/* * Core IEEE1394 transaction logic * * Copyright (C) 2004-2006 Kristian Hoegsberg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core.h" #define HEADER_PRI(pri) ((pri) << 0) #define HEADER_TCODE(tcode) ((tcode) << 4) #define HEADER_RETRY(retry) ((retry) << 8) #define HEADER_TLABEL(tlabel) ((tlabel) << 10) #define HEADER_DESTINATION(destination) ((destination) << 16) #define HEADER_SOURCE(source) ((source) << 16) #define HEADER_RCODE(rcode) ((rcode) << 12) #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0) #define HEADER_DATA_LENGTH(length) ((length) << 16) #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0) #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f) #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f) #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f) #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff) #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff) #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff) #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff) #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff) #define HEADER_DESTINATION_IS_BROADCAST(q) \ (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f)) #define PHY_PACKET_CONFIG 0x0 #define PHY_PACKET_LINK_ON 0x1 #define PHY_PACKET_SELF_ID 0x2 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22)) #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23)) #define PHY_IDENTIFIER(id) ((id) << 30) /* returns 0 if the split timeout handler is already running */ static int try_cancel_split_timeout(struct fw_transaction *t) { if (t->is_split_transaction) return del_timer(&t->split_timeout_timer); else return 1; } static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode) { struct fw_transaction *t; unsigned long flags; spin_lock_irqsave(&card->lock, flags); list_for_each_entry(t, &card->transaction_list, link) { if (t == transaction) { if (!try_cancel_split_timeout(t)) { spin_unlock_irqrestore(&card->lock, flags); goto timed_out; } list_del_init(&t->link); card->tlabel_mask &= ~(1ULL << t->tlabel); break; } } spin_unlock_irqrestore(&card->lock, flags); if (&t->link != &card->transaction_list) { t->callback(card, rcode, NULL, 0, t->callback_data); return 0; } timed_out: return -ENOENT; } /* * Only valid for transactions that are potentially pending (ie have * been sent). */ int fw_cancel_transaction(struct fw_card *card, struct fw_transaction *transaction) { /* * Cancel the packet transmission if it's still queued. That * will call the packet transmission callback which cancels * the transaction. */ if (card->driver->cancel_packet(card, &transaction->packet) == 0) return 0; /* * If the request packet has already been sent, we need to see * if the transaction is still pending and remove it in that case. */ return close_transaction(transaction, card, RCODE_CANCELLED); } EXPORT_SYMBOL(fw_cancel_transaction); static void split_transaction_timeout_callback(unsigned long data) { struct fw_transaction *t = (struct fw_transaction *)data; struct fw_card *card = t->card; unsigned long flags; spin_lock_irqsave(&card->lock, flags); if (list_empty(&t->link)) { spin_unlock_irqrestore(&card->lock, flags); return; } list_del(&t->link); card->tlabel_mask &= ~(1ULL << t->tlabel); spin_unlock_irqrestore(&card->lock, flags); t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data); } static void start_split_transaction_timeout(struct fw_transaction *t, struct fw_card *card) { unsigned long flags; spin_lock_irqsave(&card->lock, flags); if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) { spin_unlock_irqrestore(&card->lock, flags); return; } t->is_split_transaction = true; mod_timer(&t->split_timeout_timer, jiffies + card->split_timeout_jiffies); spin_unlock_irqrestore(&card->lock, flags); } static void transmit_complete_callback(struct fw_packet *packet, struct fw_card *card, int status) { struct fw_transaction *t = container_of(packet, struct fw_transaction, packet); switch (status) { case ACK_COMPLETE: close_transaction(t, card, RCODE_COMPLETE); break; case ACK_PENDING: start_split_transaction_timeout(t, card); break; case ACK_BUSY_X: case ACK_BUSY_A: case ACK_BUSY_B: close_transaction(t, card, RCODE_BUSY); break; case ACK_DATA_ERROR: close_transaction(t, card, RCODE_DATA_ERROR); break; case ACK_TYPE_ERROR: close_transaction(t, card, RCODE_TYPE_ERROR); break; default: /* * In this case the ack is really a juju specific * rcode, so