#include "amd64_edac.h" #include static struct edac_pci_ctl_info *amd64_ctl_pci; static int report_gart_errors; module_param(report_gart_errors, int, 0644); /* * Set by command line parameter. If BIOS has enabled the ECC, this override is * cleared to prevent re-enabling the hardware by this driver. */ static int ecc_enable_override; module_param(ecc_enable_override, int, 0644); static struct msr __percpu *msrs; /* * count successfully initialized driver instances for setup_pci_device() */ static atomic_t drv_instances = ATOMIC_INIT(0); /* Per-node driver instances */ static struct mem_ctl_info **mcis; static struct ecc_settings **ecc_stngs; /* * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and * later. */ static int ddr2_dbam_revCG[] = { [0] = 32, [1] = 64, [2] = 128, [3] = 256, [4] = 512, [5] = 1024, [6] = 2048, }; static int ddr2_dbam_revD[] = { [0] = 32, [1] = 64, [2 ... 3] = 128, [4] = 256, [5] = 512, [6] = 256, [7] = 512, [8 ... 9] = 1024, [10] = 2048, }; static int ddr2_dbam[] = { [0] = 128, [1] = 256, [2 ... 4] = 512, [5 ... 6] = 1024, [7 ... 8] = 2048, [9 ... 10] = 4096, [11] = 8192, }; static int ddr3_dbam[] = { [0] = -1, [1] = 256, [2] = 512, [3 ... 4] = -1, [5 ... 6] = 1024, [7 ... 8] = 2048, [9 ... 10] = 4096, [11] = 8192, }; /* * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- * or higher value'. * *FIXME: Produce a better mapping/linearisation. */ struct scrubrate { u32 scrubval; /* bit pattern for scrub rate */ u32 bandwidth; /* bandwidth consumed (bytes/sec) */ } scrubrates[] = { { 0x01, 1600000000UL}, { 0x02, 800000000UL}, { 0x03, 400000000UL}, { 0x04, 200000000UL}, { 0x05, 100000000UL}, { 0x06, 50000000UL}, { 0x07, 25000000UL}, { 0x08, 12284069UL}, { 0x09, 6274509UL}, { 0x0A, 3121951UL}, { 0x0B, 1560975UL}, { 0x0C, 781440UL}, { 0x0D, 390720UL}, { 0x0E, 195300UL}, { 0x0F, 97650UL}, { 0x10, 48854UL}, { 0x11, 24427UL}, { 0x12, 12213UL}, { 0x13, 6101UL}, { 0x14, 3051UL}, { 0x15, 1523UL}, { 0x16, 761UL}, { 0x00, 0UL}, /* scrubbing off */ }; static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, u32 *val, const char *func) { int err = 0; err = pci_read_config_dword(pdev, offset, val); if (err) amd64_warn("%s: error reading F%dx%03x.\n", func, PCI_FUNC(pdev->devfn), offset); return err; } int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, u32 val, const char *func) { int err = 0; err = pci_write_config_dword(pdev, offset, val); if (err) amd64_warn("%s: error writing to F%dx%03x.\n", func, PCI_FUNC(pdev->devfn), offset); return err; } /* * * Depending on the family, F2 DCT reads need special handling: * * K8: has a single DCT only * * F10h: each DCT has its own set of regs * DCT0 -> F2x040.. * DCT1 -> F2x140.. * * F15h: we select which DCT we access using F1x10C[DctCfgSel] * */ static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, const char *func) { if (addr >= 0x100) return -EINVAL; return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); } static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, const char *func) { return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); } static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, const char *func) { u32 reg = 0; u8 dct = 0; if (addr >= 0x140 && addr <= 0x1a0) { dct = 1; addr -= 0x100; } amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); reg &= 0xfffffffe; reg |= dct; amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); } /* * Memory scrubber control interface. For K8, memory scrubbing is handled by * hardware and can involve L2 cache, dcache as well as the main memory. With * F10, this is extended to L3 cache scrubbing on CPU models sporting that * functionality. * * This causes the "units" for the scrubbing speed to vary from 64 byte blocks * (dram) over to cache lines. This is nasty, so we will use bandwidth in * bytes/sec for the setting. * * Currently, we only do dram scrubbing. If the scrubbing is done in software on * other archs, we might not have access to the caches directly. */ /* * scan the scrub rate mapping table for a close or matching bandwidth value to * issue. If requested is too big, then use last maximum value found. */ static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate) { u32 scrubval; int i; /* * map the configured rate (new_bw) to a value specific to the AMD64 * memory controller and apply to register. Search for the first * bandwidth entry that is greater or equal than the setting requested * and program that. If at last entry, turn off DRAM scrubbing. */ for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { /* * skip scrub rates which aren't recommended * (see F10 BKDG, F3x58) */ if (scrubrates[i].scrubval < min_rate) continue; if (scrubrates[i].bandwidth <= new_bw) break; /* * if no suitable bandwidth found, turn off DRAM scrubbing * entirely by falling back to the last element in the * scrubrates array. */ } scrubval = scrubrates[i].scrubval; pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F); if (scrubval) return scrubrates[i].bandwidth; return 0; } static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw) { struct amd64_pvt *pvt = mci->pvt_info; return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate); } static int amd64_get_scrub_rate(struct mem_ctl_info *mci) { struct amd64_pvt *pvt = mci->pvt_info; u32 scrubval = 0; int i, retval = -EINVAL; amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); scrubval = scrubval & 0x001F; amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval); for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { if (scrubrates[i].scrubval == scrubval) { retval = scrubrates[i].bandwidth; break; } } return retval; } /* * returns true if the SysAddr given by sys_addr matches the * DRAM base/limit associated with node_id */ static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid) { u64 addr; /* The K8 treats this as a 40-bit value. However, bits 63-40 will be * all ones if the most significant implemented address bit is 1. * Here we discard bits 63-40. See section 3.4.2 of AMD publication * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 * Application Programming. */ addr = sys_addr & 0x000000ffffffffffull; return ((addr >= get_dram_base(pvt, nid)) && (addr <= get_dram_limit(pvt, nid))); } /* * Attempt to map a SysAddr to a node. On success, return a pointer to the * mem_ctl_info structure for the node that the SysAddr maps to. * * On failure, return NULL. */ static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, u64 sys_addr) { struct amd64_pvt *pvt; int node_id; u32 intlv_en, bits; /* * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section * 3.4.4.2) registers to map the SysAddr to a node ID. */ pvt = mci->pvt_info; /* * The value of this field should be the same for all DRAM Base * registers. Therefore we arbitrarily choose to read it from the * register for node 0. */ intlv_en = dram_intlv_en(pvt, 0); if (intlv_en == 0) { for (node_id = 0; node_id < DRAM_RANGES; node_id++) { if (amd64_base_limit_match(pvt, sys_addr, node_id)) goto found; } goto err_no_match; } if (unlikely((intlv_en != 0x01) && (intlv_en != 0x03) && (intlv_en != 0x07))) { amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); return NULL; } bits = (((u32) sys_addr) >> 12) & intlv_en; for (node_id = 0; ; ) { if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) break; /* intlv_sel field matches */ if (++node_id >= DRAM_RANGES) goto err_no_match; } /* sanity test for sys_addr */ if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" "range for node %d with node interleaving enabled.