/* * Disk Array driver for HP SA 5xxx and 6xxx Controllers * Copyright 2000, 2005 Hewlett-Packard Development Company, L.P. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Questions/Comments/Bugfixes to iss_storagedev@hp.com * */ #include <linux/config.h> /* CONFIG_PROC_FS */ #include <linux/module.h> #include <linux/interrupt.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/major.h> #include <linux/fs.h> #include <linux/bio.h> #include <linux/blkpg.h> #include <linux/timer.h> #include <linux/proc_fs.h> #include <linux/init.h> #include <linux/hdreg.h> #include <linux/spinlock.h> #include <linux/compat.h> #include <asm/uaccess.h> #include <asm/io.h> #include <linux/dma-mapping.h> #include <linux/blkdev.h> #include <linux/genhd.h> #include <linux/completion.h> #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin)) #define DRIVER_NAME "HP CISS Driver (v 2.6.6)" #define DRIVER_VERSION CCISS_DRIVER_VERSION(2,6,6) /* Embedded module documentation macros - see modules.h */ MODULE_AUTHOR("Hewlett-Packard Company"); MODULE_DESCRIPTION("Driver for HP Controller SA5xxx SA6xxx version 2.6.6"); MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400" " SA6i P600 P800 E400 E300"); MODULE_LICENSE("GPL"); #include "cciss_cmd.h" #include "cciss.h" #include <linux/cciss_ioctl.h> /* define the PCI info for the cards we can control */ static const struct pci_device_id cciss_pci_device_id[] = { { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091, 0, 0, 0}, { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225, 0, 0, 0}, { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSB, 0x103c, 0x3223, 0, 0, 0}, { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103c, 0x3231, 0, 0, 0}, { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103c, 0x3233, 0, 0, 0}, {0,} }; MODULE_DEVICE_TABLE(pci, cciss_pci_device_id); #define NR_PRODUCTS (sizeof(products)/sizeof(struct board_type)) /* board_id = Subsystem Device ID & Vendor ID * product = Marketing Name for the board * access = Address of the struct of function pointers */ static struct board_type products[] = { { 0x40700E11, "Smart Array 5300", &SA5_access }, { 0x40800E11, "Smart Array 5i", &SA5B_access}, { 0x40820E11, "Smart Array 532", &SA5B_access}, { 0x40830E11, "Smart Array 5312", &SA5B_access}, { 0x409A0E11, "Smart Array 641", &SA5_access}, { 0x409B0E11, "Smart Array 642", &SA5_access}, { 0x409C0E11, "Smart Array 6400", &SA5_access}, { 0x409D0E11, "Smart Array 6400 EM", &SA5_access}, { 0x40910E11, "Smart Array 6i", &SA5_access}, { 0x3225103C, "Smart Array P600", &SA5_access}, { 0x3223103C, "Smart Array P800", &SA5_access}, { 0x3231103C, "Smart Array E400", &SA5_access}, { 0x3233103C, "Smart Array E300", &SA5_access}, }; /* How long to wait (in millesconds) for board to go into simple mode */ #define MAX_CONFIG_WAIT 30000 #define MAX_IOCTL_CONFIG_WAIT 1000 /*define how many times we will try a command because of bus resets */ #define MAX_CMD_RETRIES 3 #define READ_AHEAD 1024 #define NR_CMDS 384 /* #commands that can be outstanding */ #define MAX_CTLR 32 /* Originally cciss driver only supports 8 major numbers */ #define MAX_CTLR_ORIG 8 static ctlr_info_t *hba[MAX_CTLR]; static void do_cciss_request(request_queue_t *q); static int cciss_open(struct inode *inode, struct file *filep); static int cciss_release(struct inode *inode, struct file *filep); static int cciss_ioctl(struct inode *inode, struct file *filep, unsigned int cmd, unsigned long arg); static int revalidate_allvol(ctlr_info_t *host); static int cciss_revalidate(struct gendisk *disk); static int deregister_disk(struct gendisk *disk); static int register_new_disk(ctlr_info_t *h); static void cciss_getgeometry(int cntl_num); static void start_io( ctlr_info_t *h); static int sendcmd( __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, unsigned int log_unit, __u8 page_code, unsigned char *scsi3addr, int cmd_type); #ifdef CONFIG_PROC_FS static int cciss_proc_get_info(char *buffer, char **start, off_t offset, int length, int *eof, void *data); static void cciss_procinit(int i); #else static void cciss_procinit(int i) {} #endif /* CONFIG_PROC_FS */ #ifdef CONFIG_COMPAT static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg); #endif static struct block_device_operations cciss_fops = { .owner = THIS_MODULE, .open = cciss_open, .release = cciss_release, .ioctl = cciss_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = cciss_compat_ioctl, #endif .revalidate_disk= cciss_revalidate, }; /* * Enqueuing and dequeuing functions for cmdlists. */ static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c) { if (*Qptr == NULL) { *Qptr = c; c->next = c->prev = c; } else { c->prev = (*Qptr)->prev; c->next = (*Qptr); (*Qptr)->prev->next = c; (*Qptr)->prev = c; } } static inline CommandList_struct *removeQ(CommandList_struct **Qptr, CommandList_struct *c) { if (c && c->next != c) { if (*Qptr == c) *Qptr = c->next; c->prev->next = c->next; c->next->prev = c->prev; } else { *Qptr = NULL; } return c; } #include "cciss_scsi.c" /* For SCSI tape support */ #ifdef CONFIG_PROC_FS /* * Report information about this controller. */ #define ENG_GIG 1000000000 #define ENG_GIG_FACTOR (ENG_GIG/512) #define RAID_UNKNOWN 6 static const char *raid_label[] = {"0","4","1(1+0)","5","5+1","ADG", "UNKNOWN"}; static struct proc_dir_entry *proc_cciss; static int cciss_proc_get_info(char *buffer, char **start, off_t offset, int length, int *eof, void *data) { off_t pos = 0; off_t len = 0; int size, i, ctlr; ctlr_info_t *h = (ctlr_info_t*)data; drive_info_struct *drv; unsigned long flags; sector_t vol_sz, vol_sz_frac; ctlr = h->ctlr; /* prevent displaying bogus info during configuration * or deconfiguration of a logical volume */ spin_lock_irqsave(CCISS_LOCK(ctlr), flags); if (h->busy_configuring) { spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); return -EBUSY; } h->busy_configuring = 1; spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); size = sprintf(buffer, "%s: HP %s Controller\n" "Board ID: 0x%08lx\n" "Firmware Version: %c%c%c%c\n" "IRQ: %d\n" "Logical drives: %d\n" "Current Q depth: %d\n" "Current # commands on controller: %d\n" "Max Q depth since init: %d\n" "Max # commands on controller since init: %d\n" "Max SG entries since init: %d\n\n", h->devname, h->product_name, (unsigned long)h->board_id, h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], h->firm_ver[3], (unsigned int)h->intr, h->num_luns, h->Qdepth, h->commands_outstanding, h->maxQsinceinit, h->max_outstanding, h->maxSG); pos += size; len += size; cciss_proc_tape_report(ctlr, buffer, &pos, &len); for(i=0; i<=h->highest_lun; i++) { drv = &h->drv[i]; if (drv->block_size == 0) continue; vol_sz = drv->nr_blocks; vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR); vol_sz_frac *= 100; sector_div(vol_sz_frac, ENG_GIG_FACTOR); if (drv->raid_level > 5) drv->raid_level = RAID_UNKNOWN; size = sprintf(buffer+len, "cciss/c%dd%d:" "\t%4u.%02uGB\tRAID %s\n", ctlr, i, (int)vol_sz, (int)vol_sz_frac, raid_label[drv->raid_level]); pos += size; len += size; } *eof = 1; *start = buffer+offset; len -= offset; if (len>length) len = length; h->busy_configuring = 0; return len; } static int cciss_proc_write(struct file *file, const char __user *buffer, unsigned long count, void *data) { unsigned char cmd[80]; int len; #ifdef CONFIG_CISS_SCSI_TAPE ctlr_info_t *h = (ctlr_info_t *) data; int rc; #endif if (count > sizeof(cmd)-1) return -EINVAL; if (copy_from_user(cmd, buffer, count)) return -EFAULT; cmd[count] = '\0'; len = strlen(cmd); // above 3 lines ensure safety if (len && cmd[len-1] == '\n') cmd[--len] = '\0'; # ifdef CONFIG_CISS_SCSI_TAPE if (strcmp("engage scsi", cmd)==0) { rc = cciss_engage_scsi(h->ctlr); if (rc != 0) return -rc; return count; } /* might be nice to have "disengage" too, but it's not safely possible. (only 1 module use count, lock issues.) */ # endif return -EINVAL; } /* * Get us a file in /proc/cciss that says something about each controller. * Create /proc/cciss if it doesn't exist yet. */ static void __devinit cciss_procinit(int i) { struct proc_dir_entry *pde; if (proc_cciss == NULL) { proc_cciss = proc_mkdir("cciss", proc_root_driver); if (!proc_cciss) return; } pde = create_proc_read_entry(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH, proc_cciss, cciss_proc_get_info, hba[i]); pde->write_proc = cciss_proc_write; } #endif /* CONFIG_PROC_FS */ /* * For operations that cannot sleep, a command block is allocated at init, * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track * which ones are free or in use. For operations that can wait for kmalloc * to possible sleep, this routine can be called with get_from_pool set to 0. * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was. */ static CommandList_struct * cmd_alloc(ctlr_info_t *h, int get_from_pool) { CommandList_struct *c; int i; u64bit temp64; dma_addr_t cmd_dma_handle, err_dma_handle; if (!get_from_pool) { c = (CommandList_struct *) pci_alloc_consistent( h->pdev, sizeof(CommandList_struct), &cmd_dma_handle); if(c==NULL) return NULL; memset(c, 0, sizeof(CommandList_struct)); c->err_info = (ErrorInfo_struct *)pci_alloc_consistent( h->pdev, sizeof(ErrorInfo_struct), &err_dma_handle); if (c->err_info == NULL) { pci_free_consistent(h->pdev, sizeof(CommandList_struct), c, cmd_dma_handle); return NULL; } memset(c->err_info, 0, sizeof(ErrorInfo_struct)); } else /* get it out of the controllers pool */ { do { i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS); if (i == NR_CMDS) return NULL; } while(test_and_set_bit(i & (BITS_PER_LONG - 1), h->cmd_pool_bits+(i/BITS_PER_LONG)) != 0); #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss: using command buffer %d\n", i); #endif c = h->cmd_pool + i; memset(c, 0, sizeof(CommandList_struct)); cmd_dma_handle = h->cmd_pool_dhandle + i*sizeof(CommandList_struct); c->err_info = h->errinfo_pool + i; memset(c->err_info, 0, sizeof(ErrorInfo_struct)); err_dma_handle = h->errinfo_pool_dhandle + i*sizeof(ErrorInfo_struct); h->nr_allocs++; } c->busaddr = (__u32) cmd_dma_handle; temp64.val = (__u64) err_dma_handle; c->ErrDesc.Addr.lower = temp64.val32.lower; c->ErrDesc.Addr.upper = temp64.val32.upper; c->ErrDesc.Len = sizeof(ErrorInfo_struct); c->ctlr = h->ctlr; return c; } /* * Frees a command block that was previously allocated with cmd_alloc(). */ static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool) { int i; u64bit temp64; if( !got_from_pool) { temp64.val32.lower = c->ErrDesc.Addr.lower; temp64.val32.upper = c->ErrDesc.Addr.upper; pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct), c->err_info, (dma_addr_t) temp64.val); pci_free_consistent(h->pdev, sizeof(CommandList_struct), c, (dma_addr_t) c->busaddr); } else { i = c - h->cmd_pool; clear_bit(i&(BITS_PER_LONG-1), h->cmd_pool_bits+(i/BITS_PER_LONG)); h->nr_frees++; } } static inline ctlr_info_t *get_host(struct gendisk *disk) { return disk->queue->queuedata; } static inline drive_info_struct *get_drv(struct gendisk *disk) { return disk->private_data; } /* * Open. Make sure the device is really there. */ static int cciss_open(struct inode *inode, struct file *filep) { ctlr_info_t *host = get_host(inode->i_bdev->bd_disk); drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk); #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name); #endif /* CCISS_DEBUG */ /* * Root is allowed to open raw volume zero even if it's not configured * so array config can still work. Root is also allowed to open any * volume that has a LUN ID, so it can issue IOCTL to reread the * disk information. I don't think I really like this * but I'm already using way to many device nodes to claim another one * for "raw controller". */ if (drv->nr_blocks == 0) { if (iminor(inode) != 0) { /* not node 0? */ /* if not node 0 make sure it is a partition = 0 */ if (iminor(inode) & 0x0f) { return -ENXIO; /* if it is, make sure we have a LUN ID */ } else if (drv->LunID == 0) { return -ENXIO; } } if (!capable(CAP_SYS_ADMIN)) return -EPERM; } drv->usage_count++; host->usage_count++; return 0; } /* * Close. Sync first. */ static int cciss_release(struct inode *inode, struct file *filep) { ctlr_info_t *host = get_host(inode->i_bdev->bd_disk); drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk); #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss_release %s\n", inode->i_bdev->bd_disk->disk_name); #endif /* CCISS_DEBUG */ drv->usage_count--; host->usage_count--; return 0; } #ifdef CONFIG_COMPAT static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg) { int ret; lock_kernel(); ret = cciss_ioctl(f->f_dentry->d_inode, f, cmd, arg); unlock_kernel(); return ret; } static int cciss_ioctl32_passthru(struct file *f, unsigned cmd, unsigned long arg); static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd, unsigned long arg); static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg) { switch (cmd) { case CCISS_GETPCIINFO: case CCISS_GETINTINFO: case CCISS_SETINTINFO: case CCISS_GETNODENAME: case CCISS_SETNODENAME: case CCISS_GETHEARTBEAT: case CCISS_GETBUSTYPES: case CCISS_GETFIRMVER: case CCISS_GETDRIVVER: case CCISS_REVALIDVOLS: case CCISS_DEREGDISK: case CCISS_REGNEWDISK: case CCISS_REGNEWD: case CCISS_RESCANDISK: case CCISS_GETLUNINFO: return do_ioctl(f, cmd, arg); case CCISS_PASSTHRU32: return cciss_ioctl32_passthru(f, cmd, arg); case CCISS_BIG_PASSTHRU32: return cciss_ioctl32_big_passthru(f, cmd, arg); default: return -ENOIOCTLCMD; } } static int cciss_ioctl32_passthru(struct file *f, unsigned cmd, unsigned long arg) { IOCTL32_Command_struct __user *arg32 = (IOCTL32_Command_struct __user *) arg; IOCTL_Command_struct arg64; IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); int err; u32 cp; err = 0; err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info)); err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request)); err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info)); err |= get_user(arg64.buf_size, &arg32->buf_size); err |= get_user(cp, &arg32->buf); arg64.buf = compat_ptr(cp); err |= copy_to_user(p, &arg64, sizeof(arg64)); if (err) return -EFAULT; err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long) p); if (err) return err; err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info)); if (err) return -EFAULT; return err; } static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd, unsigned long arg) { BIG_IOCTL32_Command_struct __user *arg32 = (BIG_IOCTL32_Command_struct __user *) arg; BIG_IOCTL_Command_struct arg64; BIG_IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); int err; u32 cp; err = 0; err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info)); err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request)); err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info)); err |= get_user(arg64.buf_size, &arg32->buf_size); err |= get_user(arg64.malloc_size, &arg32->malloc_size); err |= get_user(cp, &arg32->buf); arg64.buf = compat_ptr(cp); err |= copy_to_user(p, &arg64, sizeof(arg64)); if (err) return -EFAULT; err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long) p); if (err) return err; err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info)); if (err) return -EFAULT; return err; } #endif /* * ioctl */ static int cciss_ioctl(struct inode *inode, struct file *filep, unsigned int cmd, unsigned long arg) { struct block_device *bdev = inode->i_bdev; struct gendisk *disk = bdev->bd_disk; ctlr_info_t *host = get_host(disk); drive_info_struct *drv = get_drv(disk); int ctlr = host->ctlr; void __user *argp = (void __user *)arg; #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg); #endif /* CCISS_DEBUG */ switch(cmd) { case HDIO_GETGEO: { struct hd_geometry driver_geo; if (drv->cylinders) { driver_geo.heads = drv->heads; driver_geo.sectors = drv->sectors; driver_geo.cylinders = drv->cylinders; } else return -ENXIO; driver_geo.start= get_start_sect(inode->i_bdev); if (copy_to_user(argp, &driver_geo, sizeof(struct hd_geometry))) return -EFAULT; return(0); } case CCISS_GETPCIINFO: { cciss_pci_info_struct pciinfo; if (!arg) return -EINVAL; pciinfo.domain = pci_domain_nr(host->pdev->bus); pciinfo.bus = host->pdev->bus->number; pciinfo.dev_fn = host->pdev->devfn; pciinfo.board_id = host->board_id; if (copy_to_user(argp, &pciinfo, sizeof( cciss_pci_info_struct ))) return -EFAULT; return(0); } case CCISS_GETINTINFO: { cciss_coalint_struct intinfo; if (!arg) return -EINVAL; intinfo.delay = readl(&host->cfgtable->HostWrite.CoalIntDelay); intinfo.count = readl(&host->cfgtable->HostWrite.CoalIntCount); if (copy_to_user(argp, &intinfo, sizeof( cciss_coalint_struct ))) return -EFAULT; return(0); } case CCISS_SETINTINFO: { cciss_coalint_struct intinfo; unsigned long flags; int i; if (!arg) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&intinfo, argp, sizeof( cciss_coalint_struct))) return -EFAULT; if ( (intinfo.delay == 0 ) && (intinfo.count == 0)) { // printk("cciss_ioctl: delay and count cannot be 0\n"); return( -EINVAL); } spin_lock_irqsave(CCISS_LOCK(ctlr), flags); /* Update the field, and then ring the doorbell */ writel( intinfo.delay, &(host->cfgtable->HostWrite.CoalIntDelay)); writel( intinfo.count, &(host->cfgtable->HostWrite.CoalIntCount)); writel( CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL); for(i=0;i<MAX_IOCTL_CONFIG_WAIT;i++) { if (!(readl(host->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) break; /* delay and try again */ udelay(1000); } spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); if (i >= MAX_IOCTL_CONFIG_WAIT) return -EAGAIN; return(0); } case CCISS_GETNODENAME: { NodeName_type NodeName; int i; if (!arg) return -EINVAL; for(i=0;i<16;i++) NodeName[i] = readb(&host->cfgtable->ServerName[i]); if (copy_to_user(argp, NodeName, sizeof( NodeName_type))) return -EFAULT; return(0); } case CCISS_SETNODENAME: { NodeName_type NodeName; unsigned long flags; int i; if (!arg) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(NodeName, argp, sizeof( NodeName_type))) return -EFAULT; spin_lock_irqsave(CCISS_LOCK(ctlr), flags); /* Update the field, and then ring the doorbell */ for(i=0;i<16;i++) writeb( NodeName[i], &host->cfgtable->ServerName[i]); writel( CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL); for(i=0;i<MAX_IOCTL_CONFIG_WAIT;i++) { if (!