/* * Driver for OHCI 1394 controllers * * Copyright (C) 2003-2006 Kristian Hoegsberg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_PPC_PMAC #include #endif #include "fw-ohci.h" #include "fw-transaction.h" #define DESCRIPTOR_OUTPUT_MORE 0 #define DESCRIPTOR_OUTPUT_LAST (1 << 12) #define DESCRIPTOR_INPUT_MORE (2 << 12) #define DESCRIPTOR_INPUT_LAST (3 << 12) #define DESCRIPTOR_STATUS (1 << 11) #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8) #define DESCRIPTOR_PING (1 << 7) #define DESCRIPTOR_YY (1 << 6) #define DESCRIPTOR_NO_IRQ (0 << 4) #define DESCRIPTOR_IRQ_ERROR (1 << 4) #define DESCRIPTOR_IRQ_ALWAYS (3 << 4) #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2) #define DESCRIPTOR_WAIT (3 << 0) struct descriptor { __le16 req_count; __le16 control; __le32 data_address; __le32 branch_address; __le16 res_count; __le16 transfer_status; } __attribute__((aligned(16))); struct db_descriptor { __le16 first_size; __le16 control; __le16 second_req_count; __le16 first_req_count; __le32 branch_address; __le16 second_res_count; __le16 first_res_count; __le32 reserved0; __le32 first_buffer; __le32 second_buffer; __le32 reserved1; } __attribute__((aligned(16))); #define CONTROL_SET(regs) (regs) #define CONTROL_CLEAR(regs) ((regs) + 4) #define COMMAND_PTR(regs) ((regs) + 12) #define CONTEXT_MATCH(regs) ((regs) + 16) struct ar_buffer { struct descriptor descriptor; struct ar_buffer *next; __le32 data[0]; }; struct ar_context { struct fw_ohci *ohci; struct ar_buffer *current_buffer; struct ar_buffer *last_buffer; void *pointer; u32 regs; struct tasklet_struct tasklet; }; struct context; typedef int (*descriptor_callback_t)(struct context *ctx, struct descriptor *d, struct descriptor *last); /* * A buffer that contains a block of DMA-able coherent memory used for * storing a portion of a DMA descriptor program. */ struct descriptor_buffer { struct list_head list; dma_addr_t buffer_bus; size_t buffer_size; size_t used; struct descriptor buffer[0]; }; struct context { struct fw_ohci *ohci; u32 regs; int total_allocation; /* * List of page-sized buffers for storing DMA descriptors. * Head of list contains buffers in use and tail of list contains * free buffers. */ struct list_head buffer_list; /* * Pointer to a buffer inside buffer_list that contains the tail * end of the current DMA program. */ struct descriptor_buffer *buffer_tail; /* * The descriptor containing the branch address of the first * descriptor that has not yet been filled by the device. */ struct descriptor *last; /* * The last descriptor in the DMA program. It contains the branch * address that must be updated upon appending a new descriptor. */ struct descriptor *prev; descriptor_callback_t callback; struct tasklet_struct tasklet; }; #define IT_HEADER_SY(v) ((v) << 0) #define IT_HEADER_TCODE(v) ((v) << 4) #define IT_HEADER_CHANNEL(v) ((v) << 8) #define IT_HEADER_TAG(v) ((v) << 14) #define IT_HEADER_SPEED(v) ((v) << 16) #define IT_HEADER_DATA_LENGTH(v) ((v) << 16) struct iso_context { struct fw_iso_context base; struct context context; int excess_bytes; void *header; size_t header_length; }; #define CONFIG_ROM_SIZE 1024 struct fw_ohci { struct fw_card card; u32 version; __iomem char *registers; dma_addr_t self_id_bus; __le32 *self_id_cpu; struct tasklet_struct bus_reset_tasklet; int node_id; int generation; int request_generation; /* for timestamping incoming requests */ u32 bus_seconds; bool old_uninorth; bool bus_reset_packet_quirk; /* * Spinlock for accessing fw_ohci data. Never call out of * this driver with this lock held. */ spinlock_t lock; u32 self_id_buffer[512]; /* Config rom buffers */ __be32 *config_rom; dma_addr_t config_rom_bus; __be32 *next_config_rom; dma_addr_t next_config_rom_bus; u32 next_header; struct ar_context ar_request_ctx; struct ar_context ar_response_ctx; struct context at_request_ctx; struct context at_response_ctx; u32 it_context_mask; struct iso_context *it_context_list; u32 ir_context_mask; struct iso_context *ir_context_list; }; static inline struct fw_ohci *fw_ohci(struct fw_card *card) { return container_of(card, struct fw_ohci, card); } #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000 #define IR_CONTEXT_BUFFER_FILL 0x80000000 #define IR_CONTEXT_ISOCH_HEADER 0x40000000 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000 #define CONTEXT_RUN 0x8000 #define CONTEXT_WAKE 0x1000 #define CONTEXT_DEAD 0x0800 #define CONTEXT_ACTIVE 0x0400 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8 #define FW_OHCI_MAJOR 240 #define OHCI1394_REGISTER_SIZE 0x800 #define OHCI_LOOP_COUNT 500 #define OHCI1394_PCI_HCI_Control 0x40 #define SELF_ID_BUF_SIZE 0x800 #define OHCI_TCODE_PHY_PACKET 0x0e #define OHCI_VERSION_1_1 0x010010 static char ohci_driver_name[] = KBUILD_MODNAME; #ifdef CONFIG_FIREWIRE_OHCI_DEBUG #define OHCI_PARAM_DEBUG_AT_AR 1 #define OHCI_PARAM_DEBUG_SELFIDS 2 #define OHCI_PARAM_DEBUG_IRQS 4 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */ static int param_debug; module_param_named(debug, param_debug, int, 0644); MODULE_PARM_DESC(debug, "Verbose logging (default = 0" ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR) ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS) ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS) ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS) ", or a combination, or all = -1)"); static void log_irqs(u32 evt) { if (likely(!