\n", __func__, sys_addr, node_id); return NULL; } found: return edac_mc_find(node_id); err_no_match: debugf2("sys_addr 0x%lx doesn't match any node\n", (unsigned long)sys_addr); return NULL; } /* * compute the CS base address of the @csrow on the DRAM controller @dct. * For details see F2x[5C:40] in the processor's BKDG */ static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, u64 *base, u64 *mask) { u64 csbase, csmask, base_bits, mask_bits; u8 addr_shift; if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { csbase = pvt->csels[dct].csbases[csrow]; csmask = pvt->csels[dct].csmasks[csrow]; base_bits = GENMASK(21, 31) | GENMASK(9, 15); mask_bits = GENMASK(21, 29) | GENMASK(9, 15); addr_shift = 4; } else { csbase = pvt->csels[dct].csbases[csrow]; csmask = pvt->csels[dct].csmasks[csrow >> 1]; addr_shift = 8; if (boot_cpu_data.x86 == 0x15) base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13); else base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13); } *base = (csbase & base_bits) << addr_shift; *mask = ~0ULL; /* poke holes for the csmask */ *mask &= ~(mask_bits << addr_shift); /* OR them in */ *mask |= (csmask & mask_bits) << addr_shift; } #define for_each_chip_select(i, dct, pvt) \ for (i = 0; i < pvt->csels[dct].b_cnt; i++) #define for_each_chip_select_mask(i, dct, pvt) \ for (i = 0; i < pvt->csels[dct].m_cnt; i++) /* * @input_addr is an InputAddr associated with the node given by mci. Return the * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). */ static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) { struct amd64_pvt *pvt; int csrow; u64 base, mask; pvt = mci->pvt_info; for_each_chip_select(csrow, 0, pvt) { if (!csrow_enabled(csrow, 0, pvt)) continue; get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); mask = ~mask; if ((input_addr & mask) == (base & mask)) { debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n", (unsigned long)input_addr, csrow, pvt->mc_node_id); return csrow; } } debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n", (unsigned long)input_addr, pvt->mc_node_id); return -1; } /* * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) * for the node represented by mci. Info is passed back in *hole_base, * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if * info is invalid. Info may be invalid for either of the following reasons: * * - The revision of the node is not E or greater. In this case, the DRAM Hole * Address Register does not exist. * * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, * indicating that its contents are not valid. * * The values passed back in *hole_base, *hole_offset, and *hole_size are * complete 32-bit values despite the fact that the bitfields in the DHAR * only represent bits 31-24 of the base and offset values. */ int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, u64 *hole_offset, u64 *hole_size) { struct amd64_pvt *pvt = mci->pvt_info; u64 base; /* only revE and later have the DRAM Hole Address Register */ if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) { debugf1(" revision %d for node %d does not support DHAR\n", pvt->ext_model, pvt->mc_node_id); return 1; } /* valid for Fam10h and above */ if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) { debugf1(" Dram Memory Hoisting is DISABLED on this system\n"); return 1; } if (!dhar_valid(pvt)) { debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n", pvt->mc_node_id); return 1; } /* This node has Memory Hoisting */ /* +------------------+--------------------+--------------------+----- * | memory | DRAM hole | relocated | * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | * | | | DRAM hole | * | | | [0x100000000, | * | | | (0x100000000+ | * | | | (0xffffffff-x))] | * +------------------+--------------------+--------------------+----- * * Above is a diagram of physical memory showing the DRAM hole and the * relocated addresses from the DRAM hole. As shown, the DRAM hole * starts at address x (the base address) and extends through address * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the * addresses in the hole so that they start at 0x100000000. */ base = dhar_base(pvt); *hole_base = base; *hole_size = (0x1ull << 32) - base; if (boot_cpu_data.x86 > 0xf) *hole_offset = f10_dhar_offset(pvt); else *hole_offset = k8_dhar_offset(pvt); debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", pvt->mc_node_id, (unsigned long)*hole_base, (unsigned long)*hole_offset, (unsigned long)*hole_size); return 0; } EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); /* * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is * assumed that sys_addr maps to the node given by mci. * * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, * then it is also involved in translating a SysAddr to a DramAddr. Sections * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. * These parts of the documentation are unclear. I interpret them as follows: * * When node n receives a SysAddr, it processes the SysAddr as follows: * * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM * Limit registers for node n. If the SysAddr is not within the range * specified by the base and limit values, then node n ignores the Sysaddr * (since it does not map to node n). Otherwise continue to step 2 below. * * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is * disabled so skip to step 3 below. Otherwise see if the SysAddr is within * the range of relocated addresses (starting at 0x100000000) from the DRAM * hole. If not, skip to step 3 below. Else get the value of the * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the * offset defined by this value from the SysAddr. * * 3. Obtain the base address for node n from the DRAMBase field of the DRAM * Base register for node n. To obtain the DramAddr, subtract the base * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). */ static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) { struct amd64_pvt *pvt = mci->pvt_info; u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; int ret = 0; dram_base = get_dram_base(pvt, pvt->mc_node_id); ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size); if (!ret) { if ((sys_addr >= (1ull << 32)) && (sys_addr < ((1ull << 32) + hole_size))) { /* use DHAR to translate SysAddr to DramAddr */ dram_addr = sys_addr - hole_offset; debugf2("using DHAR to translate SysAddr 0x%lx to " "DramAddr 0x%lx\n", (unsigned long)sys_addr, (unsigned long)dram_addr); return dram_addr; } } /* * Translate the SysAddr to a DramAddr as shown near the start of * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 * only deals with 40-bit values. Therefore we discard bits 63-40 of * sys_addr below. If bit 39 of sys_addr is 1 then the bits we * discard are all 1s. Otherwise the bits we discard are all 0s. See * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture * Programmer's Manual Volume 1 Application Programming. */ dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base; debugf2("using DRAM Base register to translate SysAddr 0x%lx to " "DramAddr 0x%lx\n", (unsigned long)sys_addr, (unsigned long)dram_addr); return dram_addr; } /* * @intlv_en is the value of the IntlvEn field from a DRAM Base register * (section 3.4.4.1). Return the number of bits from a SysAddr that are used * for node interleaving. */ static int num_node_interleave_bits(unsigned intlv_en) { static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; int n; BUG_ON(intlv_en > 7); n = intlv_shift_table[intlv_en]; return n; } /* Translate the DramAddr given by @dram_addr to an InputAddr. */ static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) { struct amd64_pvt *pvt; int intlv_shift; u64 input_addr; pvt = mci->pvt_info; /* * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) * concerning translating a DramAddr to an InputAddr. */ intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) + (dram_addr & 0xfff); debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", intlv_shift, (unsigned long)dram_addr, (unsigned long)input_addr); return input_addr; } /* * Translate the SysAddr represented by @sys_addr to an InputAddr. It is * assumed that @sys_addr maps to the node given by