just forward that to the callback. */ close_transaction(t, card, status); break; } } static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, int destination_id, int source_id, int generation, int speed, unsigned long long offset, void *payload, size_t length) { int ext_tcode; if (tcode == TCODE_STREAM_DATA) { packet->header[0] = HEADER_DATA_LENGTH(length) | destination_id | HEADER_TCODE(TCODE_STREAM_DATA); packet->header_length = 4; packet->payload = payload; packet->payload_length = length; goto common; } if (tcode > 0x10) { ext_tcode = tcode & ~0x10; tcode = TCODE_LOCK_REQUEST; } else ext_tcode = 0; packet->header[0] = HEADER_RETRY(RETRY_X) | HEADER_TLABEL(tlabel) | HEADER_TCODE(tcode) | HEADER_DESTINATION(destination_id); packet->header[1] = HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id); packet->header[2] = offset; switch (tcode) { case TCODE_WRITE_QUADLET_REQUEST: packet->header[3] = *(u32 *)payload; packet->header_length = 16; packet->payload_length = 0; break; case TCODE_LOCK_REQUEST: case TCODE_WRITE_BLOCK_REQUEST: packet->header[3] = HEADER_DATA_LENGTH(length) | HEADER_EXTENDED_TCODE(ext_tcode); packet->header_length = 16; packet->payload = payload; packet->payload_length = length; break; case TCODE_READ_QUADLET_REQUEST: packet->header_length = 12; packet->payload_length = 0; break; case TCODE_READ_BLOCK_REQUEST: packet->header[3] = HEADER_DATA_LENGTH(length) | HEADER_EXTENDED_TCODE(ext_tcode); packet->header_length = 16; packet->payload_length = 0; break; default: WARN(1, "wrong tcode %d\n", tcode); } common: packet->speed = speed; packet->generation = generation; packet->ack = 0; packet->payload_mapped = false; } static int allocate_tlabel(struct fw_card *card) { int tlabel; tlabel = card->current_tlabel; while (card->tlabel_mask & (1ULL << tlabel)) { tlabel = (tlabel + 1) & 0x3f; if (tlabel == card->current_tlabel) return -EBUSY; } card->current_tlabel = (tlabel + 1) & 0x3f; card->tlabel_mask |= 1ULL << tlabel; return tlabel; } /** * fw_send_request() - submit a request packet for transmission * @card: interface to send the request at * @t: transaction instance to which the request belongs * @tcode: transaction code * @destination_id: destination node ID, consisting of bus_ID and phy_ID * @generation: bus generation in which request and response are valid * @speed: transmission speed * @offset: 48bit wide offset into destination's address space * @payload: data payload for the request subaction * @length: length of the payload, in bytes * @callback: function to be called when the transaction is completed * @callback_data: data to be passed to the transaction completion callback * * Submit a request packet into the asynchronous request transmission queue. * Can be called from atomic context. If you prefer a blocking API, use * fw_run_transaction() in a context that can sleep. * * In case of lock requests, specify one of the firewire-core specific %TCODE_ * constants instead of %TCODE_LOCK_REQUEST in @tcode. * * Make sure that the value in @destination_id is not older than the one in * @generation. Otherwise the request is in danger to be sent to a wrong node. * * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller * needs to synthesize @destination_id with fw_stream_packet_destination_id(). * It will contain tag, channel, and sy data instead of a node ID then. * * The payload buffer at @data is going to be DMA-mapped except in case of * @length <= 8 or of local (loopback) requests. Hence make sure that the * buffer complies with the restrictions of the streaming DMA mapping API. * @payload must not be freed before the @callback is called. * * In case of request types without payload, @data is NULL and @length is 0. * * After the transaction is completed successfully or unsuccessfully, the * @callback will be called. Among its parameters is the response code which * is either one of the rcodes per IEEE 1394 or, in case of internal errors, * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request * generation, or missing ACK respectively. * * Note some timing corner cases: fw_send_request() may complete much earlier * than when the request packet actually hits the wire. On the other hand, * transaction completion and hence execution of @callback may happen even * before fw_send_request() returns. */ void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, int destination_id, int generation, int speed, unsigned