/* * Filename: dma.c * * * Authors: Joshua Morris * Philip Kelleher * * (C) Copyright 2013 IBM Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "rsxx_priv.h" struct rsxx_dma { struct list_head list; u8 cmd; unsigned int laddr; /* Logical address */ struct { u32 off; u32 cnt; } sub_page; dma_addr_t dma_addr; struct page *page; unsigned int pg_off; /* Page Offset */ rsxx_dma_cb cb; void *cb_data; }; /* This timeout is used to detect a stalled DMA channel */ #define DMA_ACTIVITY_TIMEOUT msecs_to_jiffies(10000) struct hw_status { u8 status; u8 tag; __le16 count; __le32 _rsvd2; __le64 _rsvd3; } __packed; enum rsxx_dma_status { DMA_SW_ERR = 0x1, DMA_HW_FAULT = 0x2, DMA_CANCELLED = 0x4, }; struct hw_cmd { u8 command; u8 tag; u8 _rsvd; u8 sub_page; /* Bit[0:2]: 512byte offset */ /* Bit[4:6]: 512byte count */ __le32 device_addr; __le64 host_addr; } __packed; enum rsxx_hw_cmd { HW_CMD_BLK_DISCARD = 0x70, HW_CMD_BLK_WRITE = 0x80, HW_CMD_BLK_READ = 0xC0, HW_CMD_BLK_RECON_READ = 0xE0, }; enum rsxx_hw_status { HW_STATUS_CRC = 0x01, HW_STATUS_HARD_ERR = 0x02, HW_STATUS_SOFT_ERR = 0x04, HW_STATUS_FAULT = 0x08, }; static struct kmem_cache *rsxx_dma_pool; struct dma_tracker { int next_tag; struct rsxx_dma *dma; }; #define DMA_TRACKER_LIST_SIZE8 (sizeof(struct dma_tracker_list) + \ (sizeof(struct dma_tracker) * RSXX_MAX_OUTSTANDING_CMDS)) struct dma_tracker_list { spinlock_t lock; int head; struct dma_tracker list[0]; }; /*----------------- Misc Utility Functions -------------------*/ static unsigned int rsxx_addr8_to_laddr(u64 addr8, struct rsxx_cardinfo *card) { unsigned long long tgt_addr8; tgt_addr8 = ((addr8 >> card->_stripe.upper_shift) & card->_stripe.upper_mask) | ((addr8) & card->_stripe.lower_mask); do_div(tgt_addr8, RSXX_HW_BLK_SIZE); return tgt_addr8; } static unsigned int rsxx_get_dma_tgt(struct rsxx_cardinfo *card, u64 addr8) { unsigned int tgt; tgt = (addr8 >> card->_stripe.target_shift) & card->_stripe.target_mask; return tgt; } void rsxx_dma_queue_reset(struct rsxx_cardinfo *card) { /* Reset all DMA Command/Status Queues */ iowrite32(DMA_QUEUE_RESET, card->regmap + RESET); } static unsigned int get_dma_size(struct rsxx_dma *dma) { if (dma->sub_page.cnt) return dma->sub_page.cnt << 9; else return RSXX_HW_BLK_SIZE; } /*----------------- DMA Tracker -------------------*/ static void set_tracker_dma(struct dma_tracker_list *trackers, int tag, struct rsxx_dma *dma) { trackers->list[tag].dma = dma; } static struct rsxx_dma *get_tracker_dma(struct dma_tracker_list *trackers, int tag) { return trackers->list[tag].dma; } static int pop_tracker(struct dma_tracker_list *trackers) { int tag; spin_lock(&trackers->lock); tag = trackers->head; if (tag != -1) { trackers->head = trackers->list[tag].next_tag; trackers->list[tag].next_tag = -1; } spin_unlock(&trackers->lock); return tag; } static void push_tracker(struct dma_tracker_list *trackers, int tag) { spin_lock(&trackers->lock); trackers->list[tag].next_tag = trackers->head; trackers->head = tag; trackers->list[tag].dma = NULL; spin_unlock(&trackers->lock); } /*----------------- Interrupt Coalescing -------------*/ /* * Interrupt Coalescing Register Format: * Interrupt Timer (64ns units) [15:0] * Interrupt Count [24:16] * Reserved [31:25] */ #define INTR_COAL_LATENCY_MASK (0x0000ffff) #define INTR_COAL_COUNT_SHIFT 16 #define INTR_COAL_COUNT_BITS 9 #define INTR_COAL_COUNT_MASK (((1 << INTR_COAL_COUNT_BITS) - 1) << \ INTR_COAL_COUNT_SHIFT) #define INTR_COAL_LATENCY_UNITS_NS 64 static u32 dma_intr_coal_val(u32 mode, u32 count, u32 latency) { u32 latency_units = latency / INTR_COAL_LATENCY_UNITS_NS; if (mode == RSXX_INTR_COAL_DISABLED) return 0; return ((count << INTR_COAL_COUNT_SHIFT) & INTR_COAL_COUNT_MASK) | (latency_units & INTR_COAL_LATENCY_MASK); } static void dma_intr_coal_auto_tune(struct rsxx_cardinfo *card) { int i; u32 q_depth = 0; u32 intr_coal; if (card->config.data.intr_coal.mode != RSXX_INTR_COAL_AUTO_TUNE || unlikely(card->eeh_state)) return; for (i = 0; i < card->n_targets; i++) q_depth += atomic_read(&card->ctrl[i].stats.hw_q_depth); intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode, q_depth / 2, card->config.data.intr_coal.latency); iowrite32(intr_coal, card->regmap + INTR_COAL); } /*----------------- RSXX DMA Handling -------------------*/ static void rsxx_complete_dma(struct rsxx_dma_ctrl *ctrl, struct rsxx_dma *dma, unsigned int status) { if (status & DMA_SW_ERR) ctrl->stats.dma_sw_err++; if (status & DMA_HW_FAULT) ctrl->stats.dma_hw_fault++; if (status & DMA_CANCELLED) ctrl->stats.dma_cancelled++; if (dma->dma_addr) pci_unmap_page(ctrl->card->dev, dma->dma_addr, get_dma_size(dma), dma->cmd == HW_CMD_BLK_WRITE ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE); if (dma->cb) dma->cb(ctrl->card, dma->cb_data, status ? 1 : 0); kmem_cache_free(rsxx_dma_pool, dma); } static void rsxx_requeue_dma(struct rsxx_dma_ctrl *ctrl, struct rsxx_dma *dma) { /* * Requeued DMAs go to the front of the queue so they are issued * first. */ spin_lock(&ctrl->queue_lock); list_add(&dma->list, &ctrl->queue); spin_unlock(&ctrl->queue_lock); } static void rsxx_handle_dma_error(struct rsxx_dma_ctrl *ctrl, struct rsxx_dma *dma, u8 hw_st) { unsigned int status = 0; int requeue_cmd = 0; dev_dbg(CARD_TO_DEV(ctrl->card), "Handling DMA error(cmd x%02x, laddr x%08x st:x%02x)\n", dma->cmd, dma->laddr, hw_st); if (hw_st & HW_STATUS_CRC) ctrl->stats.crc_errors++; if (hw_st & HW_STATUS_HARD_ERR) ctrl->stats.hard_errors++; if (hw_st & HW_STATUS_SOFT_ERR) ctrl->stats.soft_errors++; switch (dma->cmd) { case HW_CMD_BLK_READ: if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) { if (ctrl->card->scrub_hard) { dma->cmd = HW_CMD_BLK_RECON_READ; requeue_cmd = 1; ctrl->stats.reads_retried++; } else { status |= DMA_HW_FAULT; ctrl->stats.reads_failed++; } } else if (hw_st & HW_STATUS_FAULT) { status |= DMA_HW_FAULT; ctrl->stats.reads_failed++; } break; case HW_CMD_BLK_RECON_READ: if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) { /* Data could not be reconstructed. */ status |= DMA_HW_FAULT; ctrl->stats.reads_failed++; } break; case HW_CMD_BLK_WRITE: status |= DMA_HW_FAULT; ctrl->stats.writes_failed++; break; case HW_CMD_BLK_DISCARD: status |= DMA_HW_FAULT; ctrl->stats.discards_failed++; break; default: dev_err(CARD_TO_DEV(ctrl->card), "Unknown command in DMA!