mci. */ static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) { u64 input_addr; input_addr = dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n", (unsigned long)sys_addr, (unsigned long)input_addr); return input_addr; } /* * @input_addr is an InputAddr associated with the node represented by mci. * Translate @input_addr to a DramAddr and return the result. */ static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr) { struct amd64_pvt *pvt; int node_id, intlv_shift; u64 bits, dram_addr; u32 intlv_sel; /* * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) * shows how to translate a DramAddr to an InputAddr. Here we reverse * this procedure. When translating from a DramAddr to an InputAddr, the * bits used for node interleaving are discarded. Here we recover these * bits from the IntlvSel field of the DRAM Limit register (section * 3.4.4.2) for the node that input_addr is associated with. */ pvt = mci->pvt_info; node_id = pvt->mc_node_id; BUG_ON((node_id < 0) || (node_id > 7)); intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); if (intlv_shift == 0) { debugf1(" InputAddr 0x%lx translates to DramAddr of " "same value\n", (unsigned long)input_addr); return input_addr; } bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) + (input_addr & 0xfff); intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1); dram_addr = bits + (intlv_sel << 12); debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx " "(%d node interleave bits)\n", (unsigned long)input_addr, (unsigned long)dram_addr, intlv_shift); return dram_addr; } /* * @dram_addr is a DramAddr that maps to the node represented by mci. Convert * @dram_addr to a SysAddr. */ static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr) { struct amd64_pvt *pvt = mci->pvt_info; u64 hole_base, hole_offset, hole_size, base, sys_addr; int ret = 0; ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size); if (!ret) { if ((dram_addr >= hole_base) && (dram_addr < (hole_base + hole_size))) { sys_addr = dram_addr + hole_offset; debugf1("using DHAR to translate DramAddr 0x%lx to " "SysAddr 0x%lx\n", (unsigned long)dram_addr, (unsigned long)sys_addr); return sys_addr; } } base = get_dram_base(pvt, pvt->mc_node_id); sys_addr = dram_addr + base; /* * The sys_addr we have computed up to this point is a 40-bit value * because the k8 deals with 40-bit values. However, the value we are * supposed to return is a full 64-bit physical address. The AMD * x86-64 architecture specifies that the most significant implemented * address bit through bit 63 of a physical address must be either all * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a * 64-bit value below. See section 3.4.2 of AMD publication 24592: * AMD x86-64 Architecture Programmer's Manual Volume 1 Application * Programming. */ sys_addr |= ~((sys_addr & (1ull << 39)) - 1); debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n", pvt->mc_node_id, (unsigned long)dram_addr, (unsigned long)sys_addr); return sys_addr; } /* * @input_addr is an InputAddr associated with the node given by mci. Translate * @input_addr to a SysAddr. */ static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci, u64 input_addr) { return dram_addr_to_sys_addr(mci, input_addr_to_dram_addr(mci, input_addr)); } /* * Find the minimum and maximum InputAddr values that map to the given @csrow. * Pass back these values in *input_addr_min and *input_addr_max. */ static void find_csrow_limits(struct mem_ctl_info *mci, int csrow, u64 *input_addr_min, u64 *input_addr_max) { struct amd64_pvt *pvt; u64 base, mask; pvt = mci->pvt_info; BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt)); get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); *input_addr_min = base & ~mask; *input_addr_max = base | mask; } /* Map the Error address to a PAGE and PAGE OFFSET. */ static inline void error_address_to_page_and_offset(u64 error_address, u32 *page, u32 *offset) { *page = (u32) (error_address >> PAGE_SHIFT); *offset = ((u32) error_address) & ~PAGE_MASK; } /* * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers * of a node that detected an ECC memory error. mci represents the node that * the error address maps to (possibly different from the node that detected * the error). Return the number of the csrow that sys_addr maps to, or -1 on * error. */ static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) { int csrow; csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); if (csrow == -1) amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " "address 0x%lx\n", (unsigned long)sys_addr); return csrow; } static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); static u16 extract_syndrome(struct err_regs *err) { return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00); } /* * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs * are ECC capable. */ static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt) { u8 bit; enum dev_type edac_cap = EDAC_FLAG_NONE; bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F) ? 19 : 17; if (pvt->dclr0 & BIT(bit)) edac_cap = EDAC_FLAG_SECDED; return edac_cap; } static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt); static void amd64_dump_dramcfg_low(u32 dclr, int chan) { debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n", (dclr & BIT(16)) ? "un" : "", (dclr & BIT(19)) ? "yes" : "no"); debugf1(" PAR/ERR parity: %s\n", (dclr & BIT(8)) ? "enabled" : "disabled"); if (boot_cpu_data.x86 == 0x10) debugf1(" DCT 128bit mode width: %s\n", (dclr & BIT(11)) ? "128b" : "64b"); debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", (dclr & BIT(12)) ? "yes" : "no", (dclr & BIT(13)) ? "yes" : "no", (dclr & BIT(14)) ? "yes" : "no", (dclr & BIT(15)) ? "yes" : "no"); } /* Display and decode various NB registers for debug purposes. */ static void dump_misc_regs(struct amd64_pvt *pvt) { debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); debugf1(" NB two channel DRAM capable: %s\n", (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n", (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); amd64_dump_dramcfg_low(pvt->dclr0, 0); debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, " "offset: 0x%08x\n", pvt->dhar, dhar_base(pvt), (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt) : f10_dhar_offset(pvt)); debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); amd64_debug_display_dimm_sizes(0, pvt); /* everything below this point is Fam10h and above */ if (boot_cpu_data.x86 == 0xf) return; amd64_debug_display_dimm_sizes(1, pvt); amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4")); /* Only if NOT ganged does dclr1 have valid info */ if (!dct_ganging_enabled(pvt)) amd64_dump_dramcfg_low(pvt->dclr1, 1); } /* * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] */ static void prep_chip_selects(struct amd64_pvt *pvt) { if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; } else { pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; } } /* * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers */ static void read_dct_base_mask(struct amd64_pvt *pvt) { int cs; prep_chip_selects(pvt); for_each_chip_select(cs, 0, pvt) { u32 reg0 = DCSB0 + (cs * 4); u32 reg1 = DCSB1 + (cs * 4); u32 *base0 = &pvt->csels[0].csbases[cs]; u32 *base1 = &pvt->csels[1].csbases[cs]; if (!amd64_read_dct_pci_cfg(pvt, reg0, base0)) debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n", cs, *base0, reg0); if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt)) continue; if (!amd64_read_dct_pci_cfg(pvt, reg1, base1)) debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n", cs, *base1, reg1); } for_each_chip_select_mask(cs, 0, pvt) { u32 reg0 = DCSM0 + (cs * 4); u32 reg1 = DCSM1 + (cs * 4); u32 *mask0 = &pvt->csels[0].csmasks[cs]; u32 *mask1 = &pvt->csels[1].csmasks[cs]; if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0)) debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n", cs, *mask0, reg0); if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt)) continue; if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1)) debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n", cs, *mask1, reg1); } } static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs) { enum mem_type type; /* F15h supports only DDR3 */ if (boot_cpu_data.x86 >= 0x15) type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) { if (pvt->dchr0 & DDR3_MODE) type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; else type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; } else { type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; } amd64_info("CS%d: %s\n", cs, edac_mem_types[type]); return type; } /* Get the number of DCT channels the memory controller is using. */ static int k8_early_channel_count(struct amd64_pvt *pvt) { int flag; if (pvt->ext_model >= K8_REV_F) /* RevF (NPT) and later */ flag = pvt->dclr0 & F10_WIDTH_128; else /* RevE and earlier */ flag = pvt->dclr0 & REVE_WIDTH_128; /* not used */ pvt->dclr1 = 0; return (flag) ? 