(readl(host->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) break; /* delay and try again */ udelay(1000); } spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); if (i >= MAX_IOCTL_CONFIG_WAIT) return -EAGAIN; return(0); } case CCISS_GETHEARTBEAT: { Heartbeat_type heartbeat; if (!arg) return -EINVAL; heartbeat = readl(&host->cfgtable->HeartBeat); if (copy_to_user(argp, &heartbeat, sizeof( Heartbeat_type))) return -EFAULT; return(0); } case CCISS_GETBUSTYPES: { BusTypes_type BusTypes; if (!arg) return -EINVAL; BusTypes = readl(&host->cfgtable->BusTypes); if (copy_to_user(argp, &BusTypes, sizeof( BusTypes_type) )) return -EFAULT; return(0); } case CCISS_GETFIRMVER: { FirmwareVer_type firmware; if (!arg) return -EINVAL; memcpy(firmware, host->firm_ver, 4); if (copy_to_user(argp, firmware, sizeof( FirmwareVer_type))) return -EFAULT; return(0); } case CCISS_GETDRIVVER: { DriverVer_type DriverVer = DRIVER_VERSION; if (!arg) return -EINVAL; if (copy_to_user(argp, &DriverVer, sizeof( DriverVer_type) )) return -EFAULT; return(0); } case CCISS_REVALIDVOLS: if (bdev != bdev->bd_contains || drv != host->drv) return -ENXIO; return revalidate_allvol(host); case CCISS_GETLUNINFO: { LogvolInfo_struct luninfo; luninfo.LunID = drv->LunID; luninfo.num_opens = drv->usage_count; luninfo.num_parts = 0; if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct))) return -EFAULT; return(0); } case CCISS_DEREGDISK: return deregister_disk(disk); case CCISS_REGNEWD: return register_new_disk(host); case CCISS_PASSTHRU: { IOCTL_Command_struct iocommand; CommandList_struct *c; char *buff = NULL; u64bit temp64; unsigned long flags; DECLARE_COMPLETION(wait); if (!arg) return -EINVAL; if (!capable(CAP_SYS_RAWIO)) return -EPERM; if (copy_from_user(&iocommand, argp, sizeof( IOCTL_Command_struct) )) return -EFAULT; if((iocommand.buf_size < 1) && (iocommand.Request.Type.Direction != XFER_NONE)) { return -EINVAL; } #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */ /* Check kmalloc limits */ if(iocommand.buf_size > 128000) return -EINVAL; #endif if(iocommand.buf_size > 0) { buff = kmalloc(iocommand.buf_size, GFP_KERNEL); if( buff == NULL) return -EFAULT; } if (iocommand.Request.Type.Direction == XFER_WRITE) { /* Copy the data into the buffer we created */ if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) { kfree(buff); return -EFAULT; } } else { memset(buff, 0, iocommand.buf_size); } if ((c = cmd_alloc(host , 0)) == NULL) { kfree(buff); return -ENOMEM; } // Fill in the command type c->cmd_type = CMD_IOCTL_PEND; // Fill in Command Header c->Header.ReplyQueue = 0; // unused in simple mode if( iocommand.buf_size > 0) // buffer to fill { c->Header.SGList = 1; c->Header.SGTotal= 1; } else // no buffers to fill { c->Header.SGList = 0; c->Header.SGTotal= 0; } c->Header.LUN = iocommand.LUN_info; c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag // Fill in Request block c->Request = iocommand.Request; // Fill in the scatter gather information if (iocommand.buf_size > 0 ) { temp64.val = pci_map_single( host->pdev, buff, iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); c->SG[0].Addr.lower = temp64.val32.lower; c->SG[0].Addr.upper = temp64.val32.upper; c->SG[0].Len = iocommand.buf_size; c->SG[0].Ext = 0; // we are not chaining } c->waiting = &wait; /* Put the request on the tail of the request queue */ spin_lock_irqsave(CCISS_LOCK(ctlr), flags); addQ(&host->reqQ, c); host->Qdepth++; start_io(host); spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); wait_for_completion(&wait); /* unlock the buffers from DMA */ temp64.val32.lower = c->SG[0].Addr.lower; temp64.val32.upper = c->SG[0].Addr.upper; pci_unmap_single( host->pdev, (dma_addr_t) temp64.val, iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); /* Copy the error information out */ iocommand.error_info = *(c->err_info); if ( copy_to_user(argp, &iocommand, sizeof( IOCTL_Command_struct) ) ) { kfree(buff); cmd_free(host, c, 0); return( -EFAULT); } if (iocommand.Request.Type.Direction == XFER_READ) { /* Copy the data out of the buffer we created */ if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { kfree(buff); cmd_free(host, c, 0); return -EFAULT; } } kfree(buff); cmd_free(host, c, 0); return(0); } case CCISS_BIG_PASSTHRU: { BIG_IOCTL_Command_struct *ioc; CommandList_struct *c; unsigned char **buff = NULL; int *buff_size = NULL; u64bit temp64; unsigned long flags; BYTE sg_used = 0; int status = 0; int i; DECLARE_COMPLETION(wait); __u32 left; __u32 sz; BYTE __user *data_ptr; if (!arg) return -EINVAL; if (!capable(CAP_SYS_RAWIO)) return -EPERM; ioc = (BIG_IOCTL_Command_struct *) kmalloc(sizeof(*ioc), GFP_KERNEL); if (!ioc) { status = -ENOMEM; goto cleanup1; } if (copy_from_user(ioc, argp, sizeof(*ioc))) { status = -EFAULT; goto cleanup1; } if ((ioc->buf_size < 1) && (ioc->Request.Type.Direction != XFER_NONE)) { status = -EINVAL; goto cleanup1; } /* Check kmalloc limits using all SGs */ if (ioc->malloc_size > MAX_KMALLOC_SIZE) { status = -EINVAL; goto cleanup1; } if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { status = -EINVAL; goto cleanup1; } buff = (unsigned char **) kmalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); if (!buff) { status = -ENOMEM; goto cleanup1; } memset(buff, 0, MAXSGENTRIES); buff_size = (int *) kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); if (!buff_size) { status = -ENOMEM; goto cleanup1; } left = ioc->buf_size; data_ptr = ioc->buf; while (left) { sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; buff_size[sg_used] = sz; buff[sg_used] = kmalloc(sz, GFP_KERNEL); if (buff[sg_used] == NULL) { status = -ENOMEM; goto cleanup1; } if (ioc->Request.Type.Direction == XFER_WRITE && copy_from_user(buff[sg_used], data_ptr, sz)) { status = -ENOMEM; goto cleanup1; } else { memset(buff[sg_used], 0, sz); } left -= sz; data_ptr += sz; sg_used++; } if ((c = cmd_alloc(host , 0)) == NULL) { status = -ENOMEM; goto cleanup1; } c->cmd_type = CMD_IOCTL_PEND; c->Header.ReplyQueue = 0; if( ioc->buf_size > 0) { c->Header.SGList = sg_used; c->Header.SGTotal= sg_used; } else { c->Header.SGList = 0; c->Header.SGTotal= 0; } c->Header.LUN = ioc->LUN_info; c->Header.Tag.lower = c->busaddr; c->Request = ioc->Request; if (ioc->buf_size > 0 ) { int i; for(i=0; i<sg_used; i++) { temp64.val = pci_map_single( host->pdev, buff[i], buff_size[i], PCI_DMA_BIDIRECTIONAL); c->SG[i].Addr.lower = temp64.val32.lower; c->SG[i].Addr.upper = temp64.val32.upper; c->SG[i].Len = buff_size[i]; c->SG[i].Ext = 0; /* we are not chaining */ } } c->waiting = &wait; /* Put the request on the tail of the request queue */ spin_lock_irqsave(CCISS_LOCK(ctlr), flags); addQ(&host->reqQ, c); host->Qdepth++; start_io(host); spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); wait_for_completion(&wait); /* unlock the buffers from DMA */ for(i=0; i<sg_used; i++) { temp64.val32.lower = c->SG[i].Addr.lower; temp64.val32.upper = c->SG[i].Addr.upper; pci_unmap_single( host->pdev, (dma_addr_t) temp64.val, buff_size[i], PCI_DMA_BIDIRECTIONAL); } /* Copy the error information out */ ioc->error_info = *(c->err_info); if (copy_to_user(argp, ioc, sizeof(*ioc))) { cmd_free(host, c, 0); status = -EFAULT; goto cleanup1; } if (ioc->Request.Type.Direction == XFER_READ) { /* Copy the data out of the buffer we created */ BYTE __user *ptr = ioc->buf; for(i=0; i< sg_used; i++) { if (copy_to_user(ptr, buff[i], buff_size[i])) { cmd_free(host, c, 0); status = -EFAULT; goto cleanup1; } ptr += buff_size[i]; } } cmd_free(host, c, 0); status = 0; cleanup1: if (buff) { for(i=0; i<sg_used; i++) if(buff[i] != NULL) kfree(buff[i]); kfree(buff); } if (buff_size) kfree(buff_size); if (ioc) kfree(ioc); return(status); } default: return -ENOTTY; } } /* * revalidate_allvol is for online array config utilities. After a * utility reconfigures the drives in the array, it can use this function * (through an ioctl) to make the driver zap any previous disk structs for * that controller and get new ones. * * Right now I'm using the getgeometry() function to do this, but this * function should probably be finer grained and allow you to revalidate one * particualar logical volume (instead of all of them on a particular * controller). */ static int revalidate_allvol(ctlr_info_t *host) { int ctlr = host->ctlr, i; unsigned long flags; spin_lock_irqsave(CCISS_LOCK(ctlr), flags); if (host->usage_count > 1) { spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); printk(KERN_WARNING "cciss: Device busy for volume" " revalidation (usage=%d)\n", host->usage_count); return -EBUSY; } host->usage_count++; spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); for(i=0; i< NWD; i++) { struct gendisk *disk = host->gendisk[i]; if (disk->flags & GENHD_FL_UP) del_gendisk(disk); } /* * Set the partition and block size structures for all volumes * on this controller to zero. We will reread all of this data */ memset(host->drv, 0, sizeof(drive_info_struct) * CISS_MAX_LUN); /* * Tell the array controller not to give us any interrupts while * we check the new geometry. Then turn interrupts back on when * we're done. */ host->access.set_intr_mask(host, CCISS_INTR_OFF); cciss_getgeometry(ctlr); host->access.set_intr_mask(host, CCISS_INTR_ON); /* Loop through each real device */ for (i = 0; i < NWD; i++) { struct gendisk *disk = host->gendisk[i]; drive_info_struct *drv = &(host->drv[i]); /* we must register the controller even if no disks exist */ /* this is for the online array utilities */ if (!drv->heads && i) continue; blk_queue_hardsect_size(host->queue, drv->block_size); set_capacity(disk, drv->nr_blocks); add_disk(disk); } host->usage_count--; return 0; } static int deregister_disk(struct gendisk *disk) { unsigned long flags; ctlr_info_t *h = get_host(disk); drive_info_struct *drv = get_drv(disk); int ctlr = h->ctlr; if (!capable(CAP_SYS_RAWIO)) return -EPERM; spin_lock_irqsave(CCISS_LOCK(ctlr), flags); /* make sure logical volume is NOT is use */ if( drv->usage_count > 1) { spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); return -EBUSY; } drv->usage_count++; spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); /* invalidate the devices and deregister the disk */ if (disk->flags & GENHD_FL_UP) del_gendisk(disk); /* check to see if it was the last disk */ if (drv == h->drv + h->highest_lun) { /* if so, find the new hightest lun */ int i, newhighest =-1; for(i=0; i<h->highest_lun; i++) { /* if the disk has size > 0, it is available */ if (h->drv[i].nr_blocks) newhighest = i; } h->highest_lun = newhighest; } --h->num_luns; /* zero out the disk size info */ drv->nr_blocks = 0; drv->block_size = 0; drv->cylinders = 0; drv->LunID = 0; return(0); } static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller, 1: address logical volume log_unit, 2: periph device address is scsi3addr */ unsigned int log_unit, __u8 page_code, unsigned char *scsi3addr, int cmd_type) { ctlr_info_t *h= hba[ctlr]; u64bit buff_dma_handle; int status = IO_OK; c->cmd_type = CMD_IOCTL_PEND; c->Header.ReplyQueue = 0; if( buff != NULL) { c->Header.SGList = 1; c->Header.SGTotal= 1; } else { c->Header.SGList = 0; c->Header.SGTotal= 0; } c->Header.Tag.lower = c->busaddr; c->Request.Type.Type = cmd_type; if (cmd_type == TYPE_CMD) { switch(cmd) { case CISS_INQUIRY: /* If the logical unit number is 0 then, this is going to controller so It's a physical command mode = 0 target = 0. So we have nothing to write. otherwise, if use_unit_num == 1, mode = 1(volume set addressing) target = LUNID otherwise, if use_unit_num == 2, mode = 0(periph dev addr) target = scsi3addr */ if (use_unit_num == 1) { c->Header.LUN.LogDev.VolId= h->drv[log_unit].LunID; c->Header.LUN.LogDev.Mode = 1; } else if (use_unit_num == 2) { memcpy(c->Header.LUN.LunAddrBytes,scsi3addr,8); c->Header.LUN.LogDev.Mode = 0; } /* are we trying to read a vital product page */ if(page_code != 0) { c->Request.CDB[1] = 0x01; c->Request.CDB[2] = page_code; } c->Request.CDBLen = 6; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; c->Request.Timeout = 0; c->Request.CDB[0] = CISS_INQUIRY; c->Request.CDB[4] = size & 0xFF; break; case CISS_REPORT_LOG: case CISS_REPORT_PHYS: /* Talking to controller so It's a physical command mode = 00 target = 0. Nothing to write. */ c->Request.CDBLen = 12; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB c->Request.CDB[7] = (size >> 16) & 0xFF; c->Request.CDB[8] = (size >> 8) & 0xFF; c->Request.CDB[9] = size & 0xFF; break; case CCISS_READ_CAPACITY: c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID; c->Header.LUN.LogDev.Mode = 1; c->Request.CDBLen = 10; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; break; case CCISS_CACHE_FLUSH: c->Request.CDBLen = 12; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_WRITE; c->Request.Timeout = 0; c->Request.CDB[0] = BMIC_WRITE; c->Request.CDB[6] = BMIC_CACHE_FLUSH; break; default: printk(KERN_WARNING "cciss%d: Unknown Command 0x%c\n", ctlr, cmd); return(IO_ERROR); } } else if (cmd_type == TYPE_MSG) { switch (cmd) { case 3: /* No-Op message */ c->Request.CDBLen = 1; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_WRITE; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; break; default: printk(KERN_WARNING "cciss%d: unknown message type %d\n", ctlr, cmd); return IO_ERROR; } } else { printk(KERN_WARNING "cciss%d: unknown command type %d\n", ctlr, cmd_type); return IO_ERROR; } /* Fill in the scatter gather information */ if (size > 0) { buff_dma_handle.val = (__u64) pci_map_single(h->pdev, buff, size, PCI_DMA_BIDIRECTIONAL); c->SG[0].Addr.lower = buff_dma_handle.val32.lower; c->SG[0].Addr.upper = buff_dma_handle.val32.upper; c->SG[0].Len = size; c->SG[0].Ext = 0; /* we are not chaining */ } return status; } static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, unsigned int log_unit, __u8 page_code, int cmd_type) { ctlr_info_t *h = hba[ctlr]; CommandList_struct *c; u64bit buff_dma_handle; unsigned long flags; int return_status; DECLARE_COMPLETION(wait); if ((c = cmd_alloc(h , 0)) == NULL) return -ENOMEM; return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num, log_unit, page_code, NULL, cmd_type); if (return_status != IO_OK) { cmd_free(h, c, 0); return return_status; } resend_cmd2: c->waiting = &wait; /* Put the request on the tail of the queue and send it */ spin_lock_irqsave(CCISS_LOCK(ctlr), flags); addQ(&h->reqQ, c); h->Qdepth++; start_io(h); spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); wait_for_completion(&wait); if(c->err_info->CommandStatus != 0) { /* an error has occurred */ switch(c->err_info->CommandStatus) { case CMD_TARGET_STATUS: printk(KERN_WARNING "cciss: cmd %p has " " completed with errors\n", c); if( c->err_info->ScsiStatus) { printk(KERN_WARNING "cciss: cmd %p " "has SCSI Status = %x\n", c, c->err_info->ScsiStatus); } break; case CMD_DATA_UNDERRUN: case CMD_DATA_OVERRUN: /* expected for inquire and report lun commands */ break; case CMD_INVALID: printk(KERN_WARNING "cciss: Cmd %p is " "reported invalid\n", c); return_status = IO_ERROR; break; case CMD_PROTOCOL_ERR: printk(KERN_WARNING "cciss: cmd %p has " "protocol error \n", c); return_status = IO_ERROR; break; case CMD_HARDWARE_ERR: printk(KERN_WARNING "cciss: cmd %p had " " hardware error\n", c); return_status = IO_ERROR; break; case CMD_CONNECTION_LOST: printk(KERN_WARNING "cciss: cmd %p had " "connection lost\n", c); return_status = IO_ERROR; break; case CMD_ABORTED: printk(KERN_WARNING "cciss: cmd %p was " "aborted\n", c); return_status = IO_ERROR; break; case CMD_ABORT_FAILED: printk(KERN_WARNING "cciss: cmd %p reports " "abort failed\n", c); return_status = IO_ERROR; break; case CMD_UNSOLICITED_ABORT: printk(KERN_WARNING "cciss%d: unsolicited abort %p\n", ctlr, c); if (c->retry_count < MAX_CMD_RETRIES) { printk(KERN_WARNING "cciss%d: retrying %p\n", ctlr, c); c->retry_count++; /* erase the old error information */ memset(c->err_info, 0, sizeof(ErrorInfo_struct)); return_status = IO_OK; INIT_COMPLETION(wait); goto resend_cmd2; } return_status = IO_ERROR; break; default: printk(KERN_WARNING "cciss: cmd %p returned " "unknown status %x\n", c, c->err_info->CommandStatus); return_status = IO_ERROR; } } /* unlock the buffers from DMA */ pci_unmap_single( h->pdev, (dma_addr_t) buff_dma_handle.val, size, PCI_DMA_BIDIRECTIONAL); cmd_free(h, c, 0); return(return_status); } static void cciss_geometry_inquiry(int ctlr, int logvol, int withirq, unsigned int total_size, unsigned int block_size, InquiryData_struct *inq_buff, drive_info_struct *drv) { int return_code; memset(inq_buff, 0, sizeof(InquiryData_struct)); if (withirq) return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff, sizeof(*inq_buff), 1, logvol ,0xC1, TYPE_CMD); else return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff, sizeof(*inq_buff), 1, logvol ,0xC1, NULL, TYPE_CMD); if (return_code == IO_OK) { if(inq_buff->data_byte[8] == 0xFF) { printk(KERN_WARNING "cciss: reading geometry failed, volume " "does not support reading geometry\n"); drv->block_size = block_size; drv->nr_blocks = total_size; drv->heads = 255; drv->sectors = 32; // Sectors per track drv->cylinders = total_size / 255 / 32; } else { unsigned int t; drv->block_size = block_size; drv->nr_blocks = total_size; drv->heads = inq_buff->data_byte[6]; drv->sectors = inq_buff->data_byte[7]; drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8; drv->cylinders += inq_buff->data_byte[5]; drv->raid_level = inq_buff->data_byte[8]; t = drv->heads * drv->sectors; if (t > 1) { drv->cylinders = total_size/t; } } } else { /* Get geometry failed */ printk(KERN_WARNING "cciss: reading geometry failed\n"); } printk(KERN_INFO " heads= %d, sectors= %d, cylinders= %d\n\n", drv->heads, drv->sectors, drv->cylinders); } static void cciss_read_capacity(int ctlr, int logvol, ReadCapdata_struct *buf, int withirq, unsigned int *total_size, unsigned int *block_size) { int return_code; memset(buf, 0, sizeof(*buf)); if (withirq) return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf, sizeof(*buf), 1, logvol, 0, TYPE_CMD); else return_code = sendcmd(CCISS_READ_CAPACITY, ctlr, buf, sizeof(*buf), 1, logvol, 0, NULL, TYPE_CMD); if (return_code == IO_OK) { *total_size = be32_to_cpu(*((__be32 *) &buf->total_size[0]))+1; *block_size = be32_to_cpu(*((__be32 *) &buf->block_size[0])); } else { /* read capacity command failed */ printk(KERN_WARNING "cciss: read capacity failed\n"); *total_size = 0; *block_size = BLOCK_SIZE; } printk(KERN_INFO " blocks= %u block_size= %d\n", *total_size, *block_size); return; } static int