(cmd: x%02x " "laddr x%08x st: x%02x\n", dma->cmd, dma->laddr, hw_st); status |= DMA_SW_ERR; break; } if (requeue_cmd) rsxx_requeue_dma(ctrl, dma); else rsxx_complete_dma(ctrl, dma, status); } static void dma_engine_stalled(unsigned long data) { struct rsxx_dma_ctrl *ctrl = (struct rsxx_dma_ctrl *)data; if (atomic_read(&ctrl->stats.hw_q_depth) == 0 || unlikely(ctrl->card->eeh_state)) return; if (ctrl->cmd.idx != ioread32(ctrl->regmap + SW_CMD_IDX)) { /* * The dma engine was stalled because the SW_CMD_IDX write * was lost. Issue it again to recover. */ dev_warn(CARD_TO_DEV(ctrl->card), "SW_CMD_IDX write was lost, re-writing...\n"); iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX); mod_timer(&ctrl->activity_timer, jiffies + DMA_ACTIVITY_TIMEOUT); } else { dev_warn(CARD_TO_DEV(ctrl->card), "DMA channel %d has stalled, faulting interface.\n", ctrl->id); ctrl->card->dma_fault = 1; } } static void rsxx_issue_dmas(struct work_struct *work) { struct rsxx_dma_ctrl *ctrl; struct rsxx_dma *dma; int tag; int cmds_pending = 0; struct hw_cmd *hw_cmd_buf; ctrl = container_of(work, struct rsxx_dma_ctrl, issue_dma_work); hw_cmd_buf = ctrl->cmd.buf; if (unlikely(ctrl->card->halt) || unlikely(ctrl->card->eeh_state)) return; while (1) { spin_lock(&ctrl->queue_lock); if (list_empty(&ctrl->queue)) { spin_unlock(&ctrl->queue_lock); break; } spin_unlock(&ctrl->queue_lock); tag = pop_tracker(ctrl->trackers); if (tag == -1) break; spin_lock(&ctrl->queue_lock); dma = list_entry(ctrl->queue.next, struct rsxx_dma, list); list_del(&dma->list); ctrl->stats.sw_q_depth--; spin_unlock(&ctrl->queue_lock); /* * This will catch any DMAs that slipped in right before the * fault, but was queued after all the other DMAs were * cancelled. */ if (unlikely(ctrl->card->dma_fault)) { push_tracker(ctrl->trackers, tag); rsxx_complete_dma(ctrl, dma, DMA_CANCELLED); continue; } set_tracker_dma(ctrl->trackers, tag, dma); hw_cmd_buf[ctrl->cmd.idx].command = dma->cmd; hw_cmd_buf[ctrl->cmd.idx].tag = tag; hw_cmd_buf[ctrl->cmd.idx]._rsvd = 0; hw_cmd_buf[ctrl->cmd.idx].sub_page = ((dma->sub_page.cnt & 0x7) << 4) | (dma->sub_page.off & 0x7); hw_cmd_buf[ctrl->cmd.idx].device_addr = cpu_to_le32(dma->laddr); hw_cmd_buf[ctrl->cmd.idx].host_addr = cpu_to_le64(dma->dma_addr); dev_dbg(CARD_TO_DEV(ctrl->card), "Issue DMA%d(laddr %d tag %d) to idx %d\n", ctrl->id, dma->laddr, tag, ctrl->cmd.idx); ctrl->cmd.idx = (ctrl->cmd.idx + 1) & RSXX_CS_IDX_MASK; cmds_pending++; if (dma->cmd == HW_CMD_BLK_WRITE) ctrl->stats.writes_issued++; else if (dma->cmd == HW_CMD_BLK_DISCARD) ctrl->stats.discards_issued++; else ctrl->stats.reads_issued++; } /* Let HW know we've queued commands. */ if (cmds_pending) { atomic_add(cmds_pending, &ctrl->stats.hw_q_depth); mod_timer(&ctrl->activity_timer, jiffies + DMA_ACTIVITY_TIMEOUT); if (unlikely(ctrl->card->eeh_state)) { del_timer_sync(&ctrl->activity_timer); return; } iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX); } } static void rsxx_dma_done(struct work_struct *work) { struct rsxx_dma_ctrl *ctrl; struct rsxx_dma *dma; unsigned long flags; u16 count; u8 status; u8 tag; struct hw_status *hw_st_buf; ctrl = container_of(work, struct rsxx_dma_ctrl, dma_done_work); hw_st_buf = ctrl->status.buf; if (unlikely(ctrl->card->halt) || unlikely(ctrl->card->dma_fault) || unlikely(ctrl->card->eeh_state)) return; count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count); while (count == ctrl->e_cnt) { /* * The read memory-barrier is necessary to keep aggressive * processors/optimizers (such as the PPC Apple G5) from * reordering the following status-buffer tag & status read * *before* the count read on subsequent iterations of the * loop! */ rmb(); status = hw_st_buf[ctrl->status.idx].status; tag = hw_st_buf[ctrl->status.idx].tag; dma = get_tracker_dma(ctrl->trackers, tag); if (dma == NULL) { spin_lock_irqsave(&ctrl->card->irq_lock, flags); rsxx_disable_ier(ctrl->card, CR_INTR_DMA_ALL); spin_unlock_irqrestore(&ctrl->card->irq_lock, flags); dev_err(CARD_TO_DEV(ctrl->card), "No tracker for tag %d " "(idx %d id %d)\n", tag, ctrl->status.idx, ctrl->id); return; } dev_dbg(CARD_TO_DEV(ctrl->card), "Completing DMA%d" "(laddr x%x tag %d st: x%x cnt: x%04x) from idx %d.\n", ctrl->id, dma->laddr, tag, status, count, ctrl->status.idx); atomic_dec(&ctrl->stats.hw_q_depth); mod_timer(&ctrl->activity_timer, jiffies + DMA_ACTIVITY_TIMEOUT); if (status) rsxx_handle_dma_error(ctrl, dma, status); else rsxx_complete_dma(ctrl, dma, 0); push_tracker(ctrl->trackers, tag); ctrl->status.idx = (ctrl->status.idx + 1) & RSXX_CS_IDX_MASK; ctrl->e_cnt++; count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count); } dma_intr_coal_auto_tune(ctrl->card); if (atomic_read(&ctrl->stats.hw_q_depth) == 0) del_timer_sync(&ctrl->activity_timer); spin_lock_irqsave(&ctrl->card->irq_lock, flags); rsxx_enable_ier(ctrl->card, CR_INTR_DMA(ctrl->id)); spin_unlock_irqrestore(&ctrl->card->irq_lock, flags); spin_lock(&ctrl->queue_lock); if (ctrl->stats.sw_q_depth) queue_work(ctrl->issue_wq, &ctrl->issue_dma_work); spin_unlock(&ctrl->queue_lock); } static int rsxx_cleanup_dma_queue(struct rsxx_cardinfo *card, struct list_head *q) { struct rsxx_dma *dma; struct rsxx_dma *tmp; int cnt = 0; list_for_each_entry_safe(dma, tmp, q, list) { list_del(&dma->list); if (dma->dma_addr) pci_unmap_page(card->dev, dma->dma_addr, get_dma_size(dma), (dma->cmd == HW_CMD_BLK_WRITE) ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE); kmem_cache_free(rsxx_dma_pool, dma); cnt++; } return cnt; } static int rsxx_queue_discard(struct rsxx_cardinfo *card, struct list_head *q, unsigned int laddr, rsxx_dma_cb cb, void *cb_data) { struct