2 : 1; } /* Extract the ERROR ADDRESS for the K8 CPUs */ static u64 k8_get_error_address(struct mem_ctl_info *mci, struct err_regs *info) { return (((u64) (info->nbeah & 0xff)) << 32) + (info->nbeal & ~0x03); } static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) { u32 off = range << 3; amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); if (boot_cpu_data.x86 == 0xf) return; if (!dram_rw(pvt, range)) return; amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); } static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, struct err_regs *err_info, u64 sys_addr) { struct mem_ctl_info *src_mci; int channel, csrow; u32 page, offset; u16 syndrome; syndrome = extract_syndrome(err_info); /* CHIPKILL enabled */ if (err_info->nbcfg & NBCFG_CHIPKILL) { channel = get_channel_from_ecc_syndrome(mci, syndrome); if (channel < 0) { /* * Syndrome didn't map, so we don't know which of the * 2 DIMMs is in error. So we need to ID 'both' of them * as suspect. */ amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible " "error reporting race\n", syndrome); edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); return; } } else { /* * non-chipkill ecc mode * * The k8 documentation is unclear about how to determine the * channel number when using non-chipkill memory. This method * was obtained from email communication with someone at AMD. * (Wish the email was placed in this comment - norsk) */ channel = ((sys_addr & BIT(3)) != 0); } /* * Find out which node the error address belongs to. This may be * different from the node that detected the error. */ src_mci = find_mc_by_sys_addr(mci, sys_addr); if (!src_mci) { amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", (unsigned long)sys_addr); edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); return; } /* Now map the sys_addr to a CSROW */ csrow = sys_addr_to_csrow(src_mci, sys_addr); if (csrow < 0) { edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR); } else { error_address_to_page_and_offset(sys_addr, &page, &offset); edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow, channel, EDAC_MOD_STR); } } static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode) { int *dbam_map; if (pvt->ext_model >= K8_REV_F) dbam_map = ddr2_dbam; else if (pvt->ext_model >= K8_REV_D) dbam_map = ddr2_dbam_revD; else dbam_map = ddr2_dbam_revCG; return dbam_map[cs_mode]; } /* * Get the number of DCT channels in use. * * Return: * number of Memory Channels in operation * Pass back: * contents of the DCL0_LOW register */ static int f1x_early_channel_count(struct amd64_pvt *pvt) { int i, j, channels = 0; /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & F10_WIDTH_128)) return 2; /* * Need to check if in unganged mode: In such, there are 2 channels, * but they are not in 128 bit mode and thus the above 'dclr0' status * bit will be OFF. * * Need to check DCT0[0] and DCT1[0] to see if only one of them has * their CSEnable bit on. If so, then SINGLE DIMM case. */ debugf0("Data width is not 128 bits - need more decoding\n"); /* * Check DRAM Bank Address Mapping values for each DIMM to see if there * is more than just one DIMM present in unganged mode. Need to check * both controllers since DIMMs can be placed in either one. */ for (i = 0; i < 2; i++) { u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); for (j = 0; j < 4; j++) { if (DBAM_DIMM(j, dbam) > 0) { channels++; break; } } } if (channels > 2) channels = 2; amd64_info("MCT channel count: %d\n", channels); return channels; } static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode) { int *dbam_map; if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) dbam_map = ddr3_dbam; else dbam_map = ddr2_dbam; return dbam_map[cs_mode]; } static u64 f10_get_error_address(struct mem_ctl_info *mci, struct err_regs *info) { return (((u64) (info->nbeah & 0xffff)) << 32) + (info->nbeal & ~0x01); } static void f10_read_dram_ctl_register(struct amd64_pvt *pvt) { if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) { debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); debugf0(" mode: %s, All DCTs on: %s\n", (dct_ganging_enabled(pvt) ? "ganged" : "unganged"), (dct_dram_enabled(pvt) ? "yes" : "no")); if (!dct_ganging_enabled(pvt)) debugf0(" Address range split per DCT: %s\n", (dct_high_range_enabled(pvt) ? "yes" : "no")); debugf0(" data interleave for ECC: %s, " "DRAM cleared since last warm reset: %s\n", (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), (dct_memory_cleared(pvt) ? "yes" : "no")); debugf0(" channel interleave: %s, " "interleave bits selector: 0x%x\n", (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), dct_sel_interleave_addr(pvt)); } amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi); } /* * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory * Interleaving Modes. */ static u8 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, bool hi_range_sel, u8 intlv_en) { u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; if (dct_ganging_enabled(pvt)) return 0; if (hi_range_sel) return dct_sel_high; /* * see F2x110[DctSelIntLvAddr] - channel interleave mode */ if (dct_interleave_enabled(pvt)) { u8 intlv_addr = dct_sel_interleave_addr(pvt); /* return DCT select function: 0=DCT0, 1=DCT1 */ if (!intlv_addr) return sys_addr >> 6 & 1; if (intlv_addr & 0x2) { u8 shift = intlv_addr & 0x1 ? 9 : 6; u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; return ((sys_addr >> shift) & 1) ^ temp; } return (sys_addr >> (12 + hweight8(intlv_en))) & 1; } if (dct_high_range_enabled(pvt)) return ~dct_sel_high & 1; return 0; } /* Convert the sys_addr to the normalized DCT address */ static u64 f10_get_norm_dct_addr(struct amd64_pvt *pvt, int range, u64 sys_addr, bool hi_rng, u32 dct_sel_base_addr) { u64 chan_off; u64 dram_base = get_dram_base(pvt, range); u64 hole_off = f10_dhar_offset(pvt); u32 hole_valid = dhar_valid(pvt); u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16; if (hi_rng) { /* * if * base address of high range is below 4Gb * (bits [47:27] at [31:11]) * DRAM address space on this DCT is hoisted above 4Gb && * sys_addr > 4Gb * * remove hole offset from sys_addr * else * remove high range offset from sys_addr */ if ((!