long long offset, void *payload, size_t length, fw_transaction_callback_t callback, void *callback_data) { unsigned long flags; int tlabel; /* * Allocate tlabel from the bitmap and put the transaction on * the list while holding the card spinlock. */ spin_lock_irqsave(&card->lock, flags); tlabel = allocate_tlabel(card); if (tlabel < 0) { spin_unlock_irqrestore(&card->lock, flags); callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data); return; } t->node_id = destination_id; t->tlabel = tlabel; t->card = card; t->is_split_transaction = false; setup_timer(&t->split_timeout_timer, split_transaction_timeout_callback, (unsigned long)t); t->callback = callback; t->callback_data = callback_data; fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation, speed, offset, payload, length); t->packet.callback = transmit_complete_callback; list_add_tail(&t->link, &card->transaction_list); spin_unlock_irqrestore(&card->lock, flags); card->driver->send_request(card, &t->packet); } EXPORT_SYMBOL(fw_send_request); struct transaction_callback_data { struct completion done; void *payload; int rcode; }; static void transaction_callback(struct fw_card *card, int rcode, void *payload, size_t length, void *data) { struct transaction_callback_data *d = data; if (rcode == RCODE_COMPLETE) memcpy(d->payload, payload, length); d->rcode = rcode; complete(&d->done); } /** * fw_run_transaction() - send request and sleep until transaction is completed * * Returns the RCODE. See fw_send_request() for parameter documentation. * Unlike fw_send_request(), @data points to the payload of the request or/and * to the payload of the response. DMA mapping restrictions apply to outbound * request payloads of >= 8 bytes but not to inbound response payloads. */ int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, int generation, int speed, unsigned long long offset, void *payload, size_t length) { struct transaction_callback_data d; struct fw_transaction t; init_timer_on_stack(&t.split_timeout_timer); init_completion(&d.done); d.payload = payload; fw_send_request(card, &t, tcode, destination_id, generation, speed, offset, payload, length, transaction_callback, &d); wait_for_completion(&d.done); destroy_timer_on_stack(&t.split_timeout_timer); return d.rcode; } EXPORT_SYMBOL(fw_run_transaction); static DEFINE_MUTEX(phy_config_mutex); static DECLARE_COMPLETION(phy_config_done); static void transmit_phy_packet_callback(struct fw_packet *packet, struct fw_card *card, int status) { complete(&phy_config_done); } static struct fw_packet phy_config_packet = { .header_length = 12, .header[0] = TCODE_LINK_INTERNAL << 4, .payload_length = 0, .speed = SCODE_100, .callback = transmit_phy_packet_callback, }; void fw_send_phy_config(struct fw_card *card, int node_id, int generation, int gap_count) { long timeout = DIV_ROUND_UP(HZ, 10); u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG); if (node_id != FW_PHY_CONFIG_NO_NODE_ID) data |= PHY_CONFIG_ROOT_ID(node_id); if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { gap_count = card->driver->read_phy_reg(card, 1); if (gap_count < 0) return; gap_count &= 63; if (gap_count == 63) return; } data |= PHY_CONFIG_GAP_COUNT(gap_count); mutex_lock(&phy_config_mutex); phy_config_packet.header[1] = data; phy_config_packet.header[2] = ~data; phy_config_packet.generation = generation; INIT_COMPLETION(phy_config_done); card->driver->send_request(card, &phy_config_packet); wait_for_completion_timeout(&phy_config_done, timeout); mutex_unlock(&phy_config_mutex); } static struct fw_address_handler *lookup_overlapping_address_handler( struct list_head *list, unsigned long long offset, size_t length) { struct fw_address_handler *handler; list_for_each_entry(handler, list, link) { if (handler->offset < offset + length && offset < handler->offset + handler->length) return handler; } return NULL; } static bool is_enclosing_handler(struct fw_address_handler *handler, unsigned long long offset, size_t length) { return handler->offset <= offset && offset + length <= handler->offset + handler->length; } static struct fw_address_handler *lookup_enclosing_address_handler( struct list_head *list, unsigned long long offset, size_t length) { struct fw_address_handler *handler; list_for_each_entry(handler, list, link) { if (is_enclosing_handler(handler, offset, length)) return handler; } return NULL; } static DEFINE_SPINLOCK(address_handler_lock); static LIST_HEAD(address_handler_list); const struct fw_address_region fw_high_memory_region = { .start = 0x000100000000ULL, .end = 0xffffe0000000ULL, }; EXPORT_SYMBOL(fw_high_memory_region); #if 0 const struct fw_address_region fw_low_memory_region = { .start = 0x000000000000ULL, .end = 0x000100000000ULL, }; const struct fw_address_region fw_private_region = { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; const struct fw_address_region fw_csr_region = { .start = CSR_REGISTER_BASE, .