last 2 words from fw rev unless they are spaces */ ata_id_string(args->id, &rbuf[32], ATA_ID_FW_REV + 2, 4); if (strncmp(&rbuf[32], " ", 4) == 0) ata_id_string(args->id, &rbuf[32], ATA_ID_FW_REV, 4); if (rbuf[32] == 0 || rbuf[32] == ' ') memcpy(&rbuf[32], "n/a ", 4); if (args->dev->class == ATA_DEV_ZAC) memcpy(rbuf + 58, versions_zbc, sizeof(versions_zbc)); else memcpy(rbuf + 58, versions, sizeof(versions)); return 0; } /** * ata_scsiop_inq_00 - Simulate INQUIRY VPD page 0, list of pages * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Returns list of inquiry VPD pages available. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_inq_00(struct ata_scsi_args *args, u8 *rbuf) { const u8 pages[] = { 0x00, /* page 0x00, this page */ 0x80, /* page 0x80, unit serial no page */ 0x83, /* page 0x83, device ident page */ 0x89, /* page 0x89, ata info page */ 0xb0, /* page 0xb0, block limits page */ 0xb1, /* page 0xb1, block device characteristics page */ 0xb2, /* page 0xb2, thin provisioning page */ }; rbuf[3] = sizeof(pages); /* number of supported VPD pages */ memcpy(rbuf + 4, pages, sizeof(pages)); return 0; } /** * ata_scsiop_inq_80 - Simulate INQUIRY VPD page 80, device serial number * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Returns ATA device serial number. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_inq_80(struct ata_scsi_args *args, u8 *rbuf) { const u8 hdr[] = { 0, 0x80, /* this page code */ 0, ATA_ID_SERNO_LEN, /* page len */ }; memcpy(rbuf, hdr, sizeof(hdr)); ata_id_string(args->id, (unsigned char *) &rbuf[4], ATA_ID_SERNO, ATA_ID_SERNO_LEN); return 0; } /** * ata_scsiop_inq_83 - Simulate INQUIRY VPD page 83, device identity * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Yields two logical unit device identification designators: * - vendor specific ASCII containing the ATA serial number * - SAT defined "t10 vendor id based" containing ASCII vendor * name ("ATA "), model and serial numbers. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_inq_83(struct ata_scsi_args *args, u8 *rbuf) { const int sat_model_serial_desc_len = 68; int num; rbuf[1] = 0x83; /* this page code */ num = 4; /* piv=0, assoc=lu, code_set=ACSII, designator=vendor */ rbuf[num + 0] = 2; rbuf[num + 3] = ATA_ID_SERNO_LEN; num += 4; ata_id_string(args->id, (unsigned char *) rbuf + num, ATA_ID_SERNO, ATA_ID_SERNO_LEN); num += ATA_ID_SERNO_LEN; /* SAT defined lu model and serial numbers descriptor */ /* piv=0, assoc=lu, code_set=ACSII, designator=t10 vendor id */ rbuf[num + 0] = 2; rbuf[num + 1] = 1; rbuf[num + 3] = sat_model_serial_desc_len; num += 4; memcpy(rbuf + num, "ATA ", 8); num += 8; ata_id_string(args->id, (unsigned char *) rbuf + num, ATA_ID_PROD, ATA_ID_PROD_LEN); num += ATA_ID_PROD_LEN; ata_id_string(args->id, (unsigned char *) rbuf + num, ATA_ID_SERNO, ATA_ID_SERNO_LEN); num += ATA_ID_SERNO_LEN; if (ata_id_has_wwn(args->id)) { /* SAT defined lu world wide name */ /* piv=0, assoc=lu, code_set=binary, designator=NAA */ rbuf[num + 0] = 1; rbuf[num + 1] = 3; rbuf[num + 3] = ATA_ID_WWN_LEN; num += 4; ata_id_string(args->id, (unsigned char *) rbuf + num, ATA_ID_WWN, ATA_ID_WWN_LEN); num += ATA_ID_WWN_LEN; } rbuf[3] = num - 4; /* page len (assume less than 256 bytes) */ return 0; } /** * ata_scsiop_inq_89 - Simulate INQUIRY VPD page 89, ATA info * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Yields SAT-specified ATA VPD page. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_inq_89(struct ata_scsi_args *args, u8 *rbuf) { struct ata_taskfile tf; memset(&tf, 0, sizeof(tf)); rbuf[1] = 0x89; /* our page code */ rbuf[2] = (0x238 >> 8); /* page size fixed at 238h */ rbuf[3] = (0x238 & 0xff); memcpy(&rbuf[8], "linux ", 8); memcpy(&rbuf[16], "libata ", 16); memcpy(&rbuf[32], DRV_VERSION, 4); /* we don't store the ATA device signature, so we fake it */ tf.command = ATA_DRDY; /* really, this is Status reg */ tf.lbal = 0x1; tf.nsect = 0x1; ata_tf_to_fis(&tf, 0, 1, &rbuf[36]); /* TODO: PMP? */ rbuf[36] = 0x34; /* force D2H Reg FIS (34h) */ rbuf[56] = ATA_CMD_ID_ATA; memcpy(&rbuf[60], &args->id[0], 512); return 0; } static unsigned int ata_scsiop_inq_b0(struct ata_scsi_args *args, u8 *rbuf) { u16 min_io_sectors; rbuf[1] = 0xb0; rbuf[3] = 0x3c; /* required VPD size with unmap support */ /* * Optimal transfer length granularity. * * This is always one physical block, but for disks with a smaller * logical than physical sector size we need to figure out what the * latter is. */ min_io_sectors = 1 << ata_id_log2_per_physical_sector(args->id); put_unaligned_be16(min_io_sectors, &rbuf[6]); /* * Optimal unmap granularity. * * The ATA spec doesn't even know about a granularity or alignment * for the TRIM command. We can leave away most of the unmap related * VPD page entries, but we have specifify a granularity to signal * that we support some form of unmap - in thise case via WRITE SAME * with the unmap bit set. */ if (ata_id_has_trim(args->id)) { put_unaligned_be64(65535 * 512 / 8, &rbuf[36]); put_unaligned_be32(1, &rbuf[28]); } return 0; } static unsigned int ata_scsiop_inq_b1(struct ata_scsi_args *args, u8 *rbuf) { int form_factor = ata_id_form_factor(args->id); int media_rotation_rate = ata_id_rotation_rate(args->id); rbuf[1] = 0xb1; rbuf[3] = 0x3c; rbuf[4] = media_rotation_rate >> 8; rbuf[5] = media_rotation_rate; rbuf[7] = form_factor; return 0; } static unsigned int ata_scsiop_inq_b2(struct ata_scsi_args *args, u8 *rbuf) { /* SCSI Thin Provisioning VPD page: SBC-3 rev 22 or later */ rbuf[1] = 0xb2; rbuf[3] = 0x4; rbuf[5] = 1 << 6; /* TPWS */ return 0; } /** * ata_scsiop_noop - Command handler that simply returns success. * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * No operation. Simply returns success to caller, to indicate * that the caller should successfully complete this SCSI command. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_noop(struct ata_scsi_args *args, u8 *rbuf) { VPRINTK("ENTER\n"); return 0; } /** * modecpy - Prepare response for MODE SENSE * @dest: output buffer * @src: data being copied * @n: length of mode page * @changeable: whether changeable parameters are requested * * Generate a generic MODE SENSE page for either current or changeable * parameters. * * LOCKING: * None. */ static void modecpy(u8 *dest, const u8 *src, int n, bool changeable) { if (changeable) { memcpy(dest, src, 2); memset(dest + 2, 0, n - 2); } else { memcpy(dest, src, n); } } /** * ata_msense_caching - Simulate MODE SENSE caching info page * @id: device IDENTIFY data * @buf: output buffer * @changeable: whether changeable parameters are requested * * Generate a caching info page, which conditionally indicates * write caching to the SCSI layer, depending on device * capabilities. * * LOCKING: * None. */ static unsigned int ata_msense_caching(u16 *id, u8 *buf, bool changeable) { modecpy(buf, def_cache_mpage, sizeof(def_cache_mpage), changeable); if (changeable || ata_id_wcache_enabled(id)) buf[2] |= (1 << 2); /* write cache enable */ if (!changeable && !ata_id_rahead_enabled(id)) buf[12] |= (1 << 5); /* disable read ahead */ return sizeof(def_cache_mpage); } /** * ata_msense_ctl_mode - Simulate MODE SENSE control mode page * @buf: output buffer * @changeable: whether changeable parameters are requested * * Generate a generic MODE SENSE control mode page. * * LOCKING: * None. */ static unsigned int ata_msense_ctl_mode(u8 *buf, bool changeable) { modecpy(buf, def_control_mpage, sizeof(def_control_mpage), changeable); return sizeof(def_control_mpage); } /** * ata_msense_rw_recovery - Simulate MODE SENSE r/w error recovery page * @buf: output buffer * @changeable: whether changeable parameters are requested * * Generate a generic MODE SENSE r/w error recovery page. * * LOCKING: * None. */ static unsigned int ata_msense_rw_recovery(u8 *buf, bool changeable) { modecpy(buf, def_rw_recovery_mpage, sizeof(def_rw_recovery_mpage), changeable); return sizeof(def_rw_recovery_mpage); } /* * We can turn this into a real blacklist if it's needed, for now just * blacklist any Maxtor BANC1G10 revision firmware */ static int ata_dev_supports_fua(u16 *id) { unsigned char model[ATA_ID_PROD_LEN + 1], fw[ATA_ID_FW_REV_LEN + 1]; if (!libata_fua) return 0; if (!ata_id_has_fua(id)) return 0; ata_id_c_string(id, model, ATA_ID_PROD, sizeof(model)); ata_id_c_string(id, fw, ATA_ID_FW_REV, sizeof(fw)); if (strcmp(model, "Maxtor")) return 1; if (strcmp(fw, "BANC1G10")) return 1; return 0; /* blacklisted */ } /** * ata_scsiop_mode_sense - Simulate MODE SENSE 6, 10 commands * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Simulate MODE SENSE commands. Assume this is invoked for direct * access devices (e.g. disks) only. There should be no block * descriptor for other device types. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_mode_sense(struct ata_scsi_args *args, u8 *rbuf) { struct ata_device *dev = args->dev; u8 *scsicmd = args->cmd->cmnd, *p = rbuf; const u8 sat_blk_desc[] = { 0, 0, 0, 0, /* number of blocks: sat unspecified */ 0, 0, 0x2, 0x0 /* block length: 512 bytes */ }; u8 pg, spg; unsigned int ebd, page_control, six_byte; u8 dpofua; VPRINTK("ENTER\n"); six_byte = (scsicmd[0] == MODE_SENSE); ebd = !(scsicmd[1] & 0x8); /* dbd bit inverted == edb */ /* * LLBA bit in msense(10) ignored (compliant) */ page_control = scsicmd[2] >> 6; switch (page_control) { case 0: /* current */ case 1: /* changeable */ case 2: /* defaults */ break; /* supported */ case 3: /* saved */ goto saving_not_supp; default: goto invalid_fld; } if (six_byte) p += 4 + (ebd ? 8 : 0); else p += 8 + (ebd ? 8 : 0); pg = scsicmd[2] & 0x3f; spg = scsicmd[3]; /* * No mode subpages supported (yet) but asking for _all_ * subpages may be valid */ if (spg && (spg != ALL_SUB_MPAGES)) goto invalid_fld; switch(pg) { case RW_RECOVERY_MPAGE: p += ata_msense_rw_recovery(p, page_control == 1); break; case CACHE_MPAGE: p += ata_msense_caching(args->id, p, page_control == 1); break; case CONTROL_MPAGE: p += ata_msense_ctl_mode(p, page_control == 1); break; case ALL_MPAGES: p += ata_msense_rw_recovery(p, page_control == 1); p += ata_msense_caching(args->id, p, page_control == 1); p += ata_msense_ctl_mode(p, page_control == 1); break; default: /* invalid page code */ goto invalid_fld; } dpofua = 0; if (ata_dev_supports_fua(args->id) && (dev->flags & ATA_DFLAG_LBA48) && (!(dev->flags & ATA_DFLAG_PIO) || dev->multi_count)) dpofua = 1 << 4; if (six_byte) { rbuf[0] = p - rbuf - 1; rbuf[2] |= dpofua; if (ebd) { rbuf[3] = sizeof(sat_blk_desc); memcpy(rbuf + 4, sat_blk_desc, sizeof(sat_blk_desc)); } } else { unsigned int output_len = p - rbuf - 2; rbuf[0] = output_len >> 8; rbuf[1] = output_len; rbuf[3] |= dpofua; if (ebd) { rbuf[7] = sizeof(sat_blk_desc); memcpy(rbuf + 8, sat_blk_desc, sizeof(sat_blk_desc)); } } return 0; invalid_fld: ata_scsi_set_sense(args->cmd, ILLEGAL_REQUEST, 0x24, 0x0); /* "Invalid field in cbd" */ return 1; saving_not_supp: ata_scsi_set_sense(args->cmd, ILLEGAL_REQUEST, 0x39, 0x0); /* "Saving parameters not supported" */ return 1; } /** * ata_scsiop_read_cap - Simulate READ CAPACITY[ 16] commands * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Simulate READ CAPACITY commands. * * LOCKING: * None. */ static unsigned int ata_scsiop_read_cap(struct ata_scsi_args *args, u8 *rbuf) { struct ata_device *dev = args->dev; u64 last_lba = dev->n_sectors - 1; /* LBA of the last block */ u32 sector_size; /* physical sector size in bytes */ u8 log2_per_phys; u16 lowest_aligned; sector_size = ata_id_logical_sector_size(dev->id); log2_per_phys = ata_id_log2_per_physical_sector(dev->id); lowest_aligned = ata_id_logical_sector_offset(dev->id, log2_per_phys); VPRINTK("ENTER\n"); if (args->cmd->cmnd[0] == READ_CAPACITY) { if (last_lba >= 0xffffffffULL) last_lba = 0xffffffff; /* sector count, 32-bit */ rbuf[0] = last_lba >> (8 * 3); rbuf[1] = last_lba >> (8 * 2); rbuf[2] = last_lba >> (8 * 1); rbuf[3] = last_lba; /* sector size */ rbuf[4] = sector_size >> (8 * 3); rbuf[5] = sector_size >> (8 * 2); rbuf[6] = sector_size >> (8 * 1); rbuf[7] = sector_size; } else { /* sector count, 64-bit */ rbuf[0] = last_lba >> (8 * 7); rbuf[1] = last_lba >> (8 * 6); rbuf[2] = last_lba >> (8 * 5); rbuf[3] = last_lba >> (8 * 4); rbuf[4] = last_lba >> (8 * 3); rbuf[5] = last_lba >> (8 * 2); rbuf[6] = last_lba >> (8 * 1); rbuf[7] = last_lba; /* sector size */ rbuf[ 8] = sector_size >> (8 * 3); rbuf[ 9] = sector_size >> (8 * 2); rbuf[10] = sector_size >> (8 * 1); rbuf[11] = sector_size; rbuf[12] = 0; rbuf[13] = log2_per_phys; rbuf[14] = (lowest_aligned >> 8) & 0x3f; rbuf[15] = lowest_aligned; if (ata_id_has_trim(args->id)) { rbuf[14] |= 0x80; /* TPE */ if (ata_id_has_zero_after_trim(args->id)) rbuf[14] |= 0x40; /* TPRZ */ } } return 0; } /** * ata_scsiop_report_luns - Simulate REPORT LUNS command * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Simulate REPORT LUNS command. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_report_luns(struct ata_scsi_args *args, u8 *rbuf) { VPRINTK("ENTER\n"); rbuf[3] = 8; /* just one lun, LUN 0, size 8 bytes */ return 0; } static void atapi_sense_complete(struct ata_queued_cmd *qc) { if (qc->err_mask && ((qc->err_mask & AC_ERR_DEV) == 0)) { /* FIXME: not quite right; we don't want the * translation of taskfile registers into * a sense descriptors, since that's only * correct for ATA, not ATAPI */ ata_gen_passthru_sense(qc); } qc->scsidone(qc->scsicmd); ata_qc_free(qc); } /* is it pointless to prefer PIO for "safety reasons"? */ static inline int ata_pio_use_silly(struct ata_port *ap) { return (ap->flags & ATA_FLAG_PIO_DMA); } static void atapi_request_sense(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scsi_cmnd *cmd = qc->scsicmd; DPRINTK("ATAPI request sense\n"); memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); #ifdef CONFIG_ATA_SFF if (ap->ops->sff_tf_read) ap->ops->sff_tf_read(ap, &qc->tf); #endif /* fill these in, for the case where they are -not- overwritten */ cmd->sense_buffer[0] = 0x70; cmd->sense_buffer[2] = qc->tf.feature >> 4; ata_qc_reinit(qc); /* setup sg table and init transfer direction */ sg_init_one(&qc->sgent, cmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); ata_sg_init(qc, &qc->sgent, 1); qc->dma_dir = DMA_FROM_DEVICE; memset(&qc->cdb, 0, qc->dev->cdb_len); qc->cdb[0] = REQUEST_SENSE; qc->cdb[4] = SCSI_SENSE_BUFFERSIZE; qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; qc->tf.command = ATA_CMD_PACKET; if (ata_pio_use_silly(ap)) { qc->tf.protocol = ATAPI_PROT_DMA; qc->tf.feature |= ATAPI_PKT_DMA; } else { qc->tf.protocol = ATAPI_PROT_PIO; qc->tf.lbam = SCSI_SENSE_BUFFERSIZE; qc->tf.lbah = 0; } qc->nbytes = SCSI_SENSE_BUFFERSIZE; qc->complete_fn = atapi_sense_complete; ata_qc_issue(qc); DPRINTK("EXIT\n"); } static void atapi_qc_complete(struct ata_queued_cmd *qc) { struct scsi_cmnd *cmd = qc->scsicmd; unsigned int err_mask = qc->err_mask; VPRINTK("ENTER, err_mask 0x%X\n", err_mask); /* handle completion from new EH */ if (unlikely(qc->ap->ops->error_handler && (err_mask || qc->flags & ATA_QCFLAG_SENSE_VALID))) { if (!(qc->flags & ATA_QCFLAG_SENSE_VALID)) { /* FIXME: not quite right; we don't want the * translation of taskfile registers into a * sense descriptors, since that's only * correct for ATA, not ATAPI */ ata_gen_passthru_sense(qc); } /* SCSI EH automatically locks door if sdev->locked is * set. Sometimes door lock request continues to * fail, for example, when no media is present. This * creates a loop - SCSI EH issues door lock which * fails and gets invoked again to acquire sense data * for the failed command. * * If door lock fails, always clear sdev->locked to * avoid this infinite loop. * * This may happen before SCSI scan is complete. Make * sure qc->dev->sdev isn't NULL before dereferencing. */ if (qc->cdb[0] == ALLOW_MEDIUM_REMOVAL && qc->dev->sdev) qc->dev->sdev->locked = 0; qc->scsicmd->result = SAM_STAT_CHECK_CONDITION; qc->scsidone(cmd); ata_qc_free(qc); return; } /* successful completion or old EH failure path */ if (unlikely(err_mask & AC_ERR_DEV)) { cmd->result = SAM_STAT_CHECK_CONDITION; atapi_request_sense(qc); return; } else if (unlikely(err_mask)) { /* FIXME: not quite right; we don't want the * translation of taskfile registers into * a sense descriptors, since that's only * correct for ATA, not ATAPI */ ata_gen_passthru_sense(qc); } else { u8 *scsicmd = cmd->cmnd; if ((scsicmd[0] == INQUIRY) && ((scsicmd[1] & 0x03) == 0)) { unsigned long flags; u8 *buf; buf = ata_scsi_rbuf_get(cmd, true, &flags); /* ATAPI devices typically report zero for their SCSI version, * and sometimes deviate from the spec WRT response data * format. If SCSI version is reported as zero like normal, * then we make the following fixups: 1) Fake MMC-5 version, * to indicate to the Linux scsi midlayer this is a modern * device. 2) Ensure response data format / ATAPI information * are always correct. */ if (buf[2] == 0) { buf[2] = 0x5; buf[3] = 0x32; } ata_scsi_rbuf_put(cmd, true, &flags); } cmd->result = SAM_STAT_GOOD; } qc->scsidone(cmd); ata_qc_free(qc); } /** * atapi_xlat - Initialize PACKET taskfile * @qc: command structure to be initialized * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Zero on success, non-zero on failure. */ static unsigned int atapi_xlat(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; struct ata_device *dev = qc->dev; int nodata = (scmd->sc_data_direction == DMA_NONE); int using_pio = !nodata && (dev->flags & ATA_DFLAG_PIO); unsigned int nbytes; memset(qc->cdb, 0, dev->cdb_len); memcpy(qc->cdb, scmd->cmnd, scmd->cmd_len); qc->complete_fn = atapi_qc_complete; qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; if (scmd->sc_data_direction == DMA_TO_DEVICE) { qc->tf.flags |= ATA_TFLAG_WRITE; DPRINTK("direction: write\n"); } qc->tf.command = ATA_CMD_PACKET; ata_qc_set_pc_nbytes(qc); /* check whether ATAPI DMA is safe */ if (!nodata && !using_pio && atapi_check_dma(qc)) using_pio = 1; /* Some controller variants snoop this value for Packet * transfers to do state machine and FIFO management. Thus we * want to set it properly, and for DMA where it is * effectively meaningless. */ nbytes = min(ata_qc_raw_nbytes(qc), (unsigned int)63 * 1024); /* Most ATAPI devices which honor transfer chunk size don't * behave according to the spec when odd chunk size which * matches the transfer length is specified. If the number of * bytes to transfer is 2n+1. According to the spec, what * should happen is to indicate that 2n+1 is going to be * transferred and transfer 2n+2 bytes where the last byte is * padding. * * In practice, this doesn't happen. ATAPI devices first * indicate and transfer 2n bytes and then indicate and * transfer 2 bytes where the last byte is padding. * * This inconsistency confuses several controllers which * perform PIO using DMA such as Intel AHCIs and sil3124/32. * These controllers use actual number of transferred bytes to * update DMA poitner and transfer of 4n+2 bytes make those * controller push DMA pointer by 4n+4 bytes because SATA data * FISes are aligned to 4 bytes. This causes data corruption * and buffer overrun. * * Always setting nbytes to even number solves this problem * because then ATAPI devices don't have to split data at 2n * boundaries. */ if (nbytes & 0x1) nbytes++; qc->tf.lbam = (nbytes & 0xFF); qc->tf.lbah = (nbytes >> 8); if (nodata) qc->tf.protocol = ATAPI_PROT_NODATA; else