(dct_sel_base_addr >> 16) || dct_sel_base_addr < dhar_base(pvt)) && hole_valid && (sys_addr >= BIT_64(32))) chan_off = hole_off; else chan_off = dct_sel_base_off; } else { /* * if * we have a valid hole && * sys_addr > 4Gb * * remove hole * else * remove dram base to normalize to DCT address */ if (hole_valid && (sys_addr >= BIT_64(32))) chan_off = hole_off; else chan_off = dram_base; } return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47)); } /* Hack for the time being - Can we get this from BIOS?? */ #define CH0SPARE_RANK 0 #define CH1SPARE_RANK 1 /* * checks if the csrow passed in is marked as SPARED, if so returns the new * spare row */ static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) { u32 swap_done; u32 bad_dram_cs; /* Depending on channel, isolate respective SPARING info */ if (dct) { swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare); bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare); if (swap_done && (csrow == bad_dram_cs)) csrow = CH1SPARE_RANK; } else { swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare); bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare); if (swap_done && (csrow == bad_dram_cs)) csrow = CH0SPARE_RANK; } return csrow; } /* * Iterate over the DRAM DCT "base" and "mask" registers looking for a * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' * * Return: * -EINVAL: NOT FOUND * 0..csrow = Chip-Select Row */ static int f10_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct) { struct mem_ctl_info *mci; struct amd64_pvt *pvt; u64 cs_base, cs_mask; int cs_found = -EINVAL; int csrow; mci = mcis[nid]; if (!mci) return cs_found; pvt = mci->pvt_info; debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct); for_each_chip_select(csrow, dct, pvt) { if (!csrow_enabled(csrow, dct, pvt)) continue; get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", csrow, cs_base, cs_mask); cs_mask = ~cs_mask; debugf1(" (InputAddr & ~CSMask)=0x%llx " "(CSBase & ~CSMask)=0x%llx\n", (in_addr & cs_mask), (cs_base & cs_mask)); if ((in_addr & cs_mask) == (cs_base & cs_mask)) { cs_found = f10_process_possible_spare(pvt, dct, csrow); debugf1(" MATCH csrow=%d\n", cs_found); break; } } return cs_found; } /* For a given @dram_range, check if @sys_addr falls within it. */ static int f10_match_to_this_node(struct amd64_pvt *pvt, int range, u64 sys_addr, int *nid, int *chan_sel) { int cs_found = -EINVAL; u64 chan_addr; u32 tmp, dct_sel_base; u8 channel; bool high_range = false; u8 node_id = dram_dst_node(pvt, range); u8 intlv_en = dram_intlv_en(pvt, range); u32 intlv_sel = dram_intlv_sel(pvt, range); debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", range, sys_addr, get_dram_limit(pvt, range)); if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) return -EINVAL; dct_sel_base = dct_sel_baseaddr(pvt); /* * check whether addresses >= DctSelBaseAddr[47:27] are to be used to * select between DCT0 and DCT1. */ if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt) && ((sys_addr >> 27) >= (dct_sel_base >> 11))) high_range = true; channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en); chan_addr = f10_get_norm_dct_addr(pvt, range, sys_addr, high_range, dct_sel_base); /* remove Node ID (in case of node interleaving) */ tmp = chan_addr & 0xFC0; chan_addr = ((chan_addr >> hweight8(intlv_en)) & GENMASK(12, 47)) | tmp; /* remove channel interleave and hash */ if (dct_interleave_enabled(pvt) && !dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt)) { if (dct_sel_interleave_addr(pvt) != 1) chan_addr = (chan_addr >> 1) & GENMASK(6, 63); else { tmp = chan_addr & 0xFC0; chan_addr = ((chan_addr & GENMASK(14, 63)) >> 1) | tmp; } } debugf1(" (ChannelAddrLong=0x%llx)\n", chan_addr); cs_found = f10_lookup_addr_in_dct(chan_addr, node_id, channel); if (cs_found >= 0) { *nid = node_id; *chan_sel = channel; } return cs_found; } static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr, int *node, int *chan_sel) { int range, cs_found = -EINVAL; for (range = 0; range < DRAM_RANGES; range++) { if (!dram_rw(pvt, range)) continue; if ((get_dram_base(pvt, range) <= sys_addr) && (get_dram_limit(pvt, range) >= sys_addr)) { cs_found = f10_match_to_this_node(pvt, range, sys_addr, node, chan_sel); if (cs_found >= 0) break; } } return cs_found; } /* * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). * * The @sys_addr is usually an error address received from the hardware * (MCX_ADDR). */ static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci, struct err_regs *err_info, u64 sys_addr) { struct amd64_pvt *pvt = mci->pvt_info; u32 page, offset; int nid, csrow, chan = 0; u16 syndrome; csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan); if (csrow < 0) { edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); return; } error_address_to_page_and_offset(sys_addr, &page, &offset); syndrome = extract_syndrome(err_info); /* * We need the syndromes for channel detection only when we're * ganged. Otherwise @chan should already contain the channel at * this point. */ if (dct_ganging_enabled(pvt)) chan = get_channel_from_ecc_syndrome(mci, syndrome); if (chan >= 0) edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan, EDAC_MOD_STR); else /* * Channel unknown, report all channels on this CSROW as failed. */ for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++) edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan, EDAC_MOD_STR); } /* * debug routine to display the memory sizes of all logical DIMMs and its * CSROWs */ static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt) { int dimm, size0, size1, factor = 0; u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; if (boot_cpu_data.x86 == 0xf) { if (pvt->dclr0 & F10_WIDTH_128) factor = 1; /* K8 families < revF not supported yet */ if (pvt->ext_model < K8_REV_F) return; else WARN_ON(ctrl != 0); } dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0; dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases : pvt->csels[0].csbases; debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam); edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); /* Dump memory sizes for DIMM and its CSROWs */ for (dimm = 0; dimm < 4; dimm++) { size0 = 0; if (dcsb[dimm*2] & DCSB_CS_ENABLE) size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam)); size1 = 0; if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam)); amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", dimm * 2, size0 << factor, dimm * 2 + 1, size1 << factor); } } static struct amd64_family_type amd64_family_types[] = { [K8_CPUS] = { .ctl_name = "K8", .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC, .ops = { .early_channel_count = k8_early_channel_count, .get_error_address = k8_get_error_address, .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, .dbam_to_cs = k8_dbam_to_chip_select, .read_dct_pci_cfg = k8_read_dct_pci_cfg, } }, [F10_CPUS] = { .ctl_name = "F10h", .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC, .ops = { .early_channel_count = f1x_early_channel_count, .get_error_address = f10_get_error_address, .read_dram_ctl_register = f10_read_dram_ctl_register, .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow, .dbam_to_cs = f10_dbam_to_chip_select, .read_dct_pci_cfg = f10_read_dct_pci_cfg, } }, [F15_CPUS] = { .ctl_name = "F15h", .ops = { .early_channel_count = f1x_early_channel_count, .read_dct_pci_cfg = f15_read_dct_pci_cfg, } }, }; static struct pci_dev *pci_get_related_function(unsigned int vendor, unsigned int device, struct pci_dev *related) { struct pci_dev *dev = NULL; dev = pci_get_device(vendor, device, dev); while (dev) { if ((dev->bus->number == related->bus->number) && (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) break; dev = pci_get_device(vendor, device, dev); } return dev; } /* * These are tables of eigenvectors (one per line) which can be used for the * construction of the syndrome tables. The modified syndrome search algorithm * uses those to find the symbol in error and thus the DIMM. * * Algorithm courtesy of Ross LaFetra from AMD. */ static u16 x4_vectors[] = { 0x2f57, 0x1afe, 0x66cc, 0xdd88, 0x11eb, 0x3396, 0x7f4c, 0xeac8, 0x0001, 0x0002, 0x0004, 0x0008, 0x1013, 0x3032, 0x4044, 0x8088, 0x106b, 0x30d6, 0x70fc, 0xe0a8, 0x4857, 0xc4fe, 0x13cc, 0x3288, 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, 0x1f39, 0x251e, 0xbd6c, 0x6bd8, 0x15c1, 0x2a42, 0x89ac, 0x4758, 0x2b03, 