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; const struct fw_address_region fw_unit_space_region = { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; #endif /* 0 */ static bool is_in_fcp_region(u64 offset, size_t length) { return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END); } /** * fw_core_add_address_handler() - register for incoming requests * @handler: callback * @region: region in the IEEE 1212 node space address range * * region->start, ->end, and handler->length have to be quadlet-aligned. * * When a request is received that falls within the specified address range, * the specified callback is invoked. The parameters passed to the callback * give the details of the particular request. * * Return value: 0 on success, non-zero otherwise. * * The start offset of the handler's address region is determined by * fw_core_add_address_handler() and is returned in handler->offset. * * Address allocations are exclusive, except for the FCP registers. */ int fw_core_add_address_handler(struct fw_address_handler *handler, const struct fw_address_region *region) { struct fw_address_handler *other; int ret = -EBUSY; if (region->start & 0xffff000000000003ULL || region->start >= region->end || region->end > 0x0001000000000000ULL || handler->length & 3 || handler->length == 0) return -EINVAL; spin_lock_bh(&address_handler_lock); handler->offset = region->start; while (handler->offset + handler->length <= region->end) { if (is_in_fcp_region(handler->offset, handler->length)) other = NULL; else other = lookup_overlapping_address_handler (&address_handler_list, handler->offset, handler->length); if (other != NULL) { handler->offset += other->length; } else { list_add_tail(&handler->link, &address_handler_list); ret = 0; break; } } spin_unlock_bh(&address_handler_lock); return ret; } EXPORT_SYMBOL(fw_core_add_address_handler); /** * fw_core_remove_address_handler() - unregister an address handler * * When fw_core_remove_address_handler() returns, @handler->callback() is * guaranteed to not run on any CPU anymore. */ void fw_core_remove_address_handler(struct fw_address_handler *handler) { spin_lock_bh(&address_handler_lock); list_del(&handler->link); spin_unlock_bh(&address_handler_lock); } EXPORT_SYMBOL(fw_core_remove_address_handler); struct fw_request { struct fw_packet response; u32 request_header[4]; int ack; u32 length; u32 data[0]; }; static void free_response_callback(struct fw_packet *packet, struct fw_card *card, int status) { struct fw_request *request; request = container_of(packet, struct fw_request, response); kfree(request); } int fw_get_response_length(struct fw_request *r) { int tcode, ext_tcode, data_length; tcode = HEADER_GET_TCODE(r->request_header[0]); switch (tcode) { case TCODE_WRITE_QUADLET_REQUEST: case TCODE_WRITE_BLOCK_REQUEST: return 0; case TCODE_READ_QUADLET_REQUEST: return 4; case TCODE_READ_BLOCK_REQUEST: data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); return data_length; case TCODE_LOCK_REQUEST: ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]); data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); switch (ext_tcode) { case EXTCODE_FETCH_ADD: case EXTCODE_LITTLE_ADD: return data_length; default: return data_length / 2; } default: WARN(1, "wrong tcode %d\n", tcode); return 0; } } void fw_fill_response(struct fw_packet *response, u32 *request_header, int rcode, void *payload, size_t length) { int tcode, tlabel, extended_tcode, source, destination; tcode = HEADER_GET_TCODE(request_header[0]); tlabel = HEADER_GET_TLABEL(request_header[0]); source = HEADER_GET_DESTINATION(request_header[0]); destination = HEADER_GET_SOURCE(request_header[1]); extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]); response->header[0] = HEADER_RETRY(RETRY_1) | HEADER_TLABEL(tlabel) | HEADER_DESTINATION(destination); response->header[1] = HEADER_SOURCE(source) | HEADER_RCODE(rcode); response->header[2] = 0; switch (tcode) { case