/* * sata_vsc.c - Vitesse VSC7174 4 port DPA SATA * * Maintained by: Jeremy Higdon @ SGI * Please ALWAYS copy linux-ide@vger.kernel.org * on emails. * * Copyright 2004 SGI * * Bits from Jeff Garzik, Copyright RedHat, Inc. * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/DocBook/libata.* * * Vitesse hardware documentation presumably available under NDA. * Intel 31244 (same hardware interface) documentation presumably * available from http://developer.intel.com/ * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/blkdev.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/device.h> #include <scsi/scsi_host.h> #include <linux/libata.h> #define DRV_NAME "sata_vsc" #define DRV_VERSION "2.3" enum { VSC_MMIO_BAR = 0, /* Interrupt register offsets (from chip base address) */ VSC_SATA_INT_STAT_OFFSET = 0x00, VSC_SATA_INT_MASK_OFFSET = 0x04, /* Taskfile registers offsets */ VSC_SATA_TF_CMD_OFFSET = 0x00, VSC_SATA_TF_DATA_OFFSET = 0x00, VSC_SATA_TF_ERROR_OFFSET = 0x04, VSC_SATA_TF_FEATURE_OFFSET = 0x06, VSC_SATA_TF_NSECT_OFFSET = 0x08, VSC_SATA_TF_LBAL_OFFSET = 0x0c, VSC_SATA_TF_LBAM_OFFSET = 0x10, VSC_SATA_TF_LBAH_OFFSET = 0x14, VSC_SATA_TF_DEVICE_OFFSET = 0x18, VSC_SATA_TF_STATUS_OFFSET = 0x1c, VSC_SATA_TF_COMMAND_OFFSET = 0x1d, VSC_SATA_TF_ALTSTATUS_OFFSET = 0x28, VSC_SATA_TF_CTL_OFFSET = 0x29, /* DMA base */ VSC_SATA_UP_DESCRIPTOR_OFFSET = 0x64, VSC_SATA_UP_DATA_BUFFER_OFFSET = 0x6C, VSC_SATA_DMA_CMD_OFFSET = 0x70, /* SCRs base */ VSC_SATA_SCR_STATUS_OFFSET = 0x100, VSC_SATA_SCR_ERROR_OFFSET = 0x104, VSC_SATA_SCR_CONTROL_OFFSET = 0x108, /* Port stride */ VSC_SATA_PORT_OFFSET = 0x200, /* Error interrupt status bit offsets */ VSC_SATA_INT_ERROR_CRC = 0x40, VSC_SATA_INT_ERROR_T = 0x20, VSC_SATA_INT_ERROR_P = 0x10, VSC_SATA_INT_ERROR_R = 0x8, VSC_SATA_INT_ERROR_E = 0x4, VSC_SATA_INT_ERROR_M = 0x2, VSC_SATA_INT_PHY_CHANGE = 0x1, VSC_SATA_INT_ERROR = (VSC_SATA_INT_ERROR_CRC | VSC_SATA_INT_ERROR_T | \ VSC_SATA_INT_ERROR_P | VSC_SATA_INT_ERROR_R | \ VSC_SATA_INT_ERROR_E | VSC_SATA_INT_ERROR_M | \ VSC_SATA_INT_PHY_CHANGE), }; static int vsc_sata_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val) { if (sc_reg > SCR_CONTROL) return -EINVAL; *val = readl(link->ap->ioaddr.scr_addr + (sc_reg * 4)); return 0; } static int vsc_sata_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val) { if (sc_reg > SCR_CONTROL) return -EINVAL; writel(val, link->ap->ioaddr.scr_addr + (sc_reg * 4)); return 0; } static void vsc_freeze(struct ata_port *ap) { void __iomem *mask_addr; mask_addr = ap->host->iomap[VSC_MMIO_BAR] + VSC_SATA_INT_MASK_OFFSET + ap->port_no; writeb(0, mask_addr); } static void vsc_thaw(struct ata_port *ap) { void __iomem *mask_addr; mask_addr = ap->host->iomap[VSC_MMIO_BAR] + VSC_SATA_INT_MASK_OFFSET + ap->port_no; writeb(0xff, mask_addr); } static void vsc_intr_mask_update(struct ata_port *ap, u8 ctl) { void __iomem *mask_addr; u8 mask; mask_addr = ap->host->iomap[VSC_MMIO_BAR] + VSC_SATA_INT_MASK_OFFSET + ap->port_no; mask = readb(mask_addr); if (ctl & ATA_NIEN) mask |= 0x80; else mask &= 0x7F; writeb(mask, mask_addr); } static void vsc_sata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; /* * The only thing the ctl register is used for is SRST. * That is not enabled or disabled via tf_load. * However, if ATA_NIEN is changed, then we need to change * the interrupt register. */ if ((tf->ctl & ATA_NIEN) != (ap->last_ctl & ATA_NIEN)) { ap->last_ctl = tf->ctl; vsc_intr_mask_update(ap, tf->ctl & ATA_NIEN); } if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { writew(tf->feature | (((u16)tf->hob_feature) << 8), ioaddr->feature_addr); writew(tf->nsect | (((u16)tf->hob_nsect) << 