0x1602, 0x4f0c, 0xca08, 0x1f07, 0x3a0e, 0x6b04, 0xbd08, 0x8ba7, 0x465e, 0x244c, 0x1cc8, 0x2b87, 0x164e, 0x642c, 0xdc18, 0x40b9, 0x80de, 0x1094, 0x20e8, 0x27db, 0x1eb6, 0x9dac, 0x7b58, 0x11c1, 0x2242, 0x84ac, 0x4c58, 0x1be5, 0x2d7a, 0x5e34, 0xa718, 0x4b39, 0x8d1e, 0x14b4, 0x28d8, 0x4c97, 0xc87e, 0x11fc, 0x33a8, 0x8e97, 0x497e, 0x2ffc, 0x1aa8, 0x16b3, 0x3d62, 0x4f34, 0x8518, 0x1e2f, 0x391a, 0x5cac, 0xf858, 0x1d9f, 0x3b7a, 0x572c, 0xfe18, 0x15f5, 0x2a5a, 0x5264, 0xa3b8, 0x1dbb, 0x3b66, 0x715c, 0xe3f8, 0x4397, 0xc27e, 0x17fc, 0x3ea8, 0x1617, 0x3d3e, 0x6464, 0xb8b8, 0x23ff, 0x12aa, 0xab6c, 0x56d8, 0x2dfb, 0x1ba6, 0x913c, 0x7328, 0x185d, 0x2ca6, 0x7914, 0x9e28, 0x171b, 0x3e36, 0x7d7c, 0xebe8, 0x4199, 0x82ee, 0x19f4, 0x2e58, 0x4807, 0xc40e, 0x130c, 0x3208, 0x1905, 0x2e0a, 0x5804, 0xac08, 0x213f, 0x132a, 0xadfc, 0x5ba8, 0x19a9, 0x2efe, 0xb5cc, 0x6f88, }; static u16 x8_vectors[] = { 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, }; static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs, int v_dim) { unsigned int i, err_sym; for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { u16 s = syndrome; int v_idx = err_sym * v_dim; int v_end = (err_sym + 1) * v_dim; /* walk over all 16 bits of the syndrome */ for (i = 1; i < (1U << 16); i <<= 1) { /* if bit is set in that eigenvector... */ if (v_idx < v_end && vectors[v_idx] & i) { u16 ev_comp = vectors[v_idx++]; /* ... and bit set in the modified syndrome, */ if (s & i) { /* remove it. */ s ^= ev_comp; if (!s) return err_sym; } } else if (s & i) /* can't get to zero, move to next symbol */ break; } } debugf0("syndrome(%x) not found\n", syndrome); return -1; } static int map_err_sym_to_channel(int err_sym, int sym_size) { if (sym_size == 4) switch (err_sym) { case 0x20: case 0x21: return 0; break; case 0x22: case 0x23: return 1; break; default: return err_sym >> 4; break; } /* x8 symbols */ else switch (err_sym) { /* imaginary bits not in a DIMM */ case 0x10: WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", err_sym); return -1; break; case 0x11: return 0; break; case 0x12: return 1; break; default: return err_sym >> 3; break; } return -1; } static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) { struct amd64_pvt *pvt = mci->pvt_info; int err_sym = -1; if (pvt->syn_type == 8) err_sym = decode_syndrome(syndrome, x8_vectors, ARRAY_SIZE(x8_vectors), pvt->syn_type); else if (pvt->syn_type == 4) err_sym = decode_syndrome(syndrome, x4_vectors, ARRAY_SIZE(x4_vectors), pvt->syn_type); else { amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type); return err_sym; } return map_err_sym_to_channel(err_sym, pvt->syn_type); } /* * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR * ADDRESS and process. */ static void amd64_handle_ce(struct mem_ctl_info *mci, struct err_regs *info) { struct amd64_pvt *pvt = mci->pvt_info; u64 sys_addr; /* Ensure that the Error Address is VALID */ if (!(info->nbsh & NBSH_VALID_ERROR_ADDR)) { amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n"); edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); return; } sys_addr = pvt->ops->get_error_address(mci, info); amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr); pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr); } /* Handle any Un-correctable Errors (UEs) */ static void amd64_handle_ue(struct mem_ctl_info *mci, struct err_regs *info) { struct amd64_pvt *pvt = mci->pvt_info; struct mem_ctl_info *log_mci, *src_mci = NULL; int csrow; u64 sys_addr; u32 page, offset; log_mci = mci; if (!(info->nbsh & NBSH_VALID_ERROR_ADDR)) { amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n"); edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); return; } sys_addr = pvt->ops->get_error_address(mci, info); /* * Find out which node the error address belongs to. This may be * different from the node that detected the error. */ src_mci = find_mc_by_sys_addr(mci, sys_addr); if (!src_mci) { amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n", (unsigned long)sys_addr); edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); return; } log_mci = src_mci; csrow = sys_addr_to_csrow(log_mci, sys_addr); if (csrow < 0) { amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n", (unsigned long)sys_addr); edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); } else { error_address_to_page_and_offset(sys_addr, &page, &offset); edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR); } } static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci, struct err_regs *info) { u16 ec = EC(info->nbsl); u8 xec = XEC(info->nbsl, 0x1f); int ecc_type = (info->nbsh >> 13) & 0x3; /* Bail early out if this was an 'observed' error */ if (PP(ec) == NBSL_PP_OBS) return; /* Do only ECC errors */ if (xec && xec != F10_NBSL_EXT_ERR_ECC) return; if (ecc_type == 2) amd64_handle_ce(mci, info); else if (ecc_type == 1) amd64_handle_ue(mci, info); } void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg) { struct mem_ctl_info *mci = mcis[node_id]; struct err_regs regs; regs.nbsl = (u32) m->status; regs.nbsh = (u32)(m->status >> 32); regs.nbeal = (u32) m->addr; regs.nbeah = (u32)(m->addr >> 32); regs.nbcfg = nbcfg; __amd64_decode_bus_error(mci, ®s); } /* * Use pvt->F2 which contains the F2 CPU PCI device to get the related * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error. */ static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id) { /* Reserve the ADDRESS MAP Device */ pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2); if (!pvt->F1) { amd64_err("error address map device not found: " "vendor %x device 0x%x (broken BIOS?)\n", PCI_VENDOR_ID_AMD, f1_id); return -ENODEV; } /* Reserve the MISC Device */ pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2); if (!pvt->F3) { pci_dev_put(pvt->F1); pvt->F1 = NULL; amd64_err("error F3 device not found: " "vendor %x device 0x%x (broken BIOS?)\n", PCI_VENDOR_ID_AMD, f3_id); return -ENODEV; } debugf1("F1: %s\n", pci_name(pvt->F1)); debugf1("F2: %s\n", pci_name(pvt->F2)); debugf1("F3: %s\n", pci_name(pvt->F3)); return 0; } static void free_mc_sibling_devs(struct amd64_pvt *pvt) { pci_dev_put(pvt->F1); pci_dev_put(pvt->F3); } /* * Retrieve the hardware registers of the memory controller (this includes the * 'Address Map' and 'Misc' device regs) */ static void read_mc_regs(struct amd64_pvt *pvt) { u64 msr_val; u32 tmp; int range; /* * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since * those are Read-As-Zero */ rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem); /* check first whether TOP_MEM2 is enabled */ rdmsrl(MSR_K8_SYSCFG, msr_val); if (msr_val & (1U << 21)) { rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2); } else debugf0(" TOP_MEM2 disabled.