register_new_disk(ctlr_info_t *h) { struct gendisk *disk; int ctlr = h->ctlr; int i; int num_luns; int logvol; int new_lun_found = 0; int new_lun_index = 0; int free_index_found = 0; int free_index = 0; ReportLunData_struct *ld_buff = NULL; ReadCapdata_struct *size_buff = NULL; InquiryData_struct *inq_buff = NULL; int return_code; int listlength = 0; __u32 lunid = 0; unsigned int block_size; unsigned int total_size; if (!capable(CAP_SYS_RAWIO)) return -EPERM; /* if we have no space in our disk array left to add anything */ if( h->num_luns >= CISS_MAX_LUN) return -EINVAL; ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL); if (ld_buff == NULL) goto mem_msg; memset(ld_buff, 0, sizeof(ReportLunData_struct)); size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL); if (size_buff == NULL) goto mem_msg; inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL); if (inq_buff == NULL) goto mem_msg; return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff, sizeof(ReportLunData_struct), 0, 0, 0, TYPE_CMD); if( return_code == IO_OK) { // printk("LUN Data\n--------------------------\n"); listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24; listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16; listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8; listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]); } else /* reading number of logical volumes failed */ { printk(KERN_WARNING "cciss: report logical volume" " command failed\n"); listlength = 0; goto free_err; } num_luns = listlength / 8; // 8 bytes pre entry if (num_luns > CISS_MAX_LUN) { num_luns = CISS_MAX_LUN; } #ifdef CCISS_DEBUG printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0], ld_buff->LUNListLength[1], ld_buff->LUNListLength[2], ld_buff->LUNListLength[3], num_luns); #endif for(i=0; i< num_luns; i++) { int j; int lunID_found = 0; lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3])) << 24; lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2])) << 16; lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1])) << 8; lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]); /* check to see if this is a new lun */ for(j=0; j <= h->highest_lun; j++) { #ifdef CCISS_DEBUG printk("Checking %d %x against %x\n", j,h->drv[j].LunID, lunid); #endif /* CCISS_DEBUG */ if (h->drv[j].LunID == lunid) { lunID_found = 1; break; } } if( lunID_found == 1) continue; else { /* It is the new lun we have been looking for */ #ifdef CCISS_DEBUG printk("new lun found at %d\n", i); #endif /* CCISS_DEBUG */ new_lun_index = i; new_lun_found = 1; break; } } if (!new_lun_found) { printk(KERN_WARNING "cciss: New Logical Volume not found\n"); goto free_err; } /* Now find the free index */ for(i=0; i <CISS_MAX_LUN; i++) { #ifdef CCISS_DEBUG printk("Checking Index %d\n", i); #endif /* CCISS_DEBUG */ if(h->drv[i].LunID == 0) { #ifdef CCISS_DEBUG printk("free index found at %d\n", i); #endif /* CCISS_DEBUG */ free_index_found = 1; free_index = i; break; } } if (!free_index_found) { printk(KERN_WARNING "cciss: unable to find free slot for disk\n"); goto free_err; } logvol = free_index; h->drv[logvol].LunID = lunid; /* there could be gaps in lun numbers, track hightest */ if(h->highest_lun < lunid) h->highest_lun = logvol; cciss_read_capacity(ctlr, logvol, size_buff, 1, &total_size, &block_size); cciss_geometry_inquiry(ctlr, logvol, 1, total_size, block_size, inq_buff, &h->drv[logvol]); h->drv[logvol].usage_count = 0; ++h->num_luns; /* setup partitions per disk */ disk = h->gendisk[logvol]; set_capacity(disk, h->drv[logvol].nr_blocks); /* if it's the controller it's already added */ if(logvol) add_disk(disk); freeret: kfree(ld_buff); kfree(size_buff); kfree(inq_buff); return (logvol); mem_msg: printk(KERN_ERR "cciss: out of memory\n"); free_err: logvol = -1; goto freeret; } static int cciss_revalidate(struct gendisk *disk) { ctlr_info_t *h = get_host(disk); drive_info_struct *drv = get_drv(disk); int logvol; int FOUND=0; unsigned int block_size; unsigned int total_size; ReadCapdata_struct *size_buff = NULL; InquiryData_struct *inq_buff = NULL; for(logvol=0; logvol < CISS_MAX_LUN; logvol++) { if(h->drv[logvol].LunID == drv->LunID) { FOUND=1; break; } } if (!FOUND) return 1; size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL); if (size_buff == NULL) { printk(KERN_WARNING "cciss: out of memory\n"); return 1; } inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL); if (inq_buff == NULL) { printk(KERN_WARNING "cciss: out of memory\n"); kfree(size_buff); return 1; } cciss_read_capacity(h->ctlr, logvol, size_buff, 1, &total_size, &block_size); cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size, inq_buff, drv); blk_queue_hardsect_size(h->queue, drv->block_size); set_capacity(disk, drv->nr_blocks); kfree(size_buff); kfree(inq_buff); return 0; } /* * Wait polling for a command to complete. * The memory mapped FIFO is polled for the completion. * Used only at init time, interrupts from the HBA are disabled. */ static unsigned long pollcomplete(int ctlr) { unsigned long done; int i; /* Wait (up to 20 seconds) for a command to complete */ for (i = 20 * HZ; i > 0; i--) { done = hba[ctlr]->access.command_completed(hba[ctlr]); if (done == FIFO_EMPTY) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(1); } else return (done); } /* Invalid address to tell caller we ran out of time */ return 1; } /* * Send a command to the controller, and wait for it to complete. * Only used at init time. */ static int sendcmd( __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller, 1: address logical volume log_unit, 2: periph device address is scsi3addr */ unsigned int log_unit, __u8 page_code, unsigned char *scsi3addr, int cmd_type) { CommandList_struct *c; int i; unsigned long complete; ctlr_info_t *info_p= hba[ctlr]; u64bit buff_dma_handle; int status; if ((c = cmd_alloc(info_p, 1)) == NULL) { printk(KERN_WARNING "cciss: unable to get memory"); return(IO_ERROR); } status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num, log_unit, page_code, scsi3addr, cmd_type); if (status != IO_OK) { cmd_free(info_p, c, 1); return status; } resend_cmd1: /* * Disable interrupt */ #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss: turning intr off\n"); #endif /* CCISS_DEBUG */ info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF); /* Make sure there is room in the command FIFO */ /* Actually it should be completely empty at this time. */ for (i = 200000; i > 0; i--) { /* if fifo isn't full go */ if (!(info_p->access.fifo_full(info_p))) { break; } udelay(10); printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full," " waiting!\n", ctlr); } /* * Send the cmd */ info_p->access.submit_command(info_p, c); complete = pollcomplete(ctlr); #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss: command completed\n"); #endif /* CCISS_DEBUG */ if (complete != 1) { if ( (complete & CISS_ERROR_BIT) && (complete & ~CISS_ERROR_BIT) == c->busaddr) { /* if data overrun or underun on Report command ignore it */ if (((c->Request.CDB[0] == CISS_REPORT_LOG) || (c->Request.CDB[0] == CISS_REPORT_PHYS) || (c->Request.CDB[0] == CISS_INQUIRY)) && ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) || (c->err_info->CommandStatus == CMD_DATA_UNDERRUN) )) { complete = c->busaddr; } else { if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) { printk(KERN_WARNING "cciss%d: " "unsolicited abort %p\n", ctlr, c); if (c->retry_count < MAX_CMD_RETRIES) { printk(KERN_WARNING "cciss%d: retrying %p\n", ctlr, c); c->retry_count++; /* erase the old error */ /* information */ memset(c->err_info, 0, sizeof(ErrorInfo_struct)); goto resend_cmd1; } else { printk(KERN_WARNING "cciss%d: retried %p too " "many times\n", ctlr, c); status = IO_ERROR; goto cleanup1; } } printk(KERN_WARNING "ciss ciss%d: sendcmd" " Error %x \n", ctlr, c->err_info->CommandStatus); printk(KERN_WARNING "ciss ciss%d: sendcmd" " offensive info\n" " size %x\n num %x value %x\n", ctlr, c->err_info->MoreErrInfo.Invalid_Cmd.offense_size, c->err_info->MoreErrInfo.Invalid_Cmd.offense_num, c->err_info->MoreErrInfo.Invalid_Cmd.offense_value); status = IO_ERROR; goto cleanup1; } } if (complete != c->busaddr) { printk( KERN_WARNING "cciss cciss%d: SendCmd " "Invalid command list address returned! (%lx)\n", ctlr, complete); status = IO_ERROR; goto cleanup1; } } else { printk( KERN_WARNING "cciss cciss%d: SendCmd Timeout out, " "No command list address returned!\n", ctlr); status = IO_ERROR; } cleanup1: /* unlock the data buffer from DMA */ pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val, size, PCI_DMA_BIDIRECTIONAL); cmd_free(info_p, c, 1); return (status); } /* * Map (physical) PCI mem into (virtual) kernel space */ static void __iomem *remap_pci_mem(ulong base, ulong size) { ulong page_base = ((ulong) base) & PAGE_MASK; ulong page_offs = ((ulong) base) - page_base; void __iomem *page_remapped = ioremap(page_base, page_offs+size); return page_remapped ? (page_remapped + page_offs) : NULL; } /* * Takes jobs of the Q and sends them to the hardware, then puts it on * the Q to wait for completion. */ static void start_io( ctlr_info_t *h) { CommandList_struct *c; while(( c = h->reqQ) != NULL ) { /* can't do anything if fifo is full */ if ((h->access.fifo_full(h))) { printk(KERN_WARNING "cciss: fifo full\n"); break; } /* Get the frist entry from the Request Q */ removeQ(&(h->reqQ), c); h->Qdepth--; /* Tell the controller execute command */ h->access.submit_command(h, c); /* Put job onto the completed Q */ addQ (&(h->cmpQ), c); } } static inline void complete_buffers(struct bio *bio, int status) { while (bio) { struct bio *xbh = bio->bi_next; int nr_sectors = bio_sectors(bio); bio->bi_next = NULL; blk_finished_io(len); bio_endio(bio, nr_sectors << 9, status ? 