if (using_pio) qc->tf.protocol = ATAPI_PROT_PIO; else { /* DMA data xfer */ qc->tf.protocol = ATAPI_PROT_DMA; qc->tf.feature |= ATAPI_PKT_DMA; if ((dev->flags & ATA_DFLAG_DMADIR) && (scmd->sc_data_direction != DMA_TO_DEVICE)) /* some SATA bridges need us to indicate data xfer direction */ qc->tf.feature |= ATAPI_DMADIR; } /* FIXME: We need to translate 0x05 READ_BLOCK_LIMITS to a MODE_SENSE as ATAPI tape drives don't get this right otherwise */ return 0; } static struct ata_device *ata_find_dev(struct ata_port *ap, int devno) { if (!sata_pmp_attached(ap)) { if (likely(devno < ata_link_max_devices(&ap->link))) return &ap->link.device[devno]; } else { if (likely(devno < ap->nr_pmp_links)) return &ap->pmp_link[devno].device[0]; } return NULL; } static struct ata_device *__ata_scsi_find_dev(struct ata_port *ap, const struct scsi_device *scsidev) { int devno; /* skip commands not addressed to targets we simulate */ if (!sata_pmp_attached(ap)) { if (unlikely(scsidev->channel || scsidev->lun)) return NULL; devno = scsidev->id; } else { if (unlikely(scsidev->id || scsidev->lun)) return NULL; devno = scsidev->channel; } return ata_find_dev(ap, devno); } /** * ata_scsi_find_dev - lookup ata_device from scsi_cmnd * @ap: ATA port to which the device is attached * @scsidev: SCSI device from which we derive the ATA device * * Given various information provided in struct scsi_cmnd, * map that onto an ATA bus, and using that mapping * determine which ata_device is associated with the * SCSI command to be sent. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Associated ATA device, or %NULL if not found. */ static struct ata_device * ata_scsi_find_dev(struct ata_port *ap, const struct scsi_device *scsidev) { struct ata_device *dev = __ata_scsi_find_dev(ap, scsidev); if (unlikely(!dev || !ata_dev_enabled(dev))) return NULL; return dev; } /* * ata_scsi_map_proto - Map pass-thru protocol value to taskfile value. * @byte1: Byte 1 from pass-thru CDB. * * RETURNS: * ATA_PROT_UNKNOWN if mapping failed/unimplemented, protocol otherwise. */ static u8 ata_scsi_map_proto(u8 byte1) { switch((byte1 & 0x1e) >> 1) { case 3: /* Non-data */ return ATA_PROT_NODATA; case 6: /* DMA */ case 10: /* UDMA Data-in */ case 11: /* UDMA Data-Out */ return ATA_PROT_DMA; case 4: /* PIO Data-in */ case 5: /* PIO Data-out */ return ATA_PROT_PIO; case 0: /* Hard Reset */ case 1: /* SRST */ case 8: /* Device Diagnostic */ case 9: /* Device Reset */ case 7: /* DMA Queued */ case 12: /* FPDMA */ case 15: /* Return Response Info */ default: /* Reserved */ break; } return ATA_PROT_UNKNOWN; } /** * ata_scsi_pass_thru - convert ATA pass-thru CDB to taskfile * @qc: command structure to be initialized * * Handles either 12 or 16-byte versions of the CDB. * * RETURNS: * Zero on success, non-zero on failure. */ static unsigned int ata_scsi_pass_thru(struct ata_queued_cmd *qc) { struct ata_taskfile *tf = &(qc->tf); struct scsi_cmnd *scmd = qc->scsicmd; struct ata_device *dev = qc->dev; const u8 *cdb = scmd->cmnd; if ((tf->protocol = ata_scsi_map_proto(cdb[1])) == ATA_PROT_UNKNOWN) goto invalid_fld; /* * 12 and 16 byte CDBs use different offsets to * provide the various register values. */ if (cdb[0] == ATA_16) { /* * 16-byte CDB - may contain extended commands. * * If that is the case, copy the upper byte register values. */ if (cdb[1] & 0x01) { tf->hob_feature = cdb[3]; tf->hob_nsect = cdb[5]; tf->hob_lbal = cdb[7]; tf->hob_lbam = cdb[9]; tf->hob_lbah = cdb[11]; tf->flags |= ATA_TFLAG_LBA48; } else tf->flags &= ~ATA_TFLAG_LBA48; /* * Always copy low byte, device and command registers. */ tf->feature = cdb[4]; tf->nsect = cdb[6]; tf->lbal = cdb[8]; tf->lbam = cdb[10]; tf->lbah = cdb[12]; tf->device = cdb[13]; tf->command = cdb[14]; } else { /* * 12-byte CDB - incapable of extended commands. */ tf->flags &= ~ATA_TFLAG_LBA48; tf->feature = cdb[3]; tf->nsect = cdb[4]; tf->lbal = cdb[5]; tf->lbam = cdb[6]; tf->lbah = cdb[7]; tf->device = cdb[8]; tf->command = cdb[9]; } /* enforce correct master/slave bit */ tf->device = dev->devno ? tf->device | ATA_DEV1 : tf->device & ~ATA_DEV1; switch (tf->command) { /* READ/WRITE LONG use a non-standard sect_size */ case ATA_CMD_READ_LONG: case ATA_CMD_READ_LONG_ONCE: case ATA_CMD_WRITE_LONG: case ATA_CMD_WRITE_LONG_ONCE: if (tf->protocol != ATA_PROT_PIO || tf->nsect != 1) goto invalid_fld; qc->sect_size = scsi_bufflen(scmd); break; /* commands using reported Logical Block size (e.g. 512 or 4K) */ case ATA_CMD_CFA_WRITE_NE: case ATA_CMD_CFA_TRANS_SECT: case ATA_CMD_CFA_WRITE_MULT_NE: /* XXX: case ATA_CMD_CFA_WRITE_SECTORS_WITHOUT_ERASE: */ case ATA_CMD_READ: case ATA_CMD_READ_EXT: case ATA_CMD_READ_QUEUED: /* XXX: case ATA_CMD_READ_QUEUED_EXT: */ case ATA_CMD_FPDMA_READ: case ATA_CMD_READ_MULTI: case ATA_CMD_READ_MULTI_EXT: case ATA_CMD_PIO_READ: case ATA_CMD_PIO_READ_EXT: case ATA_CMD_READ_STREAM_DMA_EXT: case ATA_CMD_READ_STREAM_EXT: case ATA_CMD_VERIFY: case ATA_CMD_VERIFY_EXT: case ATA_CMD_WRITE: case ATA_CMD_WRITE_EXT: case ATA_CMD_WRITE_FUA_EXT: case ATA_CMD_WRITE_QUEUED: case ATA_CMD_WRITE_QUEUED_FUA_EXT: case ATA_CMD_FPDMA_WRITE: case ATA_CMD_WRITE_MULTI: case ATA_CMD_WRITE_MULTI_EXT: case ATA_CMD_WRITE_MULTI_FUA_EXT: case ATA_CMD_PIO_WRITE: case ATA_CMD_PIO_WRITE_EXT: case ATA_CMD_WRITE_STREAM_DMA_EXT: case ATA_CMD_WRITE_STREAM_EXT: qc->sect_size = scmd->device->sector_size; break; /* Everything else uses 512 byte "sectors" */ default: qc->sect_size = ATA_SECT_SIZE; } /* * Set flags so that all registers will be written, pass on * write indication (used for PIO/DMA setup), result TF is * copied back and we don't whine too much about its failure. */ tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; if (scmd->sc_data_direction == DMA_TO_DEVICE) tf->flags |= ATA_TFLAG_WRITE; qc->flags |= ATA_QCFLAG_RESULT_TF | ATA_QCFLAG_QUIET; /* * Set transfer length. * * TODO: find out if we need to do more here to * cover scatter/gather case. */ ata_qc_set_pc_nbytes(qc); /* We may not issue DMA commands if no DMA mode is set */ if (tf->protocol == ATA_PROT_DMA && dev->dma_mode == 0) goto invalid_fld; /* sanity check for pio multi commands */ if ((cdb[1] & 0xe0) && !is_multi_taskfile(tf)) goto invalid_fld; if (is_multi_taskfile(tf)) { unsigned int multi_count = 1 << (cdb[1] >> 5); /* compare the passed through multi_count * with the cached multi_count of libata */ if (multi_count != dev->multi_count) ata_dev_warn(dev, "invalid multi_count %u