TCODE_WRITE_QUADLET_REQUEST: case TCODE_WRITE_BLOCK_REQUEST: response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE); response->header_length = 12; response->payload_length = 0; break; case TCODE_READ_QUADLET_REQUEST: response->header[0] |= HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE); if (payload != NULL) response->header[3] = *(u32 *)payload; else response->header[3] = 0; response->header_length = 16; response->payload_length = 0; break; case TCODE_READ_BLOCK_REQUEST: case TCODE_LOCK_REQUEST: response->header[0] |= HEADER_TCODE(tcode + 2); response->header[3] = HEADER_DATA_LENGTH(length) | HEADER_EXTENDED_TCODE(extended_tcode); response->header_length = 16; response->payload = payload; response->payload_length = length; break; default: WARN(1, "wrong tcode %d\n", tcode); } response->payload_mapped = false; } EXPORT_SYMBOL(fw_fill_response); static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp) { unsigned int cycles; u32 timestamp; cycles = card->split_timeout_cycles; cycles += request_timestamp & 0x1fff; timestamp = request_timestamp & ~0x1fff; timestamp += (cycles / 8000) << 13; timestamp |= cycles % 8000; return timestamp; } static struct fw_request *allocate_request(struct fw_card *card, struct fw_packet *p) { struct fw_request *request; u32 *data, length; int request_tcode; request_tcode = HEADER_GET_TCODE(p->header[0]); switch (request_tcode) { case TCODE_WRITE_QUADLET_REQUEST: data = &p->header[3]; length = 4; break; case TCODE_WRITE_BLOCK_REQUEST: case TCODE_LOCK_REQUEST: data = p->payload; length = HEADER_GET_DATA_LENGTH(p->header[3]); break; case TCODE_READ_QUADLET_REQUEST: data = NULL; length = 4; break; case TCODE_READ_BLOCK_REQUEST: data = NULL; length = HEADER_GET_DATA_LENGTH(p->header[3]); break; default: fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n", p->header[0], p->header[1], p->header[2]); return NULL; } request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); if (request == NULL) return NULL; request->response.speed = p->speed; request->response.timestamp = compute_split_timeout_timestamp(card, p->timestamp); request->response.generation = p->generation; request->response.ack = 0; request->response.callback = free_response_callback; request->ack = p->ack; request->length = length; if (data) memcpy(request->data, data, length); memcpy(request->request_header, p->header, sizeof(p->header)); return request; } void fw_send_response(struct fw_card *card, struct fw_request *request, int rcode) { if (WARN_ONCE(!request, "invalid for FCP address handlers")) return; /* unified transaction or broadcast transaction: don't respond */ if (request->ack != ACK_PENDING || HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) { kfree(request); return; } if (rcode == RCODE_COMPLETE) fw_fill_response(&request->response, request->request_header, rcode, request->data, fw_get_response_length(request)); else fw_fill_response(&request->response, request->request_header, rcode, NULL, 0); card->driver->send_response(card, &request->response); } EXPORT_SYMBOL(fw_send_response); /** * fw_get_request_speed() - returns speed at which the @request was received */ int fw_get_request_speed(struct fw_request *request) { return request->response.speed; } EXPORT_SYMBOL(fw_get_request_speed); static void handle_exclusive_region_request(struct fw_card *card, struct fw_packet *p, struct fw_request *request, unsigned long long offset) { struct fw_address_handler *handler; int tcode, destination, source; destination = HEADER_GET_DESTINATION(p->header[0]); source = HEADER_GET_SOURCE(p->header[1]); tcode = HEADER_GET_TCODE(p->header[0]); if (tcode == TCODE_LOCK_REQUEST) tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]); spin_lock_bh(&address_handler_lock); handler = lookup_enclosing_address_handler(&address_handler_list, offset, request->length); if (handler) handler->address_callback(card, request, tcode, destination, source, p->generation, offset, request->data, request->length, handler->callback_data); spin_unlock_bh(&address_handler_lock); if (!handler) fw_send_response(card, request, RCODE_ADDRESS_ERROR); } static void handle_fcp_region_request(struct fw_card *card, struct fw_packet *p, struct fw_request *request, unsigned long long offset) { struct fw_address_handler *handler; int tcode, destination, source; if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || request->length > 