0 : -EIO); bio = xbh; } } /* Assumes that CCISS_LOCK(h->ctlr) is held. */ /* Zeros out the error record and then resends the command back */ /* to the controller */ static inline void resend_cciss_cmd( ctlr_info_t *h, CommandList_struct *c) { /* erase the old error information */ memset(c->err_info, 0, sizeof(ErrorInfo_struct)); /* add it to software queue and then send it to the controller */ addQ(&(h->reqQ),c); h->Qdepth++; if(h->Qdepth > h->maxQsinceinit) h->maxQsinceinit = h->Qdepth; start_io(h); } /* checks the status of the job and calls complete buffers to mark all * buffers for the completed job. */ static inline void complete_command( ctlr_info_t *h, CommandList_struct *cmd, int timeout) { int status = 1; int i; int retry_cmd = 0; u64bit temp64; if (timeout) status = 0; if(cmd->err_info->CommandStatus != 0) { /* an error has occurred */ switch(cmd->err_info->CommandStatus) { unsigned char sense_key; case CMD_TARGET_STATUS: status = 0; if( cmd->err_info->ScsiStatus == 0x02) { printk(KERN_WARNING "cciss: cmd %p " "has CHECK CONDITION " " byte 2 = 0x%x\n", cmd, cmd->err_info->SenseInfo[2] ); /* check the sense key */ sense_key = 0xf & cmd->err_info->SenseInfo[2]; /* no status or recovered error */ if((sense_key == 0x0) || (sense_key == 0x1)) { status = 1; } } else { printk(KERN_WARNING "cciss: cmd %p " "has SCSI Status 0x%x\n", cmd, cmd->err_info->ScsiStatus); } break; case CMD_DATA_UNDERRUN: printk(KERN_WARNING "cciss: cmd %p has" " completed with data underrun " "reported\n", cmd); break; case CMD_DATA_OVERRUN: printk(KERN_WARNING "cciss: cmd %p has" " completed with data overrun " "reported\n", cmd); break; case CMD_INVALID: printk(KERN_WARNING "cciss: cmd %p is " "reported invalid\n", cmd); status = 0; break; case CMD_PROTOCOL_ERR: printk(KERN_WARNING "cciss: cmd %p has " "protocol error \n", cmd); status = 0; break; case CMD_HARDWARE_ERR: printk(KERN_WARNING "cciss: cmd %p had " " hardware error\n", cmd); status = 0; break; case CMD_CONNECTION_LOST: printk(KERN_WARNING "cciss: cmd %p had " "connection lost\n", cmd); status=0; break; case CMD_ABORTED: printk(KERN_WARNING "cciss: cmd %p was " "aborted\n", cmd); status=0; break; case CMD_ABORT_FAILED: printk(KERN_WARNING "cciss: cmd %p reports " "abort failed\n", cmd); status=0; break; case CMD_UNSOLICITED_ABORT: printk(KERN_WARNING "cciss%d: unsolicited " "abort %p\n", h->ctlr, cmd); if (cmd->retry_count < MAX_CMD_RETRIES) { retry_cmd=1; printk(KERN_WARNING "cciss%d: retrying %p\n", h->ctlr, cmd); cmd->retry_count++; } else printk(KERN_WARNING "cciss%d: %p retried too " "many times\n", h->ctlr, cmd); status=0; break; case CMD_TIMEOUT: printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd); status=0; break; default: printk(KERN_WARNING "cciss: cmd %p returned " "unknown status %x\n", cmd, cmd->err_info->CommandStatus); status=0; } } /* We need to return this command */ if(retry_cmd) { resend_cciss_cmd(h,cmd); return; } /* command did not need to be retried */ /* unmap the DMA mapping for all the scatter gather elements */ for(i=0; i<cmd->Header.SGList; i++) { temp64.val32.lower = cmd->SG[i].Addr.lower; temp64.val32.upper = cmd->SG[i].Addr.upper; pci_unmap_page(hba[cmd->ctlr]->pdev, temp64.val, cmd->SG[i].Len, (cmd->Request.Type.Direction == XFER_READ) ? PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE); } complete_buffers(cmd->rq->bio, status); #ifdef CCISS_DEBUG printk("Done with %p\n", cmd->rq); #endif /* CCISS_DEBUG */ end_that_request_last(cmd->rq); cmd_free(h,cmd,1); } /* * Get a request and submit it to the controller. */ static void do_cciss_request(request_queue_t *q) { ctlr_info_t *h= q->queuedata; CommandList_struct *c; int start_blk, seg; struct request *creq; u64bit temp64; struct scatterlist tmp_sg[MAXSGENTRIES]; drive_info_struct *drv; int i, dir; /* We call start_io here in case there is a command waiting on the * queue that has not been sent. */ if (blk_queue_plugged(q)) goto startio; queue: creq = elv_next_request(q); if (!creq) goto startio; if (creq->nr_phys_segments > MAXSGENTRIES) BUG(); if (( c = cmd_alloc(h, 1)) == NULL) goto full; blkdev_dequeue_request(creq); spin_unlock_irq(q->queue_lock); c->cmd_type = CMD_RWREQ; c->rq = creq; /* fill in the request */ drv = creq->rq_disk->private_data; c->Header.ReplyQueue = 0; // unused in simple mode c->Header.Tag.lower = c->busaddr; // use the physical address the cmd block for tag c->Header.LUN.LogDev.VolId= drv->LunID; c->Header.LUN.LogDev.Mode = 1; c->Request.CDBLen = 10; // 12 byte commands not in FW yet; c->Request.Type.Type = TYPE_CMD; // It is a command. c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = (rq_data_dir(creq) == READ) ? XFER_READ: XFER_WRITE; c->Request.Timeout = 0; // Don't time out c->Request.CDB[0] = (rq_data_dir(creq) == READ) ? CCISS_READ : CCISS_WRITE; start_blk = creq->sector; #ifdef CCISS_DEBUG printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",(int) creq->sector, (int) creq->nr_sectors); #endif /* CCISS_DEBUG */ seg = blk_rq_map_sg(q, creq, tmp_sg); /* get the DMA records for the setup */ if (c->Request.Type.Direction == XFER_READ) dir = PCI_DMA_FROMDEVICE; else dir = PCI_DMA_TODEVICE; for (i=0; i<seg; i++) { c->SG[i].Len = tmp_sg[i].length; temp64.val = (__u64) pci_map_page(h->pdev, tmp_sg[i].page, tmp_sg[i].offset, tmp_sg[i].length, dir); c->SG[i].Addr.lower = temp64.val32.lower; c->SG[i].Addr.upper = temp64.val32.upper; c->SG[i].Ext = 0; // we are not chaining } /* track how many SG entries we are using */ if( seg > h->maxSG) h->maxSG = seg; #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n", creq->nr_sectors, seg); #endif /* CCISS_DEBUG */ c->Header.SGList = c->Header.SGTotal = seg; c->Request.CDB[1]= 0; c->Request.CDB[2]= (start_blk >> 24) & 0xff; //MSB c->Request.CDB[3]= (start_blk >> 16) & 0xff; c->Request.CDB[4]= (start_blk >> 8) & 0xff; c->Request.CDB[5]= start_blk & 0xff; c->Request.CDB[6]= 0; // (sect >> 24) & 0xff; MSB c->Request.CDB[7]= (creq->nr_sectors >> 8) & 0xff; c->Request.CDB[8]= creq->nr_sectors & 0xff; c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0; spin_lock_irq(q->queue_lock); addQ(&(h->reqQ),c); h->Qdepth++; if(h->Qdepth > h->maxQsinceinit) h->maxQsinceinit = h->Qdepth; goto queue; full: blk_stop_queue(q); startio: /* We will already have the driver lock here so not need * to lock it. */ start_io(h); } static irqreturn_t do_cciss_intr(int irq, void *dev_id, struct pt_regs *regs) { ctlr_info_t *h = dev_id; CommandList_struct *c; unsigned long flags; __u32 a, a1; int j; int start_queue = h->next_to_run; /* Is this interrupt for us? */ if (( h->access.intr_pending(h) == 0) || (h->interrupts_enabled == 0)) return IRQ_NONE; /* * If there are completed commands in the completion queue, * we had better do something about it. */ spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); while( h->access.intr_pending(h)) { while((a = h->access.command_completed(h)) != FIFO_EMPTY) { a1 = a; a &= ~3; if ((c = h->cmpQ) == NULL) { printk(KERN_WARNING "cciss: Completion of %08lx ignored\n", (unsigned long)a1); continue; } while(c->busaddr != a) { c = c->next; if (c == h->cmpQ) break; } /* * If we've found the command, take it off the * completion Q and free it */ if (c->busaddr == a) { removeQ(&h->cmpQ, c); if (c->cmd_type == CMD_RWREQ) { complete_command(h, c, 0); } else if (c->cmd_type == CMD_IOCTL_PEND) { complete(c->waiting); } # ifdef CONFIG_CISS_SCSI_TAPE else if (c->cmd_type == CMD_SCSI) complete_scsi_command(c, 0, a1); # endif continue; } } } /* check to see if we have maxed out the number of commands that can * be placed on the queue. If so then exit. We do this check here * in case the interrupt we serviced was from an ioctl and did not * free any new commands. */ if ((find_first_zero_bit(h->cmd_pool_bits, NR_CMDS)) == NR_CMDS) goto cleanup; /* We have room on the queue for more commands. Now we need to queue * them up. We will also keep track of the next queue to run so * that every queue gets a chance to be started first. */ for (j=0; j < NWD; j++){ int curr_queue = (start_queue + j) % NWD; /* make sure the disk has been added and the drive is real * because this can be called from the middle of init_one. */ if(!(h->gendisk[curr_queue]->queue) || !