/* * AMD64 class Memory Controller kernel module * * Copyright (c) 2009 SoftwareBitMaker. * Copyright (c) 2009 Advanced Micro Devices, Inc. * * This file may be distributed under the terms of the * GNU General Public License. * * Originally Written by Thayne Harbaugh * * Changes by Douglas "norsk" Thompson : * - K8 CPU Revision D and greater support * * Changes by Dave Peterson : * - Module largely rewritten, with new (and hopefully correct) * code for dealing with node and chip select interleaving, * various code cleanup, and bug fixes * - Added support for memory hoisting using DRAM hole address * register * * Changes by Douglas "norsk" Thompson : * -K8 Rev (1207) revision support added, required Revision * specific mini-driver code to support Rev F as well as * prior revisions * * Changes by Douglas "norsk" Thompson : * -Family 10h revision support added. New PCI Device IDs, * indicating new changes. Actual registers modified * were slight, less than the Rev E to Rev F transition * but changing the PCI Device ID was the proper thing to * do, as it provides for almost automactic family * detection. The mods to Rev F required more family * information detection. * * Changes/Fixes by Borislav Petkov : * - misc fixes and code cleanups * * This module is based on the following documents * (available from http://www.amd.com/): * * Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD * Opteron Processors * AMD publication #: 26094 *` Revision: 3.26 * * Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh * Processors * AMD publication #: 32559 * Revision: 3.00 * Issue Date: May 2006 * * Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h * Processors * AMD publication #: 31116 * Revision: 3.00 * Issue Date: September 07, 2007 * * Sections in the first 2 documents are no longer in sync with each other. * The Family 10h BKDG was totally re-written from scratch with a new * presentation model. * Therefore, comments that refer to a Document section might be off. */ #include #include #include #include #include #include #include #include #include "edac_core.h" #define amd64_printk(level, fmt, arg...) \ edac_printk(level, "amd64", fmt, ##arg) #define amd64_mc_printk(mci, level, fmt, arg...) \ edac_mc_chipset_printk(mci, level, "amd64", fmt, ##arg) /* * Throughout the comments in this code, the following terms are used: * * SysAddr, DramAddr, and InputAddr * * These terms come directly from the amd64 documentation * (AMD publication #26094). They are defined as follows: * * SysAddr: * This is a physical address generated by a CPU core or a device * doing DMA. If generated by a CPU core, a SysAddr is the result of * a virtual to physical address translation by the CPU core's address * translation mechanism (MMU). * * DramAddr: * A DramAddr is derived from a SysAddr by subtracting an offset that * depends on which node the SysAddr maps to and whether the SysAddr * is within a range affected by memory hoisting. The DRAM Base * (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers * determine which node a SysAddr maps to. * * If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr * is within the range of addresses specified by this register, then * a value x from the DHAR is subtracted from the SysAddr to produce a * DramAddr. Here, x represents the base address for the node that * the SysAddr maps to plus an offset due to memory hoisting. See * section 3.4.8 and the comments in amd64_get_dram_hole_info() and * sys_addr_to_dram_addr() below for more