0x200) { fw_send_response(card, request, RCODE_ADDRESS_ERROR); return; } tcode = HEADER_GET_TCODE(p->header[0]); destination = HEADER_GET_DESTINATION(p->header[0]); source = HEADER_GET_SOURCE(p->header[1]); if (tcode != TCODE_WRITE_QUADLET_REQUEST && tcode != TCODE_WRITE_BLOCK_REQUEST) { fw_send_response(card, request, RCODE_TYPE_ERROR); return; } spin_lock_bh(&address_handler_lock); list_for_each_entry(handler, &address_handler_list, link) { if (is_enclosing_handler(handler, offset, request->length)) handler->address_callback(card, NULL, tcode, destination, source, p->generation, offset, request->data, request->length, handler->callback_data); } spin_unlock_bh(&address_handler_lock); fw_send_response(card, request, RCODE_COMPLETE); } void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) { struct fw_request *request; unsigned long long offset; if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) return; if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) { fw_cdev_handle_phy_packet(card, p); return; } request = allocate_request(card, p); if (request == NULL) { /* FIXME: send statically allocated busy packet. */ return; } offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) | p->header[2]; if (!is_in_fcp_region(offset, request->length)) handle_exclusive_region_request(card, p, request, offset); else handle_fcp_region_request(card, p, request, offset); } EXPORT_SYMBOL(fw_core_handle_request); void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) { struct fw_transaction *t; unsigned long flags; u32 *data; size_t data_length; int tcode, tlabel, source, rcode; tcode = HEADER_GET_TCODE(p->header[0]); tlabel = HEADER_GET_TLABEL(p->header[0]); source = HEADER_GET_SOURCE(p->header[1]); rcode = HEADER_GET_RCODE(p->header[1]); spin_lock_irqsave(&card->lock, flags); list_for_each_entry(t, &card->transaction_list, link) { if (t->node_id == source && t->tlabel == tlabel) { if (!try_cancel_split_timeout(t)) { spin_unlock_irqrestore(&card->lock, flags); goto timed_out; } list_del_init(&t->link); card->tlabel_mask &= ~(1ULL << t->tlabel); break; } } spin_unlock_irqrestore(&card->lock, flags); if (&t->link == &card->transaction_list) { timed_out: fw_notice(card, "unsolicited response (source %x, tlabel %x)\n", source, tlabel); return; } /* * FIXME: sanity check packet, is length correct, does tcodes * and addresses match. */ switch (tcode) { case TCODE_READ_QUADLET_RESPONSE: data = (u32 *) &p->header[3]; data_length = 4; break; case TCODE_WRITE_RESPONSE: data = NULL; data_length = 0; break; case TCODE_READ_BLOCK_RESPONSE: case TCODE_LOCK_RESPONSE: data = p->payload; data_length = HEADER_GET_DATA_LENGTH(p->header[3]); break; default: /* Should never happen, this is just to shut up gcc. */ data = NULL; data_length = 0; break; } /* * The response handler may be executed while the request handler * is still pending. Cancel the request handler. */ card->driver->cancel_packet(card, &t->packet); t->callback(card, rcode, data, data_length, t->callback_data); } EXPORT_SYMBOL(fw_core_handle_response); static const struct fw_address_region topology_map_region = { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; static void handle_topology_map(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *payload, size_t length, void *callback_data) { int start; if (!TCODE_IS_READ_REQUEST(tcode)) { fw_send_response(card, request, RCODE_TYPE_ERROR); return; } if ((offset & 3) > 0 || (length & 3) > 0) { fw_send_response(card, request, RCODE_ADDRESS_ERROR); return; } start = (offset - topology_map_region.start) / 4; memcpy(payload, &card->topology_map[start], length); fw_send_response(card, request, RCODE_COMPLETE); } static struct fw_address_handler topology_map = { .length = 0x400, .address_callback = handle_topology_map, }; static const struct fw_address_region registers_region = { .start = CSR_REGISTER_BASE, .