ignored\n", multi_count); } /* * Filter SET_FEATURES - XFER MODE command -- otherwise, * SET_FEATURES - XFER MODE must be preceded/succeeded * by an update to hardware-specific registers for each * controller (i.e. the reason for ->set_piomode(), * ->set_dmamode(), and ->post_set_mode() hooks). */ if (tf->command == ATA_CMD_SET_FEATURES && tf->feature == SETFEATURES_XFER) goto invalid_fld; /* * Filter TPM commands by default. These provide an * essentially uncontrolled encrypted "back door" between * applications and the disk. Set libata.allow_tpm=1 if you * have a real reason for wanting to use them. This ensures * that installed software cannot easily mess stuff up without * user intent. DVR type users will probably ship with this enabled * for movie content management. * * Note that for ATA8 we can issue a DCS change and DCS freeze lock * for this and should do in future but that it is not sufficient as * DCS is an optional feature set. Thus we also do the software filter * so that we comply with the TC consortium stated goal that the user * can turn off TC features of their system. */ if (tf->command >= 0x5C && tf->command <= 0x5F && !libata_allow_tpm) goto invalid_fld; return 0; invalid_fld: ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x00); /* "Invalid field in cdb" */ return 1; } static unsigned int ata_scsi_write_same_xlat(struct ata_queued_cmd *qc) { struct ata_taskfile *tf = &qc->tf; struct scsi_cmnd *scmd = qc->scsicmd; struct ata_device *dev = qc->dev; const u8 *cdb = scmd->cmnd; u64 block; u32 n_block; u32 size; void *buf; /* we may not issue DMA commands if no DMA mode is set */ if (unlikely(!dev->dma_mode)) goto invalid_fld; if (unlikely(scmd->cmd_len < 16)) goto invalid_fld; scsi_16_lba_len(cdb, &block, &n_block); /* for now we only support WRITE SAME with the unmap bit set */ if (unlikely(!(cdb[1] & 0x8))) goto invalid_fld; /* * WRITE SAME always has a sector sized buffer as payload, this * should never be a multiple entry S/G list. */ if (!scsi_sg_count(scmd)) goto invalid_fld; buf = page_address(sg_page(scsi_sglist(scmd))); size = ata_set_lba_range_entries(buf, 512, block, n_block); if (ata_ncq_enabled(dev) && ata_fpdma_dsm_supported(dev)) { /* Newer devices support queued TRIM commands */ tf->protocol = ATA_PROT_NCQ; tf->command = ATA_CMD_FPDMA_SEND; tf->hob_nsect = ATA_SUBCMD_FPDMA_SEND_DSM & 0x1f; tf->nsect = qc->tag << 3; tf->hob_feature = (size / 512) >> 8; tf->feature = size / 512; tf->auxiliary = 1; } else { tf->protocol = ATA_PROT_DMA; tf->hob_feature = 0; tf->feature = ATA_DSM_TRIM; tf->hob_nsect = (size / 512) >> 8; tf->nsect = size / 512; tf->command = ATA_CMD_DSM; } tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_WRITE; ata_qc_set_pc_nbytes(qc); return 0; invalid_fld: ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x00); /* "Invalid field in cdb" */ return 1; } /** * ata_mselect_caching - Simulate MODE SELECT for caching info page * @qc: Storage for translated ATA taskfile * @buf: input buffer * @len: number of valid bytes in the input buffer * * Prepare a taskfile to modify caching information for the device. * * LOCKING: * None. */ static int ata_mselect_caching(struct ata_queued_cmd *qc, const u8 *buf, int len) { struct ata_taskfile *tf = &qc->tf; struct ata_device *dev = qc->dev; char mpage[CACHE_MPAGE_LEN]; u8 wce; /* * The first two bytes of def_cache_mpage are a header, so offsets * in mpage are off by 2 compared to buf. Same for len. */ if (len != CACHE_MPAGE_LEN - 2) return -EINVAL; wce = buf[0] & (1 << 2); /* * Check that read-only bits are not modified. */ ata_msense_caching(dev->id, mpage, false); mpage[2] &= ~(1 << 2); mpage[2] |= wce; if (memcmp(mpage + 2, buf, CACHE_MPAGE_LEN - 2) != 0) return -EINVAL; tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; tf->protocol = ATA_PROT_NODATA; tf->nsect = 0; tf->command = ATA_CMD_SET_FEATURES; tf->feature = wce ? SETFEATURES_WC_ON : SETFEATURES_WC_OFF; return 0; } /** * ata_scsiop_mode_select - Simulate MODE SELECT 6, 10 commands * @qc: Storage for translated ATA taskfile * * Converts a MODE SELECT command to an ATA SET FEATURES taskfile. * Assume this is invoked for direct access devices (e.g. disks) only. * There should be no block descriptor for other device types. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsi_mode_select_xlat(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; const u8 *cdb = scmd->cmnd; const u8 *p; u8 pg, spg; unsigned six_byte, pg_len, hdr_len, bd_len; int len; VPRINTK("ENTER\n"); six_byte = (cdb[0] == MODE_SELECT); if (six_byte) { if (scmd->cmd_len < 5) goto invalid_fld; len = cdb[4]; hdr_len = 4; } else { if (scmd->cmd_len < 9) goto invalid_fld; len = (cdb[7] << 8) + cdb[8]; hdr_len = 8; } /* We only support PF=1, SP=0. */ if ((cdb[1] & 0x11) != 0x10) goto invalid_fld; /* Test early for possible overrun. */ if (!scsi_sg_count(scmd) || scsi_sglist(scmd)->length < len) goto invalid_param_len; p = page_address(sg_page(scsi_sglist(scmd))); /* Move past header and block descriptors. */ if (len < hdr_len) goto invalid_param_len; if (six_byte) bd_len = p[3]; else bd_len = (p[6] << 8) + p[7]; len -= hdr_len; p += hdr_len; if (len < bd_len) goto invalid_param_len; if (bd_len != 0 && bd_len != 8) goto invalid_param; len -= bd_len; p += bd_len; if (len == 0) goto skip; /* Parse both possible formats for the mode page headers. */ pg = p[0] & 0x3f; if (p[0] & 0x40) { if (len < 4) goto invalid_param_len; spg = p[1]; pg_len = (p[2] << 8) | p[3]; p += 4; len -= 4; } else { if (len < 2) goto invalid_param_len; spg = 0; pg_len = p[1]; p += 2; len -= 2; } /* * No mode subpages supported (yet) but asking for _all_ * subpages may be valid */ if (spg && (spg != ALL_SUB_MPAGES)) goto invalid_param; if (pg_len > len) goto invalid_param_len; switch (pg) { case CACHE_MPAGE: if (ata_mselect_caching(qc, p, pg_len) < 0) goto invalid_param; break; default: /* invalid page code */ goto invalid_param; } /* * Only one page has changeable data, so we only support setting one * page at a time. */ if (len > pg_len) goto invalid_param; return 0; invalid_fld: /* "Invalid field in CDB" */ ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x0); return 1; invalid_param: /* "Invalid field in parameter list" */ ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x26, 0x0); return 1; invalid_param_len: /* "Parameter list length error" */ ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x1a, 0x0); return 1; skip: scmd->result = SAM_STAT_GOOD; return 1; } /** * ata_get_xlat_func - check if SCSI to ATA translation is possible * @dev: ATA device * @cmd: SCSI command opcode to consider * * Look up the SCSI command given, and determine whether the * SCSI command is to be translated or simulated. * * RETURNS: * Pointer to translation function if possible, %NULL if not. */ static inline ata_xlat_func_t ata_get_xlat_func(struct ata_device *dev, u8 cmd) { switch (cmd) { case READ_6: case READ_10: case READ_16: case WRITE_6: case WRITE_10: case WRITE_16: return ata_scsi_rw_xlat; case WRITE_SAME_16: return ata_scsi_write_same_xlat; case SYNCHRONIZE_CACHE: if (ata_try_flush_cache(dev)) return ata_scsi_flush_xlat; break; case VERIFY: case VERIFY_16: return ata_scsi_verify_xlat; case ATA_12: case ATA_16: return ata_scsi_pass_thru; case MODE_SELECT: case MODE_SELECT_10: return ata_scsi_mode_select_xlat; break; case START_STOP: return ata_scsi_start_stop_xlat; } return NULL; } /** * ata_scsi_dump_cdb - dump SCSI command contents to dmesg * @ap: ATA port to which the command was being sent * @cmd: SCSI command to dump * * Prints the contents of a SCSI command via printk(). */ static inline void ata_scsi_dump_cdb(struct ata_port *ap, struct scsi_cmnd *cmd) { #ifdef ATA_DEBUG struct scsi_device *scsidev = cmd->device; u8 *scsicmd = cmd->cmnd; DPRINTK("CDB (%u:%d,%d,%d) %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", ap->print_id, scsidev->channel, scsidev->id, scsidev->lun, scsicmd[0], scsicmd[1], scsicmd[2], scsicmd[3], scsicmd[4], scsicmd[5], scsicmd[6], scsicmd[7], scsicmd[8]); #endif } static inline int __ata_scsi_queuecmd(struct scsi_cmnd *scmd, struct ata_device *dev) { u8 scsi_op = scmd->cmnd[0]; ata_xlat_func_t xlat_func; int rc = 0; if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { if (unlikely(!scmd->cmd_len || scmd->cmd_len > dev->cdb_len)) goto bad_cdb_len; xlat_func = ata_get_xlat_func(dev, scsi_op); } else { if (unlikely(!scmd->cmd_len)) goto bad_cdb_len; xlat_func = NULL; if (likely((scsi_op != ATA_16) || !atapi_passthru16)) { /* relay SCSI command to ATAPI device */ int len = COMMAND_SIZE(scsi_op); if (unlikely(len > scmd->cmd_len || len > dev->cdb_len)) goto bad_cdb_len; xlat_func = atapi_xlat; } else { /* ATA_16 passthru, treat as an ATA command */ if (unlikely(scmd->cmd_len > 16)) goto bad_cdb_len; xlat_func = ata_get_xlat_func(dev, scsi_op); } } if (xlat_func) rc = ata_scsi_translate(dev, scmd, xlat_func); else ata_scsi_simulate(dev, scmd); return rc; bad_cdb_len: DPRINTK("bad CDB len=%u, scsi_op=0x%02x, max=%u\n", scmd->cmd_len, scsi_op, dev->cdb_len); scmd->result = DID_ERROR << 16; scmd->scsi_done(scmd); return 0; } /** * ata_scsi_queuecmd - Issue SCSI cdb to libata-managed device * @shost: SCSI host of command to be sent * @cmd: SCSI command to be sent * * In some cases, this function translates SCSI commands into * ATA taskfiles, and queues the taskfiles to be sent to * hardware. In other cases, this function simulates a * SCSI device by evaluating and responding to certain * SCSI commands. This creates the overall effect of * ATA and ATAPI devices appearing as SCSI devices. * * LOCKING: * ATA host lock * * RETURNS: * Return value from __ata_scsi_queuecmd() if @cmd can be queued, * 0 otherwise. */ int ata_scsi_queuecmd(struct Scsi_Host *shost, struct scsi_cmnd *cmd) { struct ata_port *ap; struct ata_device *dev; struct scsi_device *scsidev = cmd->device; int rc = 0; unsigned long irq_flags; ap = ata_shost_to_port(shost); spin_lock_irqsave(ap->lock, irq_flags); ata_scsi_dump_cdb(ap, cmd); dev = ata_scsi_find_dev(ap, scsidev); if (likely(dev)) rc = __ata_scsi_queuecmd(cmd, dev); else { cmd->result = (DID_BAD_TARGET << 16); cmd->scsi_done(cmd); } spin_unlock_irqrestore(ap->lock, irq_flags); return rc; } /** * ata_scsi_simulate - simulate SCSI command on ATA device * @dev: the target device * @cmd: SCSI command being sent to device. * * Interprets and directly executes a select list of SCSI commands * that can be handled internally. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_scsi_simulate(struct ata_device *dev, struct scsi_cmnd *cmd) { struct ata_scsi_args args; const u8 *scsicmd = cmd->cmnd; u8 tmp8; args.dev = dev; args.id = dev->id; args.cmd = cmd; args.done = cmd->scsi_done; switch(scsicmd[0]) { /* TODO: worth improving? */ case FORMAT_UNIT: ata_scsi_invalid_field(cmd); break; case INQUIRY: if (scsicmd[1] & 2) /* is CmdDt set? */ ata_scsi_invalid_field(cmd); else if ((scsicmd[1] & 1) == 0) /* is EVPD clear? */ ata_scsi_rbuf_fill(&args, ata_scsiop_inq_std); else switch (scsicmd[2]) { case 0x00: ata_scsi_rbuf_fill(&args, ata_scsiop_inq_00); break; case 0x80: ata_scsi_rbuf_fill(&args, ata_scsiop_inq_80); break; case 0x83: ata_scsi_rbuf_fill(&args, ata_scsiop_inq_83); break; case 0x89: ata_scsi_rbuf_fill(&args, ata_scsiop_inq_89); break; case 0xb0: ata_scsi_rbuf_fill(&args, ata_scsiop_inq_b0); break; case 0xb1: ata_scsi_rbuf_fill(&args, ata_scsiop_inq_b1); break; case 0xb2: ata_scsi_rbuf_fill(&args, ata_scsiop_inq_b2); break; default: ata_scsi_invalid_field(cmd); break; } break; case MODE_SENSE: case MODE_SENSE_10: ata_scsi_rbuf_fill(&args, ata_scsiop_mode_sense); break; case READ_CAPACITY: ata_scsi_rbuf_fill(&args, ata_scsiop_read_cap); break; case SERVICE_ACTION_IN: if ((scsicmd[1] & 0x1f) == SAI_READ_CAPACITY_16) ata_scsi_rbuf_fill(&args, ata_scsiop_read_cap); else ata_scsi_invalid_field(cmd); break; case REPORT_LUNS: ata_scsi_rbuf_fill(&args, ata_scsiop_report_luns); break; case REQUEST_SENSE: ata_scsi_set_sense(cmd, 0, 0, 0); cmd->result = (DRIVER_SENSE << 24); cmd->scsi_done(cmd); break; /* if we reach this, then writeback caching is disabled, * turning this into a no-op. */ case SYNCHRONIZE_CACHE: /* fall through */ /* no-op's, complete with success */ case REZERO_UNIT: case SEEK_6: case SEEK_10: case TEST_UNIT_READY: ata_scsi_rbuf_fill(&args, ata_scsiop_noop); break; case SEND_DIAGNOSTIC: tmp8 = scsicmd[1] & ~(1 << 3); if ((tmp8 == 0x4) && (!scsicmd[3]) && (!scsicmd[4])) ata_scsi_rbuf_fill(&args, ata_scsiop_noop); else ata_scsi_invalid_field(cmd); break; /* all other commands */ default: ata_scsi_set_sense(cmd, ILLEGAL_REQUEST, 0x20, 0x0); /* "Invalid command operation code" */ cmd->scsi_done(cmd); break; } } int ata_scsi_add_hosts(struct ata_host *host, struct scsi_host_template *sht) { int i, rc; for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; struct Scsi_Host *shost; rc = -ENOMEM; shost = scsi_host_alloc(sht, sizeof(struct ata_port *)); if (!shost) goto err_alloc; shost->eh_noresume = 1; *(struct ata_port **)&shost->hostdata[0] = ap; ap->scsi_host = shost; shost->transportt = ata_scsi_transport_template; shost->unique_id = ap->print_id; shost->max_id = 16; shost->max_lun = 1; shost->max_channel = 1; shost->max_cmd_len = 16; shost->no_write_same = 1; /* Schedule policy is determined by ->qc_defer() * callback and it needs to see every deferred qc. * Set host_blocked to 1 to prevent SCSI midlayer from * automatically deferring requests. */ shost->max_host_blocked = 1; rc = scsi_add_host_with_dma(ap->scsi_host, &ap->tdev, ap->host->dev); if (rc) goto err_add; } return 0; err_add: scsi_host_put(host->ports[i]->scsi_host); err_alloc: while (--i >= 0) { struct Scsi_Host *shost = host->ports[i]->scsi_host; scsi_remove_host(shost); scsi_host_put(shost); } return rc; } void ata_scsi_scan_host(struct ata_port *ap, int sync) { int tries = 5; struct ata_device *last_failed_dev = NULL; struct ata_link *link; struct ata_device *dev; repeat: ata_for_each_link(link, ap, EDGE) { ata_for_each_dev(dev, link, ENABLED) { struct scsi_device *sdev; int channel = 0, id = 0; if (dev->sdev) continue; if (ata_is_host_link(link)) id = dev->devno; else channel = link->pmp; sdev = __scsi_add_device(ap->scsi_host, channel, id, 0, NULL); if (!IS_ERR(sdev)) { dev->sdev = sdev; scsi_device_put(sdev); } else { dev->sdev = NULL; } } } /* If we scanned while EH was in progress or allocation * failure occurred, scan would have failed silently. Check * whether all devices are attached. */ ata_for_each_link(link, ap, EDGE) { ata_for_each_dev(dev, link, ENABLED) { if (!dev->sdev) goto exit_loop; } } exit_loop: if (!link) return; /* we're missing some SCSI devices */ if (sync) { /* If caller requested synchrnous scan && we've made * any progress, sleep briefly and repeat. */ if (dev != last_failed_dev) { msleep(100); last_failed_dev = dev; goto repeat; } /* We might be failing to detect boot device, give it * a few more chances. */ if (--tries) { msleep(100); goto repeat; } ata_port_err(ap, "WARNING: synchronous SCSI scan failed without making any progress, switching to async\n"); } queue_delayed_work(system_long_wq, &ap->hotplug_task, round_jiffies_relative(HZ)); } /** * ata_scsi_offline_dev - offline attached SCSI device * @dev: ATA device to offline attached SCSI device for * * This function is called from ata_eh_hotplug() and responsible * for taking the SCSI device attached to @dev offline. This * function is called with host lock which protects dev->sdev * against clearing. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * 1 if attached SCSI device exists, 0 otherwise. */ int ata_scsi_offline_dev(struct ata_device *dev) { if (dev->sdev) { scsi_device_set_state(dev->sdev, SDEV_OFFLINE); return 1; } return 0; } /** * ata_scsi_remove_dev - remove attached SCSI device * @dev: ATA device to remove attached SCSI device for * * This function is called from ata_eh_scsi_hotplug() and * responsible for removing the SCSI device attached to @dev. * * LOCKING: * Kernel thread context (may sleep). */ static void ata_scsi_remove_dev(struct ata_device *dev) { struct ata_port *ap = dev->link->ap; struct scsi_device *sdev; unsigned long flags; /* Alas, we need to grab scan_mutex to ensure SCSI device * state doesn't change underneath us and thus * scsi_device_get() always succeeds. The mutex locking can * be removed if there is __scsi_device_get() interface which * increments reference counts regardless of device state. */ mutex_lock(&ap->scsi_host->scan_mutex); spin_lock_irqsave(ap->lock, flags); /* clearing dev->sdev is protected by host lock */ sdev = dev->sdev; dev->sdev = NULL; if (sdev) { /* If user initiated unplug races with us, sdev can go * away underneath us after the host lock and * scan_mutex are released. Hold onto it. */ if (scsi_device_get(sdev) == 0) { /* The following ensures the attached sdev is * offline on return from ata_scsi_offline_dev() * regardless it wins or loses the race * against this function. */ scsi_device_set_state(sdev, SDEV_OFFLINE); } else { WARN_ON(1); sdev = NULL; } } spin_unlock_irqrestore(ap->lock, flags); mutex_unlock(&ap->scsi_host->scan_mutex); if (sdev) { ata_dev_info(dev, "detaching (SCSI %s)\n", dev_name(&sdev->sdev_gendev)); scsi_remove_device(sdev); scsi_device_put(sdev); } } static void ata_scsi_handle_link_detach(struct ata_link *link) { struct ata_port *ap = link->ap; struct ata_device *dev; ata_for_each_dev(dev, link, ALL) { unsigned long flags; if (!(dev->flags & ATA_DFLAG_DETACHED)) continue; spin_lock_irqsave(ap->lock, flags); dev->flags &= ~ATA_DFLAG_DETACHED; spin_unlock_irqrestore(ap->lock, flags); if (zpodd_dev_enabled(dev)) zpodd_exit(dev); ata_scsi_remove_dev(dev); } } /** * ata_scsi_media_change_notify - send media change event * @dev: Pointer to the disk device with media change event * * Tell the block layer to send a media change notification * event. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_scsi_media_change_notify(struct ata_device *dev) { if (dev->sdev) sdev_evt_send_simple(dev->sdev, SDEV_EVT_MEDIA_CHANGE, GFP_ATOMIC); } /** * ata_scsi_hotplug - SCSI part of hotplug * @work: Pointer to ATA port to perform SCSI hotplug on * * Perform SCSI part of hotplug. It's executed from a separate * workqueue after EH completes. This is necessary because SCSI * hot plugging requires working EH and hot unplugging is * synchronized with hot plugging with a mutex. * * LOCKING: * Kernel thread context (may sleep). */ void ata_scsi_hotplug(struct work_struct *work) { struct ata_port *ap = container_of(work, struct ata_port, hotplug_task.work); int i; if (ap->pflags & ATA_PFLAG_UNLOADING) { DPRINTK("ENTER/EXIT - unloading\n"); return; } /* * XXX - UGLY HACK * * The block layer suspend/resume path is fundamentally broken due * to freezable kthreads and workqueue and may deadlock if a block * device gets removed while resume is in progress. I don't know * what the solution is short of removing freezable kthreads and * workqueues altogether. * * The following is an ugly hack to avoid kicking off device * removal while freezer is active. This is a joke but does avoid * this particular deadlock scenario. * * https://bugzilla.kernel.org/show_bug.cgi?id=62801 * http://marc.info/?l=linux-kernel&m=138695698516487 */ #ifdef CONFIG_FREEZER while (pm_freezing) msleep(10); #endif