information. * * If the SysAddr is not affected by the DHAR then a value y is * subtracted from the SysAddr to produce a DramAddr. Here, y is the * base address for the node that the SysAddr maps to. See section * 3.4.4 and the comments in sys_addr_to_dram_addr() below for more * information. * * InputAddr: * A DramAddr is translated to an InputAddr before being passed to the * memory controller for the node that the DramAddr is associated * with. The memory controller then maps the InputAddr to a csrow. * If node interleaving is not in use, then the InputAddr has the same * value as the DramAddr. Otherwise, the InputAddr is produced by * discarding the bits used for node interleaving from the DramAddr. * See section 3.4.4 for more information. * * The memory controller for a given node uses its DRAM CS Base and * DRAM CS Mask registers to map an InputAddr to a csrow. See * sections 3.5.4 and 3.5.5 for more information. */ #define EDAC_AMD64_VERSION " Ver: 3.2.0 " __DATE__ #define EDAC_MOD_STR "amd64_edac" /* Extended Model from CPUID, for CPU Revision numbers */ #define OPTERON_CPU_LE_REV_C 0 #define OPTERON_CPU_REV_D 1 #define OPTERON_CPU_REV_E 2 /* NPT processors have the following Extended Models */ #define OPTERON_CPU_REV_F 4 #define OPTERON_CPU_REV_FA 5 /* Hardware limit on ChipSelect rows per MC and processors per system */ #define CHIPSELECT_COUNT 8 #define DRAM_REG_COUNT 8 /* * PCI-defined configuration space registers */ /* * Function 1 - Address Map */ #define K8_DRAM_BASE_LOW 0x40 #define K8_DRAM_LIMIT_LOW 0x44 #define K8_DHAR 0xf0 #define DHAR_VALID BIT(0) #define F10_DRAM_MEM_HOIST_VALID BIT(1) #define DHAR_BASE_MASK 0xff000000 #define dhar_base(dhar) (dhar & DHAR_BASE_MASK) #define K8_DHAR_OFFSET_MASK 0x0000ff00 #define k8_dhar_offset(dhar) ((dhar & K8_DHAR_OFFSET_MASK) << 16) #define F10_DHAR_OFFSET_MASK 0x0000ff80 /* NOTE: Extra mask bit vs K8 */ #define f10_dhar_offset(dhar) ((dhar & F10_DHAR_OFFSET_MASK) << 16) /* F10 High BASE/LIMIT registers */ #define F10_DRAM_BASE_HIGH 0x140 #define F10_DRAM_LIMIT_HIGH 0x144 /* * Function 2 - DRAM controller */ #define K8_DCSB0 0x40 #define F10_DCSB1 0x140 #define K8_DCSB_CS_ENABLE BIT(0) #define K8_DCSB_NPT_SPARE BIT(1) #define K8_DCSB_NPT_TESTFAIL BIT(2) /* * REV E: select [31:21] and [15:9] from DCSB and the shift amount to form * the address */ #define REV_E_DCSB_BASE_BITS (0xFFE0FE00ULL) #define REV_E_DCS_SHIFT 4 #define REV_E_DCSM_COUNT 8 #define REV_F_F1Xh_DCSB_BASE_BITS (0x1FF83FE0ULL) #define REV_F_F1Xh_DCS_SHIFT 8 /* * REV F and later: selects [28:19] and [13:5] from DCSB and the shift amount * to form the address */ #define REV_F_DCSB_BASE_BITS (0x1FF83FE0ULL) #define REV_F_DCS_SHIFT 8 #define REV_F_DCSM_COUNT 4 #define F10_DCSM_COUNT 4 #define F11_DCSM_COUNT 2 /* DRAM CS Mask Registers */ #define K8_DCSM0 0x60 #define F10_DCSM1 0x160 /* REV E: select [29:21] and [15:9] from DCSM */ #define REV_E_DCSM_MASK_BITS 0x3FE0FE00 /* unused bits [24:20] and [12:0] */ #define REV_E_DCS_NOTUSED_BITS 0x01F01FFF /* REV F and later: select [28:19] and [13:5] from DCSM */ #define REV_F_F1Xh_DCSM_MASK_BITS 0x1FF83FE0 /* unused bits [26:22] and [12:0] */ #define REV_F_F1Xh_DCS_NOTUSED_BITS 0x07C01FFF #define DBAM0 0x80 #define DBAM1 0x180 /* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */ #define DBAM_DIMM(i, reg) ((((reg) >> (4*i))) & 0xF) #define DBAM_MAX_VALUE 11 #define F10_DCLR_0 0x90 #define F10_DCLR_1 0x190 #define REVE_WIDTH_128 BIT(16) #define F10_WIDTH_128 BIT(11) #define F10_DCHR_0 