\n"); amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); if (pvt->ops->read_dram_ctl_register) pvt->ops->read_dram_ctl_register(pvt); for (range = 0; range < DRAM_RANGES; range++) { u8 rw; /* read settings for this DRAM range */ read_dram_base_limit_regs(pvt, range); rw = dram_rw(pvt, range); if (!rw) continue; debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", range, get_dram_base(pvt, range), get_dram_limit(pvt, range)); debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", (rw & 0x1) ? "R" : "-", (rw & 0x2) ? "W" : "-", dram_intlv_sel(pvt, range), dram_dst_node(pvt, range)); } read_dct_base_mask(pvt); amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0); amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0); amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0); if (!dct_ganging_enabled(pvt)) { amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1); amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1); } if (boot_cpu_data.x86 >= 0x10) { amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1); } if (boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model > 7 && /* F3x180[EccSymbolSize]=1 => x8 symbols */ tmp & BIT(25)) pvt->syn_type = 8; else pvt->syn_type = 4; dump_misc_regs(pvt); } /* * NOTE: CPU Revision Dependent code * * Input: * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) * k8 private pointer to --> * DRAM Bank Address mapping register * node_id * DCL register where dual_channel_active is * * The DBAM register consists of 4 sets of 4 bits each definitions: * * Bits: CSROWs * 0-3 CSROWs 0 and 1 * 4-7 CSROWs 2 and 3 * 8-11 CSROWs 4 and 5 * 12-15 CSROWs 6 and 7 * * Values range from: 0 to 15 * The meaning of the values depends on CPU revision and dual-channel state, * see relevant BKDG more info. * * The memory controller provides for total of only 8 CSROWs in its current * architecture. Each "pair" of CSROWs normally represents just one DIMM in * single channel or two (2) DIMMs in dual channel mode. * * The following code logic collapses the various tables for CSROW based on CPU * revision. * * Returns: * The number of PAGE_SIZE pages on the specified CSROW number it * encompasses * */ static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt) { u32 cs_mode, nr_pages; /* * The math on this doesn't look right on the surface because x/2*4 can * be simplified to x*2 but this expression makes use of the fact that * it is integral math where 1/2=0. This intermediate value becomes the * number of bits to shift the DBAM register to extract the proper CSROW * field. */ cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF; nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT); /* * If dual channel then double the memory size of single channel. * Channel count is 1 or 2 */ nr_pages <<= (pvt->channel_count - 1); debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode); debugf0(" nr_pages= %u channel-count = %d\n", nr_pages, pvt->channel_count); return nr_pages; } /* * Initialize the array of csrow attribute instances, based on the values * from pci config hardware registers. */ static int init_csrows(struct mem_ctl_info *mci) { struct csrow_info *csrow; struct amd64_pvt *pvt = mci->pvt_info; u64 input_addr_min, input_addr_max, sys_addr, base, mask; u32 val; int i, empty = 1; amd64_read_pci_cfg(pvt->F3, NBCFG, &val); pvt->nbcfg = val; debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", pvt->mc_node_id, val, !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); for_each_chip_select(i, 0, pvt) { csrow = &mci->csrows[i]; if (!csrow_enabled(i, 0, pvt)) { debugf1("----CSROW %d EMPTY for node %d\n", i, pvt->mc_node_id); continue; } debugf1("----CSROW %d VALID for MC node %d\n", i, pvt->mc_node_id); empty = 0; csrow->nr_pages = amd64_csrow_nr_pages(i, pvt); find_csrow_limits(mci, i, &input_addr_min, &input_addr_max); sys_addr = input_addr_to_sys_addr(mci, input_addr_min); csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT); sys_addr = input_addr_to_sys_addr(mci, input_addr_max); csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT); get_cs_base_and_mask(pvt, i, 0, &base, &mask); csrow->page_mask = ~mask; /* 8 bytes of resolution */ csrow->mtype = amd64_determine_memory_type(pvt, i); debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i); debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n", (unsigned long)input_addr_min, (unsigned long)input_addr_max); debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n", (unsigned long)sys_addr, csrow->page_mask); debugf1(" nr_pages: %u first_page: 0x%lx " "last_page: 0x%lx\n", (unsigned)csrow->nr_pages, csrow->first_page, csrow->last_page); /* * determine whether CHIPKILL or JUST ECC or NO ECC is operating */ if (pvt->nbcfg & NBCFG_ECC_ENABLE) csrow->edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ? EDAC_S4ECD4ED : EDAC_SECDED; else csrow->edac_mode = EDAC_NONE; } return empty; } /* get all cores on this DCT */ static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid) { int cpu; for_each_online_cpu(cpu) if (amd_get_nb_id(cpu) == nid) cpumask_set_cpu(cpu, mask); } /* check MCG_CTL on all the cpus on this node */ static bool amd64_nb_mce_bank_enabled_on_node(int nid) { cpumask_var_t mask; int cpu, nbe; bool ret = false; if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { amd64_warn("%s: Error allocating mask\n", __func__); return false; } get_cpus_on_this_dct_cpumask(mask, nid); rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); for_each_cpu(cpu, mask) { struct msr *reg = per_cpu_ptr(msrs, cpu); nbe = reg->l & MSR_MCGCTL_NBE; debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", cpu, reg->q, (nbe ? "enabled" : "disabled")); if (!nbe) goto out; } ret = true; out: free_cpumask_var(mask); return ret; } static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on) { cpumask_var_t cmask; int cpu; if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { amd64_warn("%s: error allocating mask\n", __func__); return false; } get_cpus_on_this_dct_cpumask(cmask, nid); rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); for_each_cpu(cpu, cmask) { struct msr *reg = per_cpu_ptr(msrs, cpu); if (on) { if (reg->l & MSR_MCGCTL_NBE) s->flags.nb_mce_enable = 1; reg->l |= MSR_MCGCTL_NBE; } else { /* * Turn off NB MCE reporting only when it was off before */ if (!s->flags.nb_mce_enable) reg->l &= ~MSR_MCGCTL_NBE; } } wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); free_cpumask_var(cmask); return 0; } static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid, struct pci_dev *F3) { bool ret = true; u32 value, mask = 0x3; /* UECC/CECC enable */ if (toggle_ecc_err_reporting(s, nid, ON)) { amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); return false; } amd64_read_pci_cfg(F3, NBCTL, &value); s->old_nbctl = value & mask; s->nbctl_valid = true; value |= mask; amd64_write_pci_cfg(F3, NBCTL, value); amd64_read_pci_cfg(F3, NBCFG, &value); debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", nid, value, !!(value & NBCFG_ECC_ENABLE)); if (!(value & NBCFG_ECC_ENABLE)) { amd64_warn("DRAM ECC disabled on this node, enabling...\n"); s->flags.nb_ecc_prev = 0; /* Attempt to turn on DRAM ECC Enable */ value |= NBCFG_ECC_ENABLE; amd64_write_pci_cfg(F3, NBCFG, value); amd64_read_pci_cfg(F3, NBCFG, &value); if (!(value & NBCFG_ECC_ENABLE)) { amd64_warn("Hardware rejected DRAM ECC enable," "check memory DIMM configuration.\n"); ret = false; } else { amd64_info("Hardware accepted DRAM ECC Enable\n"); } } else { s->flags.nb_ecc_prev = 1; } debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", nid, value, !!(value & NBCFG_ECC_ENABLE)); return ret; } static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid, struct pci_dev *F3) { u32 value, mask = 0x3; /* UECC/CECC enable */ if (!s->nbctl_valid) return; amd64_read_pci_cfg(F3, NBCTL, &value); value &= ~mask; value |= s->old_nbctl; amd64_write_pci_cfg(F3, NBCTL, value); /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ if (!s->flags.nb_ecc_prev) { amd64_read_pci_cfg(F3, NBCFG, &value); value &= ~NBCFG_ECC_ENABLE; amd64_write_pci_cfg(F3, NBCFG, value); } /* restore the NB Enable MCGCTL bit */ if (toggle_ecc_err_reporting(s, nid, OFF)) amd64_warn("Error restoring NB MCGCTL settings!\n"); } /* * EDAC requires that the BIOS have ECC enabled before * taking over the processing of ECC errors. A command line * option allows to force-enable hardware ECC later in * enable_ecc_error_reporting(). */ static const char *ecc_msg = "ECC disabled in the BIOS or no ECC capability, module will not load.\n" " Either enable ECC checking or force module loading by setting " "'ecc_enable_override'.\n" " (Note that use of the override may cause unknown side effects.)\n"; static bool ecc_enabled(struct pci_dev *F3, u8 nid) { u32 value; u8 ecc_en = 0; bool nb_mce_en = false; amd64_read_pci_cfg(F3, NBCFG, &value); ecc_en = !!(value & NBCFG_ECC_ENABLE); amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled")); nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid); if (!nb_mce_en) amd64_notice("NB MCE bank disabled, set MSR " "0x%08x[4] on node %d to enable.