(h->drv[curr_queue].heads)) continue; blk_start_queue(h->gendisk[curr_queue]->queue); /* check to see if we have maxed out the number of commands * that can be placed on the queue. */ if ((find_first_zero_bit(h->cmd_pool_bits, NR_CMDS)) == NR_CMDS) { if (curr_queue == start_queue){ h->next_to_run = (start_queue + 1) % NWD; goto cleanup; } else { h->next_to_run = curr_queue; goto cleanup; } } else { curr_queue = (curr_queue + 1) % NWD; } } cleanup: spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); return IRQ_HANDLED; } /* * We cannot read the structure directly, for portablity we must use * the io functions. * This is for debug only. */ #ifdef CCISS_DEBUG static void print_cfg_table( CfgTable_struct *tb) { int i; char temp_name[17]; printk("Controller Configuration information\n"); printk("------------------------------------\n"); for(i=0;i<4;i++) temp_name[i] = readb(&(tb->Signature[i])); temp_name[4]='\0'; printk(" Signature = %s\n", temp_name); printk(" Spec Number = %d\n", readl(&(tb->SpecValence))); printk(" Transport methods supported = 0x%x\n", readl(&(tb-> TransportSupport))); printk(" Transport methods active = 0x%x\n", readl(&(tb->TransportActive))); printk(" Requested transport Method = 0x%x\n", readl(&(tb->HostWrite.TransportRequest))); printk(" Coalese Interrupt Delay = 0x%x\n", readl(&(tb->HostWrite.CoalIntDelay))); printk(" Coalese Interrupt Count = 0x%x\n", readl(&(tb->HostWrite.CoalIntCount))); printk(" Max outstanding commands = 0x%d\n", readl(&(tb->CmdsOutMax))); printk(" Bus Types = 0x%x\n", readl(&(tb-> BusTypes))); for(i=0;i<16;i++) temp_name[i] = readb(&(tb->ServerName[i])); temp_name[16] = '\0'; printk(" Server Name = %s\n", temp_name); printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat))); } #endif /* CCISS_DEBUG */ static void release_io_mem(ctlr_info_t *c) { /* if IO mem was not protected do nothing */ if( c->io_mem_addr == 0) return; release_region(c->io_mem_addr, c->io_mem_length); c->io_mem_addr = 0; c->io_mem_length = 0; } static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) { int i, offset, mem_type, bar_type; if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ return 0; offset = 0; for (i=0; i<DEVICE_COUNT_RESOURCE; i++) { bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) offset += 4; else { mem_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_MEM_TYPE_MASK; switch (mem_type) { case PCI_BASE_ADDRESS_MEM_TYPE_32: case PCI_BASE_ADDRESS_MEM_TYPE_1M: offset += 4; /* 32 bit */ break; case PCI_BASE_ADDRESS_MEM_TYPE_64: offset += 8; break; default: /* reserved in PCI 2.2 */ printk(KERN_WARNING "Base address is invalid\n"); return -1; break; } } if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) return i+1; } return -1; } static int cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev) { ushort subsystem_vendor_id, subsystem_device_id, command; __u32 board_id, scratchpad = 0; __u64 cfg_offset; __u32 cfg_base_addr; __u64 cfg_base_addr_index; int i; /* check to see if controller has been disabled */ /* BEFORE trying to enable it */ (void) pci_read_config_word(pdev, PCI_COMMAND,&command); if(!(command & 0x02)) { printk(KERN_WARNING "cciss: controller appears to be disabled\n"); return(-1); } if (pci_enable_device(pdev)) { printk(KERN_ERR "cciss: Unable to Enable PCI device\n"); return( -1); } subsystem_vendor_id = pdev->subsystem_vendor; subsystem_device_id = pdev->subsystem_device; board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) | subsystem_vendor_id); /* search for our IO range so we can protect it */ for(i=0; i<DEVICE_COUNT_RESOURCE; i++) { /* is this an IO range */ if( pci_resource_flags(pdev, i) & 0x01 ) { c->io_mem_addr = pci_resource_start(pdev, i); c->io_mem_length = pci_resource_end(pdev, i) - pci_resource_start(pdev, i) +1; #ifdef CCISS_DEBUG printk("IO value found base_addr[%d] %lx %lx\n", i, c->io_mem_addr, c->io_mem_length); #endif /* CCISS_DEBUG */ /* register the IO range */ if(!request_region( c->io_mem_addr, c->io_mem_length, "cciss")) { printk(KERN_WARNING "cciss I/O memory range already in use addr=%lx length=%ld\n", c->io_mem_addr, c->io_mem_length); c->io_mem_addr= 0; c->io_mem_length = 0; } break; } } #ifdef CCISS_DEBUG printk("command = %x\n", command); printk("irq = %x\n", pdev->irq); printk("board_id = %x\n", board_id); #endif /* CCISS_DEBUG */ c->intr = pdev->irq; /* * Memory base addr is first addr , the second points to the config * table */ c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */ #ifdef CCISS_DEBUG printk("address 0 = %x\n", c->paddr); #endif /* CCISS_DEBUG */ c->vaddr = remap_pci_mem(c->paddr, 200); /* Wait for the board to become ready. (PCI hotplug needs this.) * We poll for up to 120 secs, once per 100ms. */ for (i=0; i < 1200; i++) { scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET); if (scratchpad == CCISS_FIRMWARE_READY) break; set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(HZ / 10); /* wait 100ms */ } if (scratchpad != CCISS_FIRMWARE_READY) { printk(KERN_WARNING "cciss: Board not ready. Timed out.\n"); return -1; } /* get the address index number */ cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET); cfg_base_addr &= (__u32) 0x0000ffff; #ifdef CCISS_DEBUG printk("cfg base address = %x\n", cfg_base_addr); #endif /* CCISS_DEBUG */ cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr); #ifdef CCISS_DEBUG printk("cfg base address index = %x\n", cfg_base_addr_index); #endif /* CCISS_DEBUG */ if (cfg_base_addr_index == -1) { printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n"); release_io_mem(c); return -1; } cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET); #ifdef CCISS_DEBUG printk("cfg offset = %x\n", cfg_offset); #endif /* CCISS_DEBUG */ c->cfgtable = remap_pci_mem(pci_resource_start(pdev, cfg_base_addr_index) + cfg_offset, sizeof(CfgTable_struct)); c->board_id = board_id; #ifdef CCISS_DEBUG print_cfg_table(c->cfgtable); #endif /* CCISS_DEBUG */ for(i=0; i<NR_PRODUCTS; i++) { if (board_id == products[i].board_id) { c->product_name = products[i].product_name; c->access = *(products[i].access); break; } } if (i == NR_PRODUCTS) { printk(KERN_WARNING "cciss: Sorry, I don't know how" " to access the Smart Array controller %08lx\n", (unsigned long)board_id); return -1; } if ( (readb(&c->cfgtable->Signature[0]) != 'C') || (readb(&c->cfgtable->Signature[1]) != 'I') || (readb(&c->cfgtable->Signature[2]) != 'S') || (readb(&c->cfgtable->Signature[3]) != 'S') ) { printk("Does not appear to be a valid CISS config table\n"); return -1; } #ifdef CONFIG_X86 { /* Need to enable prefetch in the SCSI core for 6400 in x86 */ __u32 prefetch; prefetch = readl(&(c->cfgtable->SCSI_Prefetch)); prefetch |= 0x100; writel(prefetch, &(c->cfgtable->SCSI_Prefetch)); } #endif #ifdef CCISS_DEBUG printk("Trying to put board into Simple mode\n"); #endif /* CCISS_DEBUG */ c->max_commands = readl(&(c->cfgtable->CmdsOutMax)); /* Update the field, and then ring the doorbell */ writel( CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest)); writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL); /* under certain very rare conditions, this can take awhile. * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right * as we enter this code.) */ for(i=0;i<MAX_CONFIG_WAIT;i++) { if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) break; /* delay and try again */ set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(10); } #ifdef CCISS_DEBUG printk(KERN_DEBUG "I counter got to %d %x\n", i, readl(c->vaddr + SA5_DOORBELL)); #endif /* CCISS_DEBUG */ #ifdef CCISS_DEBUG print_cfg_table(c->cfgtable); #endif /* CCISS_DEBUG */ if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { printk(KERN_WARNING "cciss: unable to get board into" " simple mode\n"); return -1; } return 0; } /* * Gets information about the local volumes attached to the controller. */ static void cciss_getgeometry(int cntl_num) { ReportLunData_struct *ld_buff; ReadCapdata_struct *size_buff; InquiryData_struct *inq_buff; int return_code; int i; int listlength = 0; __u32 lunid = 0; int block_size; int total_size; ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL); if (ld_buff == NULL) { printk(KERN_ERR "cciss: out of memory\n"); return; } memset(ld_buff, 0, sizeof(ReportLunData_struct)); size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL); if (size_buff == NULL) { printk(KERN_ERR "cciss: out of memory\n"); kfree(ld_buff); return; } inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL); if (inq_buff == NULL) { printk(KERN_ERR "cciss: out of memory\n"); kfree(ld_buff); kfree(size_buff); return; } /* Get the firmware version */ return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff, sizeof(InquiryData_struct), 0, 0 ,0, NULL, TYPE_CMD); if (return_code == IO_OK) { hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32]; hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33]; hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34]; hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35]; } else /* send command failed */ { printk(KERN_WARNING "cciss: unable to determine firmware" " version of controller\n"); } /* Get the number of logical volumes */ return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff, sizeof(ReportLunData_struct), 0, 0, 0, NULL, TYPE_CMD); if( return_code == IO_OK) { #ifdef CCISS_DEBUG printk("LUN Data\n--------------------------\n"); #endif /* CCISS_DEBUG */ listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24; listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16; listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8; listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]); } else /* reading number of logical volumes failed */ { printk(KERN_WARNING "cciss: report logical volume" " command failed\n"); listlength = 0; } hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry if (hba[cntl_num]->num_luns > CISS_MAX_LUN) { printk(KERN_ERR "ciss: only %d number of logical volumes supported\n", CISS_MAX_LUN); hba[cntl_num]->num_luns = CISS_MAX_LUN; } #ifdef CCISS_DEBUG printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0], ld_buff->LUNListLength[1], ld_buff->LUNListLength[2], ld_buff->LUNListLength[3], hba[cntl_num]->num_luns); #endif /* CCISS_DEBUG */ hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns-1; for(i=0; i< hba[cntl_num]->num_luns; i++) { lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3])) << 24; lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2])) << 16; lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1])) << 8; lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]); hba[cntl_num]->drv[i].LunID = lunid; #ifdef CCISS_DEBUG printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i, ld_buff->LUN[i][0], ld_buff->LUN[i][1],ld_buff->LUN[i][2], ld_buff->LUN[i][3], hba[cntl_num]->drv[i].LunID); #endif /* CCISS_DEBUG */ cciss_read_capacity(cntl_num, i, size_buff, 0, &total_size, &block_size); cciss_geometry_inquiry(cntl_num, i, 0, total_size, block_size, inq_buff, &hba[cntl_num]->drv[i]); } kfree(ld_buff); kfree(size_buff); kfree(inq_buff); } /* Function to find the first free pointer into our hba[] array */ /* Returns -1 if no free entries are left. */ static int alloc_cciss_hba(void) { struct gendisk *disk[NWD]; int i, n; for (n = 0; n < NWD; n++) { disk[n] = alloc_disk(1 << NWD_SHIFT); if (!disk[n]) goto out; } for(i=0; i< MAX_CTLR; i++) { if (!hba[i]) { ctlr_info_t *p; p = kmalloc(sizeof(ctlr_info_t), GFP_KERNEL); if (!p) goto Enomem; memset(p, 0, sizeof(ctlr_info_t)); for (n = 0; n < NWD; n++) p->gendisk[n] = disk[n]; hba[i] = p; return i; } } printk(KERN_WARNING "cciss: This driver supports a maximum" " of %d controllers.\n", MAX_CTLR); goto out; Enomem: printk(KERN_ERR "cciss: out of memory.\n"); out: while (n--) put_disk(disk[n]); return -1; } static void free_hba(int i) { ctlr_info_t *p = hba[i]; int n; hba[i] = NULL; for (n = 0; n < NWD; n++) put_disk(p->gendisk[n]); kfree(p); } /* * This is it. Find all the controllers and register them. I really hate * stealing all these major device numbers. * returns the number of block devices registered. */ static int __devinit cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { request_queue_t *q; int i; int j; int rc; printk(KERN_DEBUG "cciss: Device 0x%x has been found at" " bus %d dev %d func %d\n", pdev->device, pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); i = alloc_cciss_hba(); if(i < 0) return (-1); if (cciss_pci_init(hba[i], pdev) != 0) goto clean1; sprintf(hba[i]->devname, "cciss%d", i); hba[i]->ctlr = i; hba[i]->pdev = pdev; /* configure PCI DMA stuff */ if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) printk("cciss: using DAC cycles\n"); else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) printk("cciss: not using DAC cycles\n"); else { printk("cciss: no suitable DMA available\n"); goto clean1; } /* * register with the major number, or get a dynamic major number * by passing 0 as argument. This is done for greater than * 8 controller support. */ if (i < MAX_CTLR_ORIG) hba[i]->major = MAJOR_NR + i; rc = register_blkdev(hba[i]->major, hba[i]->devname); if(rc == -EBUSY || rc == -EINVAL) { printk(KERN_ERR "cciss: Unable to get major number %d for %s " "on hba %d\n", hba[i]->major, hba[i]->devname, i); goto clean1; } else { if (i >= MAX_CTLR_ORIG) hba[i]->major = rc; } /* make sure the board interrupts are off */ hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF); if( request_irq(hba[i]->intr, do_cciss_intr, SA_INTERRUPT | SA_SHIRQ | SA_SAMPLE_RANDOM, hba[i]->devname, hba[i])) { printk(KERN_ERR "cciss: Unable to get irq %d for %s\n", hba[i]->intr, hba[i]->devname); goto clean2; } hba[i]->cmd_pool_bits = kmalloc(((NR_CMDS+BITS_PER_LONG-1)/BITS_PER_LONG)*sizeof(unsigned long), GFP_KERNEL); hba[i]->cmd_pool = (CommandList_struct *)pci_alloc_consistent( hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct), &(hba[i]->cmd_pool_dhandle)); hba[i]->errinfo_pool = (ErrorInfo_struct *)pci_alloc_consistent( hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct), &(hba[i]->errinfo_pool_dhandle)); if((hba[i]->cmd_pool_bits == NULL) || (hba[i]->cmd_pool == NULL) || (hba[i]->errinfo_pool == NULL)) { printk( KERN_ERR "cciss: out of memory"); goto clean4; } spin_lock_init(&hba[i]->lock); q = blk_init_queue(do_cciss_request, &hba[i]->lock); if (!q) goto clean4; q->backing_dev_info.ra_pages = READ_AHEAD; hba[i]->queue = q; q->queuedata = hba[i]; /* Initialize the pdev driver private data. have it point to hba[i]. */ pci_set_drvdata(pdev, hba[i]); /* command and error info recs zeroed out before they are used */ memset(hba[i]->cmd_pool_bits, 0, ((NR_CMDS+BITS_PER_LONG-1)/BITS_PER_LONG)*sizeof(unsigned long)); #ifdef CCISS_DEBUG printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n",i); #endif /* CCISS_DEBUG */ cciss_getgeometry(i); cciss_scsi_setup(i); /* Turn the interrupts on so we can service requests */ hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON); cciss_procinit(i); blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask); /* This is a hardware imposed limit. */ blk_queue_max_hw_segments(q, MAXSGENTRIES); /* This is a limit in the driver and could be eliminated. */ blk_queue_max_phys_segments(q, MAXSGENTRIES); blk_queue_max_sectors(q, 512); for(j=0; j<NWD; j++) { drive_info_struct *drv = &(hba[i]->drv[j]); struct gendisk *disk = hba[i]->gendisk[j]; sprintf(disk->disk_name, "cciss/c%dd%d", i, j); sprintf(disk->devfs_name, "cciss/host%d/target%d", i, j); disk->major = hba[i]->major; disk->first_minor = j << NWD_SHIFT; disk->fops = &cciss_fops; disk->queue = hba[i]->queue; disk->private_data = drv; /* we must register the controller even if no disks exist */ /* this is for the online array utilities */ if(!drv->heads && j) continue; blk_queue_hardsect_size(hba[i]->queue, drv->block_size); set_capacity(disk, drv->nr_blocks); add_disk(disk); } return(1); clean4: if(hba[i]->cmd_pool_bits) kfree(hba[i]->cmd_pool_bits); if(hba[i]->cmd_pool) pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct), hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle); if(hba[i]->errinfo_pool) pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct), hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle); free_irq(hba[i]->intr, hba[i]); clean2: unregister_blkdev(hba[i]->major, hba[i]->devname); clean1: release_io_mem(hba[i]); free_hba(i); return(-1); } static void __devexit cciss_remove_one (struct pci_dev *pdev) { ctlr_info_t *tmp_ptr; int i, j; char flush_buf[4]; int return_code; if (pci_get_drvdata(pdev) == NULL) { printk( KERN_ERR "cciss: Unable to remove device \n"); return; } tmp_ptr = pci_get_drvdata(pdev); i = tmp_ptr->ctlr; if (hba[i] == NULL) { printk(KERN_ERR "cciss: device appears to " "already be removed \n"); return; } /* Turn board interrupts off and send the flush cache command */ /* sendcmd will turn off interrupt, and send the flush... * To write all data in the battery backed cache to disks */ memset(flush_buf, 0, 4); return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL, TYPE_CMD); if(return_code != IO_OK) { printk(KERN_WARNING "Error Flushing cache on controller %d\n", i); } free_irq(hba[i]->intr, hba[i]); pci_set_drvdata(pdev, NULL); iounmap(hba[i]->vaddr); cciss_unregister_scsi(i); /* unhook from SCSI subsystem */ unregister_blkdev(hba[i]->major, hba[i]->devname); remove_proc_entry(hba[i]->devname, proc_cciss); /* remove it from the disk list */ for (j = 0; j < NWD; j++) { struct gendisk *disk = hba[i]->gendisk[j]; if (disk->flags & GENHD_FL_UP) del_gendisk(disk); } blk_cleanup_queue(hba[i]->queue); pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct), hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle); pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct), hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle); kfree(hba[i]->cmd_pool_bits); release_io_mem(hba[i]); free_hba(i); } static struct pci_driver cciss_pci_driver = { .name = "cciss", .probe = cciss_init_one, .remove = __devexit_p(cciss_remove_one), .id_table = cciss_pci_device_id, /* id_table */ }; /* * This is it. Register the PCI driver information for the cards we control * the OS will call our registered routines when it finds one of our cards. */ static int __init cciss_init(void) { printk(KERN_INFO DRIVER_NAME "\n"); /* Register for our PCI devices */ return pci_module_init(&cciss_pci_driver); } static void __exit cciss_cleanup(void) { int i; pci_unregister_driver(&cciss_pci_driver); /* double check that all controller entrys have been removed */ for (i=0; i< MAX_CTLR; i++) { if (hba[i] != NULL) { printk(KERN_WARNING "cciss: had to remove" " controller %d\n", i); cciss_remove_one(hba[i]->pdev); } } remove_proc_entry("cciss", proc_root_driver); } module_init(cciss_init); module_exit(cciss_cleanup);