0x94 #define F10_DCHR_1 0x194 #define F10_DCHR_FOUR_RANK_DIMM BIT(18) #define F10_DCHR_Ddr3Mode BIT(8) #define F10_DCHR_MblMode BIT(6) #define F10_DCTL_SEL_LOW 0x110 #define dct_sel_baseaddr(pvt) \ ((pvt->dram_ctl_select_low) & 0xFFFFF800) #define dct_sel_interleave_addr(pvt) \ (((pvt->dram_ctl_select_low) >> 6) & 0x3) enum { F10_DCTL_SEL_LOW_DctSelHiRngEn = BIT(0), F10_DCTL_SEL_LOW_DctSelIntLvEn = BIT(2), F10_DCTL_SEL_LOW_DctGangEn = BIT(4), F10_DCTL_SEL_LOW_DctDatIntLv = BIT(5), F10_DCTL_SEL_LOW_DramEnable = BIT(8), F10_DCTL_SEL_LOW_MemCleared = BIT(10), }; #define dct_high_range_enabled(pvt) \ (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctSelHiRngEn) #define dct_interleave_enabled(pvt) \ (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctSelIntLvEn) #define dct_ganging_enabled(pvt) \ (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctGangEn) #define dct_data_intlv_enabled(pvt) \ (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctDatIntLv) #define dct_dram_enabled(pvt) \ (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DramEnable) #define dct_memory_cleared(pvt) \ (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_MemCleared) #define F10_DCTL_SEL_HIGH 0x114 /* * Function 3 - Misc Control */ #define K8_NBCTL 0x40 /* Correctable ECC error reporting enable */ #define K8_NBCTL_CECCEn BIT(0) /* UnCorrectable ECC error reporting enable */ #define K8_NBCTL_UECCEn BIT(1) #define K8_NBCFG 0x44 #define K8_NBCFG_CHIPKILL BIT(23) #define K8_NBCFG_ECC_ENABLE BIT(22) #define K8_NBSL 0x48 #define EXTRACT_HIGH_SYNDROME(x) (((x) >> 24) & 0xff) #define EXTRACT_EXT_ERROR_CODE(x) (((x) >> 16) & 0x1f) /* Family F10h: Normalized Extended Error Codes */ #define F10_NBSL_EXT_ERR_RES 0x0 #define F10_NBSL_EXT_ERR_CRC 0x1 #define F10_NBSL_EXT_ERR_SYNC 0x2 #define F10_NBSL_EXT_ERR_MST 0x3 #define F10_NBSL_EXT_ERR_TGT 0x4 #define F10_NBSL_EXT_ERR_GART 0x5 #define F10_NBSL_EXT_ERR_RMW 0x6 #define F10_NBSL_EXT_ERR_WDT 0x7 #define F10_NBSL_EXT_ERR_ECC 0x8 #define F10_NBSL_EXT_ERR_DEV 0x9 #define F10_NBSL_EXT_ERR_LINK_DATA 0xA /* Next two are overloaded values */ #define F10_NBSL_EXT_ERR_LINK_PROTO 0xB #define F10_NBSL_EXT_ERR_L3_PROTO 0xB #define F10_NBSL_EXT_ERR_NB_ARRAY 0xC #define F10_NBSL_EXT_ERR_DRAM_PARITY 0xD #define F10_NBSL_EXT_ERR_LINK_RETRY 0xE /* Next two are overloaded values */ #define F10_NBSL_EXT_ERR_GART_WALK 0xF #define F10_NBSL_EXT_ERR_DEV_WALK 0xF /* 0x10 to 0x1B: Reserved */ #define F10_NBSL_EXT_ERR_L3_DATA 0x1C #define F10_NBSL_EXT_ERR_L3_TAG 0x1D #define F10_NBSL_EXT_ERR_L3_LRU 0x1E /* K8: Normalized Extended Error Codes */ #define K8_NBSL_EXT_ERR_ECC 0x0 #define K8_NBSL_EXT_ERR_CRC 0x1 #define K8_NBSL_EXT_ERR_SYNC 0x2 #define K8_NBSL_EXT_ERR_MST 0x3 #define K8_NBSL_EXT_ERR_TGT 0x4 #define K8_NBSL_EXT_ERR_GART 0x5 #define K8_NBSL_EXT_ERR_RMW 0x6 #define K8_NBSL_EXT_ERR_WDT 0x7 #define K8_NBSL_EXT_ERR_CHIPKILL_ECC 0x8 #define K8_NBSL_EXT_ERR_DRAM_PARITY 0xD #define EXTRACT_ERROR_CODE(x) ((x) & 0xffff) #define TEST_TLB_ERROR(x) (((x) & 0xFFF0) == 0x0010) #define TEST_MEM_ERROR(x) (((x) & 0xFF00) == 0x0100) #define TEST_BUS_ERROR(x) (((x) & 0xF800) == 0x0800) #define EXTRACT_TT_CODE(x) (((x) >> 2) & 0x3) #define EXTRACT_II_CODE(x) (((x) >> 2) & 0x3) #define EXTRACT_LL_CODE(x) (((x) >> 0) & 0x3) #define EXTRACT_RRRR_CODE(x) (((x) >> 4) & 0xf) #define EXTRACT_TO_CODE(x) (((x) >> 8) & 0x1) #define EXTRACT_PP_CODE(x) (((x) >> 9) & 0x3) /* * The following are for BUS type errors AFTER values have been normalized by * shifting right */ #define K8_NBSL_PP_SRC 0x0 #define K8_NBSL_PP_RES 0x1 #define K8_NBSL_PP_OBS 0x2 #define K8_NBSL_PP_GENERIC 0x3 #define K8_NBSH 0x4C #define K8_NBSH_VALID_BIT BIT(31) #define K8_NBSH_OVERFLOW BIT(30) #define K8_NBSH_UNCORRECTED_ERR BIT(29) #define K8_NBSH_ERR_ENABLE BIT(28) #define K8_NBSH_MISC_ERR_VALID BIT(27) #define K8_NBSH_VALID_ERROR_ADDR BIT(26) #define K8_NBSH_PCC BIT(25) #define K8_NBSH_CECC BIT(14) #define K8_NBSH_UECC BIT(13) #define K8_NBSH_ERR_SCRUBER BIT(8) #define K8_NBSH_CORE3 BIT(3) #define K8_NBSH_CORE2 BIT(2) #define K8_NBSH_CORE1 BIT(1) #define K8_NBSH_CORE0 BIT(0) #define EXTRACT_LDT_LINK(x) (((x) >> 4) & 0x7) #define EXTRACT_ERR_CPU_MAP(x) ((x) & 0xF) #define EXTRACT_LOW_SYNDROME(x) (((x) >> 15) & 0xff) #define K8_NBEAL 0x50 #define K8_NBEAH 0x54 #define K8_SCRCTRL 0x58 #define F10_NB_CFG_LOW 0x88 #define F10_NB_CFG_LOW_ENABLE_EXT_CFG BIT(14) #define F10_NB_CFG_HIGH 0x8C #define F10_ONLINE_SPARE 0xB0 #define F10_ONLINE_SPARE_SWAPDONE0(x) ((x) & BIT(1)) #define F10_ONLINE_SPARE_SWAPDONE1(x) ((x) & BIT(3)) #define F10_ONLINE_SPARE_BADDRAM_CS0(x) (((x) >> 4) & 0x00000007) #define F10_ONLINE_SPARE_BADDRAM_CS1(x) (((x) >> 8) & 0x00000007) #define F10_NB_ARRAY_ADDR 0xB8 #define F10_NB_ARRAY_DRAM_ECC 0x80000000 /* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline */ #define SET_NB_ARRAY_ADDRESS(section) (((section) & 0x3) << 1) #define F10_NB_ARRAY_DATA 0xBC #define SET_NB_DRAM_INJECTION_WRITE(word, bits) \ (BIT(((word) & 0xF) + 20) | \ BIT(17) | \ ((bits) & 0xF)) #define SET_NB_DRAM_INJECTION_READ(word, bits) \ (BIT(((word) & 0xF) + 20) | \ BIT(16) | \ ((bits) & 0xF)) #define K8_NBCAP 0xE8 #define K8_NBCAP_CORES (BIT(12)|BIT(13)) #define K8_NBCAP_CHIPKILL BIT(4) #define K8_NBCAP_SECDED BIT(3) #define K8_NBCAP_8_NODE BIT(2) #define K8_NBCAP_DUAL_NODE BIT(1) #define K8_NBCAP_DCT_DUAL BIT(0) /* * MSR Regs */ #define K8_MSR_MCGCTL 0x017b #define K8_MSR_MCGCTL_NBE BIT(4) #define K8_MSR_MC4CTL 0x0410 #define K8_MSR_MC4STAT 0x0411 #define K8_MSR_MC4ADDR 0x0412 /* AMD sets the first MC device at device ID 0x18. */ static inline int get_mc_node_id_from_pdev(struct pci_dev *pdev) { return PCI_SLOT(pdev->devfn) - 0x18; } enum amd64_chipset_families { K8_CPUS = 0, F10_CPUS, F11_CPUS, }; /* * Structure to hold: * * 1) dynamically read status and error address HW registers * 2) sysfs entered values * 3) MCE values * * Depends on entry into the modules */ struct amd64_error_info_regs { u32 nbcfg; u32 nbsh; u32 nbsl; u32 nbeah; u32 nbeal; }; /* Error injection control structure */ struct error_injection { u32 section; u32 word; u32 bit_map; }; struct amd64_pvt { /* pci_device handles which we utilize */ struct pci_dev *addr_f1_ctl; struct pci_dev *dram_f2_ctl; struct pci_dev *misc_f3_ctl; int mc_node_id; /* MC index of this MC node */ int ext_model; /* extended model value of this node */ struct low_ops *ops; /* pointer to per PCI Device ID func table */ int channel_count; /* Raw registers */ u32 dclr0; /* DRAM Configuration Low DCT0 reg */ u32 dclr1; /* DRAM Configuration Low DCT1 reg */ u32 dchr0; /* DRAM Configuration High DCT0 reg */ u32 dchr1; /* DRAM Configuration High DCT1 reg */ u32 nbcap; /* North Bridge Capabilities */ u32 nbcfg; /* F10 North Bridge Configuration */ u32 ext_nbcfg; /* Extended F10 North Bridge Configuration */ u32 dhar; /* DRAM Hoist reg */ u32 dbam0; /* DRAM Base Address Mapping reg for DCT0 */ u32 dbam1; /* DRAM Base Address Mapping reg for DCT1 */ /* DRAM CS Base Address Registers F2x[1,0][5C:40] */ u32 dcsb0[CHIPSELECT_COUNT]; u32 dcsb1[CHIPSELECT_COUNT]; /* DRAM CS Mask Registers F2x[1,0][6C:60] */ u32 dcsm0[CHIPSELECT_COUNT]; u32 dcsm1[CHIPSELECT_COUNT]; /* * Decoded parts of DRAM BASE and LIMIT Registers * F1x[78,70,68,60,58,50,48,40] */ u64 dram_base[DRAM_REG_COUNT]; u64 dram_limit[DRAM_REG_COUNT]; u8 dram_IntlvSel[DRAM_REG_COUNT]; u8 dram_IntlvEn[DRAM_REG_COUNT]; u8 dram_DstNode[DRAM_REG_COUNT]; u8 dram_rw_en[DRAM_REG_COUNT]; /* * The following fields are set at (load) run time, after CPU revision * has been determined, since the dct_base and dct_mask registers vary * based on revision */ u32 dcsb_base; /* DCSB base bits */ u32 dcsm_mask; /* DCSM mask bits */ u32 num_dcsm; /* Number of DCSM registers */ u32 dcs_mask_notused; /* DCSM notused mask bits */ u32 dcs_shift; /* DCSB and DCSM shift value */ u64 top_mem; /* top of memory below 4GB */ u64 top_mem2; /* top of memory above 4GB */ u32 dram_ctl_select_low; /* DRAM Controller Select Low Reg */ u32 dram_ctl_select_high; /* DRAM Controller Select High Reg */ u32 online_spare; /* On-Line spare Reg */ /* temp storage for when input is received from sysfs */ struct amd64_error_info_regs ctl_error_info; /* place to store error injection parameters prior to issue */ struct error_injection injection; /* Save old hw registers' values before we modified them */ u32 nbctl_mcgctl_saved; /* When true, following 2 are valid */ u32 old_nbctl; u32 *old_mcgctl; /* per core on this node */ /* MC Type Index value: socket F vs Family 10h */ u32 mc_type_index; /* misc settings */ struct flags { unsigned long cf8_extcfg:1; } flags; }; struct scrubrate { u32 scrubval; /* bit pattern for scrub rate */ u32 bandwidth; /* bandwidth consumed (bytes/sec) */ }; extern struct scrubrate scrubrates[23]; extern u32 revf_quad_ddr2_shift[16]; extern const char *tt_msgs[4]; extern const char *ll_msgs[4]; extern const char *rrrr_msgs[16]; extern const char *to_msgs[2]; extern const char *pp_msgs[4]; extern const char *ii_msgs[4]; extern const char *ext_msgs[32]; extern const char *htlink_msgs[8]; /* * Each of the PCI Device IDs types have their own set of hardware accessor * functions and per device encoding/decoding logic. */ struct low_ops { int (*probe_valid_hardware)(struct amd64_pvt *pvt); int (*early_channel_count)(struct amd64_pvt *pvt); u64 (*get_error_address)(struct mem_ctl_info *mci, struct amd64_error_info_regs *info); void (*read_dram_base_limit)(struct amd64_pvt *pvt, int dram); void (*read_dram_ctl_register)(struct amd64_pvt *pvt); void (*map_sysaddr_to_csrow)(struct mem_ctl_info *mci, struct amd64_error_info_regs *info, u64 SystemAddr); int (*dbam_map_to_pages)(struct amd64_pvt *pvt, int dram_map); }; struct amd64_family_type { const char *ctl_name; u16 addr_f1_ctl; u16 misc_f3_ctl; struct low_ops ops; }; static struct amd64_family_type amd64_family_types[]; static inline const char *get_amd_family_name(int index) { return amd64_family_types[index].ctl_name; } static inline struct low_ops *family_ops(int index) { return &amd64_family_types[index].ops; } /* * For future CPU versions, verify the following as new 'slow' rates appear and * modify the necessary skip values for the supported CPU. */ #define K8_MIN_SCRUB_RATE_BITS 0x0 #define F10_MIN_SCRUB_RATE_BITS 0x5 #define F11_MIN_SCRUB_RATE_BITS 0x6 int amd64_process_error_info(struct mem_ctl_info *mci, struct amd64_error_info_regs *info, int handle_errors); int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, u64 *hole_offset, u64 *hole_size);