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; static void update_split_timeout(struct fw_card *card) { unsigned int cycles; cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19); /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */ cycles = clamp(cycles, 800u, 3u * 8000u); card->split_timeout_cycles = cycles; card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000); } static void handle_registers(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *payload, size_t length, void *callback_data) { int reg = offset & ~CSR_REGISTER_BASE; __be32 *data = payload; int rcode = RCODE_COMPLETE; unsigned long flags; switch (reg) { case CSR_PRIORITY_BUDGET: if (!card->priority_budget_implemented) { rcode = RCODE_ADDRESS_ERROR; break; } /* else fall through */ case CSR_NODE_IDS: /* * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges */ /* fall through */ case CSR_STATE_CLEAR: case CSR_STATE_SET: case CSR_CYCLE_TIME: case CSR_BUS_TIME: case CSR_BUSY_TIMEOUT: if (tcode == TCODE_READ_QUADLET_REQUEST) *data = cpu_to_be32(card->driver->read_csr(card, reg)); else if (tcode == TCODE_WRITE_QUADLET_REQUEST) card->driver->write_csr(card, reg, be32_to_cpu(*data)); else rcode = RCODE_TYPE_ERROR; break; case CSR_RESET_START: if (tcode == TCODE_WRITE_QUADLET_REQUEST) card->driver->write_csr(card, CSR_STATE_CLEAR, CSR_STATE_BIT_ABDICATE); else rcode = RCODE_TYPE_ERROR; break; case CSR_SPLIT_TIMEOUT_HI: if (tcode == TCODE_READ_QUADLET_REQUEST) { *data = cpu_to_be32(card->split_timeout_hi); } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { spin_lock_irqsave(&card->lock, flags); card->split_timeout_hi = be32_to_cpu(*data) & 7; update_split_timeout(card); spin_unlock_irqrestore(&card->lock, flags); } else { rcode = RCODE_TYPE_ERROR; } break; case CSR_SPLIT_TIMEOUT_LO: if (tcode == TCODE_READ_QUADLET_REQUEST) { *data = cpu_to_be32(card->split_timeout_lo); } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { spin_lock_irqsave(&card->lock, flags); card->split_timeout_lo = be32_to_cpu(*data) & 0xfff80000; update_split_timeout(card); spin_unlock_irqrestore(&card->lock, flags); } else { rcode = RCODE_TYPE_ERROR; } break; case CSR_MAINT_UTILITY: if (tcode == TCODE_READ_QUADLET_REQUEST) *data = card->maint_utility_register; else if (tcode == TCODE_WRITE_QUADLET_REQUEST) card->maint_utility_register = *data; else rcode = RCODE_TYPE_ERROR; break; case CSR_BROADCAST_CHANNEL: if (tcode == TCODE_READ_QUADLET_REQUEST) *data = cpu_to_be32(card->broadcast_channel); else if (tcode == TCODE_WRITE_QUADLET_REQUEST) card->broadcast_channel = (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | BROADCAST_CHANNEL_INITIAL; else rcode = RCODE_TYPE_ERROR; break; case CSR_BUS_MANAGER_ID: case CSR_BANDWIDTH_AVAILABLE: case CSR_CHANNELS_AVAILABLE_HI: case CSR_CHANNELS_AVAILABLE_LO: /* * FIXME: these are handled by the OHCI hardware and * the stack never sees these request. If we add * support for a new type of controller that doesn't * handle this in hardware we need to deal with these * transactions. */ BUG(); break; default: rcode = RCODE_ADDRESS_ERROR; break; } fw_send_response(card, request, rcode); } static struct fw_address_handler registers = { .length = 0x400, .address_callback = handle_registers, }; MODULE_AUTHOR("Kristian Hoegsberg "); MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); MODULE_LICENSE("GPL"); static const u32 vendor_textual_descriptor[] = { /* textual descriptor leaf () */ 0x00060000, 0x00000000, 0x00000000, 0x4c696e75, /* L i n u */ 0x78204669, /* x F i */ 0x72657769, /* r e w i */ 0x72650000, /* r e */ }; static const u32 model_textual_descriptor[] = { /* model descriptor leaf () */ 0x00030000, 0x00000000, 0x00000000, 0x4a756a75, /* J u j u */ }; static struct fw_descriptor vendor_id_descriptor = { .length = ARRAY_SIZE(vendor_textual_descriptor), .immediate = 0x03d00d1e, .key = 0x81000000, .data = vendor_textual_descriptor, }; static struct fw_descriptor model_id_descriptor = { .length = ARRAY_SIZE(model_textual_descriptor), .immediate = 0x17000001, .key = 0x81000000, .data = model_textual_descriptor, }; static int __init fw_core_init(void) { int ret; fw_workqueue = alloc_workqueue("firewire", WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); if (!fw_workqueue) return -ENOMEM; ret = bus_register(&fw_bus_type); if (ret < 0) { destroy_workqueue(fw_workqueue); return ret; } fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); if (fw_cdev_major < 0) { bus_unregister(&fw_bus_type); destroy_workqueue(fw_workqueue); return fw_cdev_major; } fw_core_add_address_handler(&topology_map, &topology_map_region); fw_core_add_address_handler(®isters, ®isters_region); fw_core_add_descriptor(&vendor_id_descriptor); fw_core_add_descriptor(&model_id_descriptor); return 0; } static void __exit fw_core_cleanup(void) { unregister_chrdev(fw_cdev_major, "firewire"); bus_unregister(&fw_bus_type); destroy_workqueue(fw_workqueue); idr_destroy(&fw_device_idr); } module_init(fw_core_init); module_exit(fw_core_cleanup);