rsxx_dma *dma; dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL); if (!dma) return -ENOMEM; dma->cmd = HW_CMD_BLK_DISCARD; dma->laddr = laddr; dma->dma_addr = 0; dma->sub_page.off = 0; dma->sub_page.cnt = 0; dma->page = NULL; dma->pg_off = 0; dma->cb = cb; dma->cb_data = cb_data; dev_dbg(CARD_TO_DEV(card), "Queuing[D] laddr %x\n", dma->laddr); list_add_tail(&dma->list, q); return 0; } static int rsxx_queue_dma(struct rsxx_cardinfo *card, struct list_head *q, int dir, unsigned int dma_off, unsigned int dma_len, unsigned int laddr, struct page *page, unsigned int pg_off, rsxx_dma_cb cb, void *cb_data) { struct rsxx_dma *dma; dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL); if (!dma) return -ENOMEM; dma->dma_addr = pci_map_page(card->dev, page, pg_off, dma_len, dir ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE); if (!dma->dma_addr) { kmem_cache_free(rsxx_dma_pool, dma); return -ENOMEM; } dma->cmd = dir ? HW_CMD_BLK_WRITE : HW_CMD_BLK_READ; dma->laddr = laddr; dma->sub_page.off = (dma_off >> 9); dma->sub_page.cnt = (dma_len >> 9); dma->page = page; dma->pg_off = pg_off; dma->cb = cb; dma->cb_data = cb_data; dev_dbg(CARD_TO_DEV(card), "Queuing[%c] laddr %x off %d cnt %d page %p pg_off %d\n", dir ? 'W' : 'R', dma->laddr, dma->sub_page.off, dma->sub_page.cnt, dma->page, dma->pg_off); /* Queue the DMA */ list_add_tail(&dma->list, q); return 0; } int rsxx_dma_queue_bio(struct rsxx_cardinfo *card, struct bio *bio, atomic_t *n_dmas, rsxx_dma_cb cb, void *cb_data) { struct list_head dma_list[RSXX_MAX_TARGETS]; struct bio_vec *bvec; unsigned long long addr8; unsigned int laddr; unsigned int bv_len; unsigned int bv_off; unsigned int dma_off; unsigned int dma_len; int dma_cnt[RSXX_MAX_TARGETS]; int tgt; int st; int i; addr8 = bio->bi_sector << 9; /* sectors are 512 bytes */ atomic_set(n_dmas, 0); for (i = 0; i < card->n_targets; i++) { INIT_LIST_HEAD(&dma_list[i]); dma_cnt[i] = 0; } if (bio->bi_rw & REQ_DISCARD) { bv_len = bio->bi_size; while (bv_len > 0) { tgt = rsxx_get_dma_tgt(card, addr8); laddr = rsxx_addr8_to_laddr(addr8, card); st = rsxx_queue_discard(card, &dma_list[tgt], laddr, cb, cb_data); if (st) goto bvec_err; dma_cnt[tgt]++; atomic_inc(n_dmas); addr8 += RSXX_HW_BLK_SIZE; bv_len -= RSXX_HW_BLK_SIZE; } } else { bio_for_each_segment(bvec, bio, i) { bv_len = bvec->bv_len; bv_off = bvec->bv_offset; while (bv_len > 0) { tgt = rsxx_get_dma_tgt(card, addr8); laddr = rsxx_addr8_to_laddr(addr8, card); dma_off = addr8 & RSXX_HW_BLK_MASK; dma_len = min(bv_len, RSXX_HW_BLK_SIZE - dma_off); st = rsxx_queue_dma(card, &dma_list[tgt], bio_data_dir(bio), dma_off, dma_len, laddr, bvec->bv_page, bv_off, cb, cb_data); if (st) goto bvec_err; dma_cnt[tgt]++; atomic_inc(n_dmas); addr8 += dma_len; bv_off += dma_len; bv_len -= dma_len; } } } for (i = 0; i < card->n_targets; i++) { if (!list_empty(&dma_list[i])) { spin_lock(&card->ctrl[i].queue_lock); card->ctrl[i].stats.sw_q_depth += dma_cnt[i]; list_splice_tail(&dma_list[i], &card->ctrl[i].queue); spin_unlock(&card->ctrl[i].queue_lock); queue_work(card->ctrl[i].issue_wq, &card->ctrl[i].issue_dma_work); } } return 0; bvec_err: for (i = 0; i < card->n_targets; i++) rsxx_cleanup_dma_queue(card, &dma_list[i]); return st; } /*----------------- DMA Engine Initialization & Setup -------------------*/ int rsxx_hw_buffers_init(struct pci_dev *dev, struct rsxx_dma_ctrl *ctrl) { ctrl->status.buf = pci_alloc_consistent(dev, STATUS_BUFFER_SIZE8, &ctrl->status.dma_addr); ctrl->cmd.buf = pci_alloc_consistent(dev, COMMAND_BUFFER_SIZE8, &ctrl->cmd.dma_addr); if (ctrl->status.buf == NULL || ctrl->cmd.buf == NULL) return -ENOMEM; memset(ctrl->status.buf, 0xac, STATUS_BUFFER_SIZE8); iowrite32(lower_32_bits(ctrl->status.dma_addr), ctrl->regmap + SB_ADD_LO); iowrite32(upper_32_bits(ctrl->status.dma_addr), ctrl->regmap + SB_ADD_HI); memset(ctrl->cmd.buf, 0x83, COMMAND_BUFFER_SIZE8); iowrite32(lower_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_LO); iowrite32(upper_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_HI); ctrl->status.idx = ioread32(ctrl->regmap + HW_STATUS_CNT); if (ctrl->status.idx > RSXX_MAX_OUTSTANDING_CMDS) { dev_crit(&dev->dev, "Failed reading status cnt x%x\n", ctrl->status.idx); return -EINVAL; } iowrite32(ctrl->status.idx, ctrl->regmap + HW_STATUS_CNT); iowrite32(ctrl->status.idx, ctrl->regmap + SW_STATUS_CNT); ctrl->cmd.idx = ioread32(ctrl->regmap + HW_CMD_IDX); if (ctrl->cmd.idx > RSXX_MAX_OUTSTANDING_CMDS) { dev_crit(&dev->dev, "Failed reading cmd cnt x%x\n", ctrl->status.idx); return -EINVAL; } iowrite32(ctrl->cmd.idx, ctrl->regmap + HW_CMD_IDX); iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX); return 0; } static int rsxx_dma_ctrl_init(struct pci_dev *dev, struct rsxx_dma_ctrl *ctrl) { int i; int st; memset(&ctrl->stats, 0, sizeof(ctrl->stats)); ctrl->trackers = vmalloc(DMA_TRACKER_LIST_SIZE8); if (!ctrl->trackers) return -ENOMEM; ctrl->trackers->head = 0; for (i = 0; i < RSXX_MAX_OUTSTANDING_CMDS; i++) { ctrl->trackers->list[i].next_tag = i + 1; ctrl->trackers->list[i].dma = NULL; } ctrl->trackers->list[RSXX_MAX_OUTSTANDING_CMDS-1].next_tag = -1; spin_lock_init(&ctrl->trackers->lock); spin_lock_init(&ctrl->queue_lock); INIT_LIST_HEAD(&ctrl->queue); setup_timer(&ctrl->activity_timer, dma_engine_stalled, (unsigned long)ctrl); ctrl->issue_wq = alloc_ordered_workqueue(DRIVER_NAME"_issue", 0); if (!ctrl->issue_wq) return -ENOMEM; ctrl->done_wq = alloc_ordered_workqueue(DRIVER_NAME"_done", 0); if (!ctrl->done_wq) return -ENOMEM; INIT_WORK(&ctrl->issue_dma_work, rsxx_issue_dmas); INIT_WORK(&ctrl->dma_done_work, rsxx_dma_done); st = rsxx_hw_buffers_init(dev, ctrl); if (st) return st; return 0; } static int rsxx_dma_stripe_setup(struct rsxx_cardinfo *card, unsigned int stripe_size8) { if (!is_power_of_2(stripe_size8)) { dev_err(CARD_TO_DEV(card), "stripe_size is NOT a power of 2!