DPRINTK("ENTER\n"); mutex_lock(&ap->scsi_scan_mutex); /* Unplug detached devices. We cannot use link iterator here * because PMP links have to be scanned even if PMP is * currently not attached. Iterate manually. */ ata_scsi_handle_link_detach(&ap->link); if (ap->pmp_link) for (i = 0; i < SATA_PMP_MAX_PORTS; i++) ata_scsi_handle_link_detach(&ap->pmp_link[i]); /* scan for new ones */ ata_scsi_scan_host(ap, 0); mutex_unlock(&ap->scsi_scan_mutex); DPRINTK("EXIT\n"); } /** * ata_scsi_user_scan - indication for user-initiated bus scan * @shost: SCSI host to scan * @channel: Channel to scan * @id: ID to scan * @lun: LUN to scan * * This function is called when user explicitly requests bus * scan. Set probe pending flag and invoke EH. * * LOCKING: * SCSI layer (we don't care) * * RETURNS: * Zero. */ int ata_scsi_user_scan(struct Scsi_Host *shost, unsigned int channel, unsigned int id, u64 lun) { struct ata_port *ap = ata_shost_to_port(shost); unsigned long flags; int devno, rc = 0; if (!ap->ops->error_handler) return -EOPNOTSUPP; if (lun != SCAN_WILD_CARD && lun) return -EINVAL; if (!sata_pmp_attached(ap)) { if (channel != SCAN_WILD_CARD && channel) return -EINVAL; devno = id; } else { if (id != SCAN_WILD_CARD && id) return -EINVAL; devno = channel; } spin_lock_irqsave(ap->lock, flags); if (devno == SCAN_WILD_CARD) { struct ata_link *link; ata_for_each_link(link, ap, EDGE) { struct ata_eh_info *ehi = &link->eh_info; ehi->probe_mask |= ATA_ALL_DEVICES; ehi->action |= ATA_EH_RESET; } } else { struct ata_device *dev = ata_find_dev(ap, devno); if (dev) { struct ata_eh_info *ehi = &dev->link->eh_info; ehi->probe_mask |= 1 << dev->devno; ehi->action |= ATA_EH_RESET; } else rc = -EINVAL; } if (rc == 0) { ata_port_schedule_eh(ap); spin_unlock_irqrestore(ap->lock, flags); ata_port_wait_eh(ap); } else spin_unlock_irqrestore(ap->lock, flags); return rc; } /** * ata_scsi_dev_rescan - initiate scsi_rescan_device() * @work: Pointer to ATA port to perform scsi_rescan_device() * * After ATA pass thru (SAT) commands are executed successfully, * libata need to propagate the changes to SCSI layer. * * LOCKING: * Kernel thread context (may sleep). */ void ata_scsi_dev_rescan(struct work_struct *work) { struct ata_port *ap = container_of(work, struct ata_port, scsi_rescan_task); struct ata_link *link; struct ata_device *dev; unsigned long flags; mutex_lock(&ap->scsi_scan_mutex); spin_lock_irqsave(ap->lock, flags); ata_for_each_link(link, ap, EDGE) { ata_for_each_dev(dev, link, ENABLED) { struct scsi_device *sdev = dev->sdev; if (!sdev) continue; if (scsi_device_get(sdev)) continue; spin_unlock_irqrestore(ap->lock, flags); scsi_rescan_device(&(sdev->sdev_gendev)); scsi_device_put(sdev); spin_lock_irqsave(ap->lock, flags); } } spin_unlock_irqrestore(ap->lock, flags); mutex_unlock(&ap->scsi_scan_mutex); } /** * ata_sas_port_alloc - Allocate port for a SAS attached SATA device * @host: ATA host container for all SAS ports * @port_info: Information from low-level host driver * @shost: SCSI host that the scsi device is attached to * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * ata_port pointer on success / NULL on failure. */ struct ata_port *ata_sas_port_alloc(struct ata_host *host, struct ata_port_info *port_info, struct Scsi_Host *shost) { struct ata_port *ap; ap = ata_port_alloc(host); if (!ap) return NULL; ap->port_no = 0; ap->lock = &host->lock; ap->pio_mask = port_info->pio_mask; ap->mwdma_mask = port_info->mwdma_mask; ap->udma_mask = port_info->udma_mask; ap->flags |= port_info->flags; ap->ops = port_info->port_ops; ap->cbl = ATA_CBL_SATA; return ap; } EXPORT_SYMBOL_GPL(ata_sas_port_alloc); /** * ata_sas_port_start - Set port up for dma. * @ap: Port to initialize * * Called just after data structures for each port are * initialized. * * May be used as the port_start() entry in ata_port_operations. * * LOCKING: * Inherited from caller. */ int ata_sas_port_start(struct ata_port *ap) { /* * the port is marked as frozen at allocation time, but if we don't * have new eh, we won't thaw it */ if (!ap->ops->error_handler) ap->pflags &= ~ATA_PFLAG_FROZEN; return 0; } EXPORT_SYMBOL_GPL(ata_sas_port_start); /** * ata_port_stop - Undo ata_sas_port_start() * @ap: Port to shut down * * May be used as the port_stop() entry in ata_port_operations. * * LOCKING: * Inherited from caller. */ void ata_sas_port_stop(struct ata_port *ap) { } EXPORT_SYMBOL_GPL(ata_sas_port_stop); /** * ata_sas_async_probe - simply schedule probing and return * @ap: Port to probe * * For batch scheduling of probe for sas attached ata devices, assumes * the port has already been through ata_sas_port_init() */ void ata_sas_async_probe(struct ata_port *ap) { __ata_port_probe(ap); } EXPORT_SYMBOL_GPL(ata_sas_async_probe); int ata_sas_sync_probe(struct ata_port *ap) { return ata_port_probe(ap); } EXPORT_SYMBOL_GPL(ata_sas_sync_probe); /** * ata_sas_port_init - Initialize a SATA device * @ap: SATA port to initialize * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * Zero on success, non-zero on error. */ int ata_sas_port_init(struct ata_port *ap) { int rc = ap->ops->port_start(ap); if (rc) return rc; ap->print_id = atomic_inc_return(&ata_print_id); return 0; } EXPORT_SYMBOL_GPL(ata_sas_port_init); /** * ata_sas_port_destroy - Destroy a SATA port allocated by ata_sas_port_alloc * @ap: SATA port to destroy * */ void ata_sas_port_destroy(struct ata_port *ap) { if (ap->ops->port_stop) ap->ops->port_stop(ap); kfree(ap); } EXPORT_SYMBOL_GPL(ata_sas_port_destroy); /** * ata_sas_slave_configure - Default slave_config routine for libata devices * @sdev: SCSI device to configure * @ap: ATA port to which SCSI device is attached * * RETURNS: * Zero. */ int ata_sas_slave_configure(struct scsi_device *sdev, struct ata_port *ap) { ata_scsi_sdev_config(sdev); ata_scsi_dev_config(sdev, ap->link.device); return 0; } EXPORT_SYMBOL_GPL(ata_sas_slave_configure); /** * ata_sas_queuecmd - Issue SCSI cdb to libata-managed device * @cmd: SCSI command to be sent * @ap: ATA port to which the command is being sent * * RETURNS: * Return value from __ata_scsi_queuecmd() if @cmd can be queued, * 0 otherwise. */ int ata_sas_queuecmd(struct scsi_cmnd *cmd, struct ata_port *ap) { int rc = 0; ata_scsi_dump_cdb(ap, cmd); if (likely(ata_dev_enabled(ap->link.device))) rc = __ata_scsi_queuecmd(cmd, ap->link.device); else { cmd->result = (DID_BAD_TARGET << 16); cmd->scsi_done(cmd); } return rc; } EXPORT_SYMBOL_GPL(ata_sas_queuecmd);