8), ioaddr->nsect_addr); writew(tf->lbal | (((u16)tf->hob_lbal) << 8), ioaddr->lbal_addr); writew(tf->lbam | (((u16)tf->hob_lbam) << 8), ioaddr->lbam_addr); writew(tf->lbah | (((u16)tf->hob_lbah) << 8), ioaddr->lbah_addr); } else if (is_addr) { writew(tf->feature, ioaddr->feature_addr); writew(tf->nsect, ioaddr->nsect_addr); writew(tf->lbal, ioaddr->lbal_addr); writew(tf->lbam, ioaddr->lbam_addr); writew(tf->lbah, ioaddr->lbah_addr); } if (tf->flags & ATA_TFLAG_DEVICE) writeb(tf->device, ioaddr->device_addr); ata_wait_idle(ap); } static void vsc_sata_tf_read(struct ata_port *ap, struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; u16 nsect, lbal, lbam, lbah, feature; tf->command = ata_sff_check_status(ap); tf->device = readw(ioaddr->device_addr); feature = readw(ioaddr->error_addr); nsect = readw(ioaddr->nsect_addr); lbal = readw(ioaddr->lbal_addr); lbam = readw(ioaddr->lbam_addr); lbah = readw(ioaddr->lbah_addr); tf->feature = feature; tf->nsect = nsect; tf->lbal = lbal; tf->lbam = lbam; tf->lbah = lbah; if (tf->flags & ATA_TFLAG_LBA48) { tf->hob_feature = feature >> 8; tf->hob_nsect = nsect >> 8; tf->hob_lbal = lbal >> 8; tf->hob_lbam = lbam >> 8; tf->hob_lbah = lbah >> 8; } } static inline void vsc_error_intr(u8 port_status, struct ata_port *ap) { if (port_status & (VSC_SATA_INT_PHY_CHANGE | VSC_SATA_INT_ERROR_M)) ata_port_freeze(ap); else ata_port_abort(ap); } static void vsc_port_intr(u8 port_status, struct ata_port *ap) { struct ata_queued_cmd *qc; int handled = 0; if (unlikely(port_status & VSC_SATA_INT_ERROR)) { vsc_error_intr(port_status, ap); return; } qc = ata_qc_from_tag(ap, ap->link.active_tag); if (qc && likely(!(qc->tf.flags & ATA_TFLAG_POLLING))) handled = ata_sff_host_intr(ap, qc); /* We received an interrupt during a polled command, * or some other spurious condition. Interrupt reporting * with this hardware is fairly reliable so it is safe to * simply clear the interrupt */ if (unlikely(!handled)) ap->ops->sff_check_status(ap); } /* * vsc_sata_interrupt * * Read the interrupt register and process for the devices that have * them pending. */ static irqreturn_t vsc_sata_interrupt(int irq, void *dev_instance) { struct ata_host *host = dev_instance; unsigned int i; unsigned int handled = 0; u32 status; status = readl(host->iomap[VSC_MMIO_BAR] + VSC_SATA_INT_STAT_OFFSET); if (unlikely(status == 0xffffffff || status == 0)) { if (status) dev_printk(KERN_ERR, host->dev, ": IRQ status == 0xffffffff, " "PCI fault or device removal?\n"); goto out; } spin_lock(&host->lock); for (i = 0; i < host->n_ports; i++) { u8 port_status = (status >> (8 * i)) & 0xff; if (port_status) { struct ata_port *ap = host->ports[i]; if (ap && !(ap->flags & ATA_FLAG_DISABLED)) { vsc_port_intr(port_status, ap); handled++; } else dev_printk(KERN_ERR, host->dev, "interrupt from disabled port %d\n", i); } } spin_unlock(&host->lock); out: return IRQ_RETVAL(handled); } static struct scsi_host_template vsc_sata_sht = { ATA_BMDMA_SHT(DRV_NAME), }; static struct ata_port_operations vsc_sata_ops = { .inherits = &ata_bmdma_port_ops, .sff_tf_load = vsc_sata_tf_load, .sff_tf_read = vsc_sata_tf_read, .freeze = vsc_freeze, .thaw = vsc_thaw, .scr_read = vsc_sata_scr_read, .scr_write = vsc_sata_scr_write, }; static void __devinit vsc_sata_setup_port(struct ata_ioports *port, void __iomem *base) { port->cmd_addr = base + VSC_SATA_TF_CMD_OFFSET; port->data_addr = base + VSC_SATA_TF_DATA_OFFSET; port->error_addr = base + VSC_SATA_TF_ERROR_OFFSET; port->feature_addr = base + VSC_SATA_TF_FEATURE_OFFSET; port->nsect_addr = base + VSC_SATA_TF_NSECT_OFFSET; port->lbal_addr = base + VSC_SATA_TF_LBAL_OFFSET; port->lbam_addr = base + VSC_SATA_TF_LBAM_OFFSET; port->lbah_addr = base + VSC_SATA_TF_LBAH_OFFSET; port->device_addr = base + VSC_SATA_TF_DEVICE_OFFSET; port->status_addr = base + VSC_SATA_TF_STATUS_OFFSET; port->command_addr = base + VSC_SATA_TF_COMMAND_OFFSET; port->altstatus_addr = base + VSC_SATA_TF_ALTSTATUS_OFFSET; port->ctl_addr = base + VSC_SATA_TF_CTL_OFFSET; port->bmdma_addr = base + VSC_SATA_DMA_CMD_OFFSET; port->scr_addr = base + VSC_SATA_SCR_STATUS_OFFSET; writel(0, base + VSC_SATA_UP_DESCRIPTOR_OFFSET); writel(0, base + VSC_SATA_UP_DATA_BUFFER_OFFSET); } static int __devinit vsc_sata_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { static const struct ata_port_info pi = { .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | ATA_FLAG_MMIO, .pio_mask = 0x1f, .mwdma_mask = 0x07, .udma_mask = ATA_UDMA6, .port_ops = &vsc_sata_ops, }; const struct ata_port_info *ppi[] = { &pi, NULL }; static int printed_version; struct ata_host *host; void __iomem *mmio_base; int i, rc; u8 cls; if (!printed_version++) dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n"); /* allocate host */ host = ata_host_alloc_pinfo(&pdev->dev, ppi, 4); if (!host) return -ENOMEM; rc = pcim_enable_device(pdev); if (rc) return rc; /* check if we have needed resource mapped */ if (pci_resource_len(pdev, 0) == 0) return -ENODEV; /* map IO regions and intialize host accordingly */ rc = pcim_iomap_regions(pdev, 1 << VSC_MMIO_BAR, DRV_NAME); if (rc == -EBUSY) pcim_pin_device(pdev); if (rc) return rc; host->iomap = pcim_iomap_table(pdev); mmio_base = host->iomap[VSC_MMIO_BAR]; for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; unsigned int offset = (i + 1) * VSC_SATA_PORT_OFFSET; vsc_sata_setup_port(&ap->ioaddr, mmio_base + offset); ata_port_pbar_desc(ap, VSC_MMIO_BAR, -1, "mmio"); ata_port_pbar_desc(ap, VSC_MMIO_BAR, offset, "port"); } /* * Use 32 bit DMA mask, because 64 bit address support is poor. */ rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (rc) return rc; rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); if (rc) return rc; /* * Due to a bug in the chip, the default cache line size can't be * used (unless the default is non-zero). */ pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cls); if (cls == 0x00) pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x80); if (pci_enable_msi(pdev) == 0) pci_intx(pdev, 0); /* * Config offset 0x98 is "Extended Control and Status Register 0" * Default value is (1 << 28). All bits except bit 28 are reserved in * DPA mode. If bit 28 is set, LED 0 reflects all ports' activity. * If bit 28 is clear, each port has its own LED. */ pci_write_config_dword(pdev, 0x98, 0); pci_set_master(pdev); return ata_host_activate(host, pdev->irq, vsc_sata_interrupt, IRQF_SHARED, &vsc_sata_sht); } static const struct pci_device_id vsc_sata_pci_tbl[] = { { PCI_VENDOR_ID_VITESSE, 0x7174, PCI_ANY_ID, PCI_ANY_ID, 0x10600, 0xFFFFFF, 0 }, { PCI_VENDOR_ID_INTEL, 0x3200, PCI_ANY_ID, PCI_ANY_ID, 0x10600, 0xFFFFFF, 0 }, { } /* terminate list */ }; static struct pci_driver vsc_sata_pci_driver = { .name = DRV_NAME, .id_table = vsc_sata_pci_tbl, .probe = vsc_sata_init_one, .remove = ata_pci_remove_one, }; static int __init vsc_sata_init(void) { return pci_register_driver(&vsc_sata_pci_driver); } static void __exit vsc_sata_exit(void) { pci_unregister_driver(&vsc_sata_pci_driver); } MODULE_AUTHOR("Jeremy Higdon"); MODULE_DESCRIPTION("low-level driver for Vitesse VSC7174 SATA controller"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, vsc_sata_pci_tbl); MODULE_VERSION(DRV_VERSION); module_init(vsc_sata_init); module_exit(vsc_sata_exit);