\n"); return -EINVAL; } card->_stripe.lower_mask = stripe_size8 - 1; card->_stripe.upper_mask = ~(card->_stripe.lower_mask); card->_stripe.upper_shift = ffs(card->n_targets) - 1; card->_stripe.target_mask = card->n_targets - 1; card->_stripe.target_shift = ffs(stripe_size8) - 1; dev_dbg(CARD_TO_DEV(card), "_stripe.lower_mask = x%016llx\n", card->_stripe.lower_mask); dev_dbg(CARD_TO_DEV(card), "_stripe.upper_shift = x%016llx\n", card->_stripe.upper_shift); dev_dbg(CARD_TO_DEV(card), "_stripe.upper_mask = x%016llx\n", card->_stripe.upper_mask); dev_dbg(CARD_TO_DEV(card), "_stripe.target_mask = x%016llx\n", card->_stripe.target_mask); dev_dbg(CARD_TO_DEV(card), "_stripe.target_shift = x%016llx\n", card->_stripe.target_shift); return 0; } int rsxx_dma_configure(struct rsxx_cardinfo *card) { u32 intr_coal; intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode, card->config.data.intr_coal.count, card->config.data.intr_coal.latency); iowrite32(intr_coal, card->regmap + INTR_COAL); return rsxx_dma_stripe_setup(card, card->config.data.stripe_size); } int rsxx_dma_setup(struct rsxx_cardinfo *card) { unsigned long flags; int st; int i; dev_info(CARD_TO_DEV(card), "Initializing %d DMA targets\n", card->n_targets); /* Regmap is divided up into 4K chunks. One for each DMA channel */ for (i = 0; i < card->n_targets; i++) card->ctrl[i].regmap = card->regmap + (i * 4096); card->dma_fault = 0; /* Reset the DMA queues */ rsxx_dma_queue_reset(card); /************* Setup DMA Control *************/ for (i = 0; i < card->n_targets; i++) { st = rsxx_dma_ctrl_init(card->dev, &card->ctrl[i]); if (st) goto failed_dma_setup; card->ctrl[i].card = card; card->ctrl[i].id = i; } card->scrub_hard = 1; if (card->config_valid) rsxx_dma_configure(card); /* Enable the interrupts after all setup has completed. */ for (i = 0; i < card->n_targets; i++) { spin_lock_irqsave(&card->irq_lock, flags); rsxx_enable_ier_and_isr(card, CR_INTR_DMA(i)); spin_unlock_irqrestore(&card->irq_lock, flags); } return 0; failed_dma_setup: for (i = 0; i < card->n_targets; i++) { struct rsxx_dma_ctrl *ctrl = &card->ctrl[i]; if (ctrl->issue_wq) { destroy_workqueue(ctrl->issue_wq); ctrl->issue_wq = NULL; } if (ctrl->done_wq) { destroy_workqueue(ctrl->done_wq); ctrl->done_wq = NULL; } if (ctrl->trackers) vfree(ctrl->trackers); if (ctrl->status.buf) pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8, ctrl->status.buf, ctrl->status.dma_addr); if (ctrl->cmd.buf) pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8, ctrl->cmd.buf, ctrl->cmd.dma_addr); } return st; } void rsxx_dma_destroy(struct rsxx_cardinfo *card) { struct rsxx_dma_ctrl *ctrl; struct rsxx_dma *dma; int i, j; int cnt = 0; for (i = 0; i < card->n_targets; i++) { ctrl = &card->ctrl[i]; if (ctrl->issue_wq) { destroy_workqueue(ctrl->issue_wq); ctrl->issue_wq = NULL; } if (ctrl->done_wq) { destroy_workqueue(ctrl->done_wq); ctrl->done_wq = NULL; } if (timer_pending(&ctrl->activity_timer)) del_timer_sync(&ctrl->activity_timer); /* Clean up the DMA queue */ spin_lock(&ctrl->queue_lock); cnt = rsxx_cleanup_dma_queue(card, &ctrl->queue); spin_unlock(&ctrl->queue_lock); if (cnt) dev_info(CARD_TO_DEV(card), "Freed %d queued DMAs on channel %d\n", cnt, i); /* Clean up issued DMAs */ for (j = 0; j < RSXX_MAX_OUTSTANDING_CMDS; j++) { dma = get_tracker_dma(ctrl->trackers, j); if (dma) { pci_unmap_page(card->dev, dma->dma_addr, get_dma_size(dma), (dma->cmd == HW_CMD_BLK_WRITE) ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE); kmem_cache_free(rsxx_dma_pool, dma); cnt++; } } if (cnt) dev_info(CARD_TO_DEV(card), "Freed %d pending DMAs on channel %d\n", cnt, i); vfree(ctrl->trackers); pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8, ctrl->status.buf, ctrl->status.dma_addr); pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8, ctrl->cmd.buf, ctrl->cmd.dma_addr); } } void rsxx_eeh_save_issued_dmas(struct rsxx_cardinfo *card) { int i; int j; int cnt; struct rsxx_dma *dma; struct list_head issued_dmas[card->n_targets]; for (i = 0; i < card->n_targets; i++) { INIT_LIST_HEAD(&issued_dmas[i]); cnt = 0; for (j = 0; j < RSXX_MAX_OUTSTANDING_CMDS; j++) { dma = get_tracker_dma(card->ctrl[i].trackers, j); if (dma == NULL) continue; if (dma->cmd == HW_CMD_BLK_WRITE) card->ctrl[i].stats.writes_issued--; else if (dma->cmd == HW_CMD_BLK_DISCARD) card->ctrl[i].stats.discards_issued--; else card->ctrl[i].stats.reads_issued--; list_add_tail(&dma->list, &issued_dmas[i]); push_tracker(card->ctrl[i].trackers, j); cnt++; } spin_lock(&card->ctrl[i].queue_lock); list_splice(&issued_dmas[i], &card->ctrl[i].queue); atomic_sub(cnt, &card->ctrl[i].stats.hw_q_depth); card->ctrl[i].stats.sw_q_depth += cnt; card->ctrl[i].e_cnt = 0; list_for_each_entry(dma, &card->ctrl[i].queue, list) { if (dma->dma_addr) pci_unmap_page(card->dev, dma->dma_addr, get_dma_size(dma), dma->cmd == HW_CMD_BLK_WRITE ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE); } spin_unlock(&card->ctrl[i].queue_lock); } } void rsxx_eeh_cancel_dmas(struct rsxx_cardinfo *card) { struct rsxx_dma *dma; struct rsxx_dma *tmp; int i; for (i = 0; i < card->n_targets; i++) { spin_lock(&card->ctrl[i].queue_lock); list_for_each_entry_safe(dma, tmp, &card->ctrl[i].queue, list) { list_del(&dma->list); rsxx_complete_dma(&card->ctrl[i], dma, DMA_CANCELLED); } spin_unlock(&card->ctrl[i].queue_lock); } } int rsxx_eeh_remap_dmas(struct rsxx_cardinfo *card) { struct rsxx_dma *dma; struct rsxx_dma *tmp; int i; for (i = 0; i < card->n_targets; i++) { spin_lock(&card->ctrl[i].queue_lock); list_for_each_entry(dma, &card->ctrl[i].queue, list) { dma->dma_addr = pci_map_page(card->dev, dma->page, dma->pg_off, get_dma_size(dma), dma->cmd == HW_CMD_BLK_WRITE ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE); if (!dma->dma_addr) { spin_unlock(&card->ctrl[i].queue_lock); kmem_cache_free(rsxx_dma_pool, dma); return -ENOMEM; } } spin_unlock(&card->ctrl[i].queue_lock); } return 0; } int rsxx_dma_init(void) { rsxx_dma_pool = KMEM_CACHE(rsxx_dma, SLAB_HWCACHE_ALIGN); if (!rsxx_dma_pool) return -ENOMEM; return 0; } void rsxx_dma_cleanup(void) { kmem_cache_destroy(rsxx_dma_pool); }