\n", MSR_IA32_MCG_CTL, nid); if (!ecc_en || !nb_mce_en) { amd64_notice("%s", ecc_msg); return false; } return true; } struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) + ARRAY_SIZE(amd64_inj_attrs) + 1]; struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } }; static void set_mc_sysfs_attrs(struct mem_ctl_info *mci) { unsigned int i = 0, j = 0; for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++) sysfs_attrs[i] = amd64_dbg_attrs[i]; if (boot_cpu_data.x86 >= 0x10) for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++) sysfs_attrs[i] = amd64_inj_attrs[j]; sysfs_attrs[i] = terminator; mci->mc_driver_sysfs_attributes = sysfs_attrs; } static void setup_mci_misc_attrs(struct mem_ctl_info *mci) { struct amd64_pvt *pvt = mci->pvt_info; mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; mci->edac_ctl_cap = EDAC_FLAG_NONE; if (pvt->nbcap & NBCAP_SECDED) mci->edac_ctl_cap |= EDAC_FLAG_SECDED; if (pvt->nbcap & NBCAP_CHIPKILL) mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; mci->edac_cap = amd64_determine_edac_cap(pvt); mci->mod_name = EDAC_MOD_STR; mci->mod_ver = EDAC_AMD64_VERSION; mci->ctl_name = pvt->ctl_name; mci->dev_name = pci_name(pvt->F2); mci->ctl_page_to_phys = NULL; /* memory scrubber interface */ mci->set_sdram_scrub_rate = amd64_set_scrub_rate; mci->get_sdram_scrub_rate = amd64_get_scrub_rate; } /* * returns a pointer to the family descriptor on success, NULL otherwise. */ static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt) { u8 fam = boot_cpu_data.x86; struct amd64_family_type *fam_type = NULL; switch (fam) { case 0xf: fam_type = &amd64_family_types[K8_CPUS]; pvt->ops = &amd64_family_types[K8_CPUS].ops; pvt->ctl_name = fam_type->ctl_name; pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS; break; case 0x10: fam_type = &amd64_family_types[F10_CPUS]; pvt->ops = &amd64_family_types[F10_CPUS].ops; pvt->ctl_name = fam_type->ctl_name; pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS; break; default: amd64_err("Unsupported family!\n"); return NULL; } pvt->ext_model = boot_cpu_data.x86_model >> 4; amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name, (fam == 0xf ? (pvt->ext_model >= K8_REV_F ? "revF or later " : "revE or earlier ") : ""), pvt->mc_node_id); return fam_type; } static int amd64_init_one_instance(struct pci_dev *F2) { struct amd64_pvt *pvt = NULL; struct amd64_family_type *fam_type = NULL; struct mem_ctl_info *mci = NULL; int err = 0, ret; u8 nid = get_node_id(F2); ret = -ENOMEM; pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); if (!pvt) goto err_ret; pvt->mc_node_id = nid; pvt->F2 = F2; ret = -EINVAL; fam_type = amd64_per_family_init(pvt); if (!fam_type) goto err_free; ret = -ENODEV; err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id); if (err) goto err_free; read_mc_regs(pvt); /* * We need to determine how many memory channels there are. Then use * that information for calculating the size of the dynamic instance * tables in the 'mci' structure. */ ret = -EINVAL; pvt->channel_count = pvt->ops->early_channel_count(pvt); if (pvt->channel_count < 0) goto err_siblings; ret = -ENOMEM; mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid); if (!mci) goto err_siblings; mci->pvt_info = pvt; mci->dev = &pvt->F2->dev; setup_mci_misc_attrs(mci); if (init_csrows(mci)) mci->edac_cap = EDAC_FLAG_NONE; set_mc_sysfs_attrs(mci); ret = -ENODEV; if (edac_mc_add_mc(mci)) { debugf1("failed edac_mc_add_mc()\n"); goto err_add_mc; } /* register stuff with EDAC MCE */ if (report_gart_errors) amd_report_gart_errors(true); amd_register_ecc_decoder(amd64_decode_bus_error); mcis[nid] = mci; atomic_inc(&drv_instances); return 0; err_add_mc: edac_mc_free(mci); err_siblings: free_mc_sibling_devs(pvt); err_free: kfree(pvt); err_ret: return ret; } static int __devinit amd64_probe_one_instance(struct pci_dev *pdev, const struct pci_device_id *mc_type) { u8 nid = get_node_id(pdev); struct pci_dev *F3 = node_to_amd_nb(nid)->misc; struct ecc_settings *s; int ret = 0; ret = pci_enable_device(pdev); if (ret < 0) { debugf0("ret=%d\n", ret); return -EIO; } ret = -ENOMEM; s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); if (!s) goto err_out; ecc_stngs[nid] = s; if (!ecc_enabled(F3, nid)) { ret = -ENODEV; if (!ecc_enable_override) goto err_enable; amd64_warn("Forcing ECC on!\n"); if (!enable_ecc_error_reporting(s, nid, F3)) goto err_enable; } ret = amd64_init_one_instance(pdev); if (ret < 0) { amd64_err("Error probing instance: %d\n", nid); restore_ecc_error_reporting(s, nid, F3); } return ret; err_enable: kfree(s); ecc_stngs[nid] = NULL; err_out: return ret; } static void __devexit amd64_remove_one_instance(struct pci_dev *pdev) { struct mem_ctl_info *mci; struct amd64_pvt *pvt; u8 nid = get_node_id(pdev); struct pci_dev *F3 = node_to_amd_nb(nid)->misc; struct ecc_settings *s = ecc_stngs[nid]; /* Remove from EDAC CORE tracking list */ mci = edac_mc_del_mc(&pdev->dev); if (!mci) return; pvt = mci->pvt_info; restore_ecc_error_reporting(s, nid, F3); free_mc_sibling_devs(pvt); /* unregister from EDAC MCE */ amd_report_gart_errors(false); amd_unregister_ecc_decoder(amd64_decode_bus_error); kfree(ecc_stngs[nid]); ecc_stngs[nid] = NULL; /* Free the EDAC CORE resources */ mci->pvt_info = NULL; mcis[nid] = NULL; kfree(pvt); edac_mc_free(mci); } /* * This table is part of the interface for loading drivers for PCI devices. The * PCI core identifies what devices are on a system during boot, and then * inquiry this table to see if this driver is for a given device found. */ static const struct pci_device_id amd64_pci_table[] __devinitdata = { { .vendor = PCI_VENDOR_ID_AMD, .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .class = 0, .class_mask = 0, }, { .vendor = PCI_VENDOR_ID_AMD, .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .class = 0, .class_mask = 0, }, {0, } }; MODULE_DEVICE_TABLE(pci, amd64_pci_table); static struct pci_driver amd64_pci_driver = { .name = EDAC_MOD_STR, .probe = amd64_probe_one_instance, .remove = __devexit_p(amd64_remove_one_instance), .id_table = amd64_pci_table, }; static void setup_pci_device(void) { struct mem_ctl_info *mci; struct amd64_pvt *pvt; if (amd64_ctl_pci) return; mci = mcis[0]; if (mci) { pvt = mci->pvt_info; amd64_ctl_pci = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); if (!amd64_ctl_pci) { pr_warning("%s(): Unable to create PCI control\n", __func__); pr_warning("%s(): PCI error report via EDAC not set\n", __func__); } } } static int __init amd64_edac_init(void) { int err = -ENODEV; edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n"); opstate_init(); if (amd_cache_northbridges() < 0) goto err_ret; err = -ENOMEM; mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL); ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL); if (!(mcis && ecc_stngs)) goto err_ret; msrs = msrs_alloc(); if (!msrs) goto err_free; err = pci_register_driver(&amd64_pci_driver); if (err) goto err_pci; err = -ENODEV; if (!atomic_read(&drv_instances)) goto err_no_instances; setup_pci_device(); return 0; err_no_instances: pci_unregister_driver(&amd64_pci_driver); err_pci: msrs_free(msrs); msrs = NULL; err_free: kfree(mcis); mcis = NULL; kfree(ecc_stngs); ecc_stngs = NULL; err_ret: return err; } static void __exit amd64_edac_exit(void) { if (amd64_ctl_pci) edac_pci_release_generic_ctl(amd64_ctl_pci); pci_unregister_driver(&amd64_pci_driver); kfree(ecc_stngs); ecc_stngs = NULL; kfree(mcis); mcis = NULL; msrs_free(msrs); msrs = NULL; } module_init(amd64_edac_init); module_exit(amd64_edac_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " "Dave Peterson, Thayne Harbaugh"); MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " EDAC_AMD64_VERSION); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");