(param_debug & (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS)))) return; if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) && !(evt & OHCI1394_busReset)) return; fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt, evt & OHCI1394_selfIDComplete ? " selfID" : "", evt & OHCI1394_RQPkt ? " AR_req" : "", evt & OHCI1394_RSPkt ? " AR_resp" : "", evt & OHCI1394_reqTxComplete ? " AT_req" : "", evt & OHCI1394_respTxComplete ? " AT_resp" : "", evt & OHCI1394_isochRx ? " IR" : "", evt & OHCI1394_isochTx ? " IT" : "", evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "", evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "", evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "", evt & OHCI1394_regAccessFail ? " regAccessFail" : "", evt & OHCI1394_busReset ? " busReset" : "", evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt | OHCI1394_RSPkt | OHCI1394_reqTxComplete | OHCI1394_respTxComplete | OHCI1394_isochRx | OHCI1394_isochTx | OHCI1394_postedWriteErr | OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds | OHCI1394_regAccessFail | OHCI1394_busReset) ? " ?" : ""); } static const char *speed[] = { [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta", }; static const char *power[] = { [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W", [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W", }; static const char port[] = { '.', '-', 'p', 'c', }; static char _p(u32 *s, int shift) { return port[*s >> shift & 3]; } static void log_selfids(int node_id, int generation, int self_id_count, u32 *s) { if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS))) return; fw_notify("%d selfIDs, generation %d, local node ID %04x\n", self_id_count, generation, node_id); for (; self_id_count--; ++s) if ((*s & 1 << 23) == 0) fw_notify("selfID 0: %08x, phy %d [%c%c%c] " "%s gc=%d %s %s%s%s\n", *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2), speed[*s >> 14 & 3], *s >> 16 & 63, power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "", *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : ""); else fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n", *s, *s >> 24 & 63, _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10), _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2)); } static const char *evts[] = { [0x00] = "evt_no_status", [0x01] = "-reserved-", [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack", [0x04] = "evt_underrun", [0x05] = "evt_overrun", [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read", [0x08] = "evt_data_write", [0x09] = "evt_bus_reset", [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err", [0x0c] = "-reserved-", [0x0d] = "-reserved-", [0x0e] = "evt_unknown", [0x0f] = "evt_flushed", [0x10] = "-reserved-", [0x11] = "ack_complete", [0x12] = "ack_pending ", [0x13] = "-reserved-", [0x14] = "ack_busy_X", [0x15] = "ack_busy_A", [0x16] = "ack_busy_B", [0x17] = "-reserved-", [0x18] = "-reserved-", [0x19] = "-reserved-", [0x1a] = "-reserved-", [0x1b] = "ack_tardy", [0x1c] = "-reserved-", [0x1d] = "ack_data_error", [0x1e] = "ack_type_error", [0x1f] = "-reserved-", [0x20] = "pending/cancelled", }; static const char *tcodes[] = { [0x0] = "QW req", [0x1] = "BW req", [0x2] = "W resp", [0x3] = "-reserved-", [0x4] = "QR req", [0x5] = "BR req", [0x6] = "QR resp", [0x7] = "BR resp", [0x8] = "cycle start", [0x9] = "Lk req", [0xa] = "async stream packet", [0xb] = "Lk resp", [0xc] = "-reserved-", [0xd] = "-reserved-", [0xe] = "link internal", [0xf] = "-reserved-", }; static const char *phys[] = { [0x0] = "phy config packet", [0x1] = "link-on packet", [0x2] = "self-id packet", [0x3] = "-reserved-", }; static void log_ar_at_event(char dir, int speed, u32 *header, int evt) { int tcode = header[0] >> 4 & 0xf; char specific[12]; if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR))) return; if (unlikely(evt >= ARRAY_SIZE(evts))) evt = 0x1f; if (evt == OHCI1394_evt_bus_reset) { fw_notify("A%c evt_bus_reset, generation %d\n", dir, (header[2] >> 16) & 0xff); return; } if (header[0] == ~header[1]) { fw_notify("A%c %s, %s, %08x\n", dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]); return; } switch (tcode) { case 0x0: case 0x6: case 0x8: snprintf(specific, sizeof(specific), " = %08x", be32_to_cpu((__force __be32)header[3])); break; case 0x1: case 0x5: case 0x7: case 0x9: case 0xb: snprintf(specific, sizeof(specific), " %x,%x", header[3] >> 16, header[3] & 0xffff); break; default: specific[0] = '\0'; } switch (tcode) { case 0xe: case 0xa: fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]); break; case 0x0: case 0x1: case 0x4: case 0x5: case 0x9: fw_notify("A%c spd %x tl %02x, " "%04x -> %04x, %s, " "%s, %04x%08x%s\n", dir, speed, header[0] >> 10 & 0x3f, header[1] >> 16, header[0] >> 16, evts[evt], tcodes[tcode], header[1] & 0xffff, header[2], specific); break; default: fw_notify("A%c spd %x tl %02x, " "%04x -> %04x, %s, " "%s%s\n", dir, speed, header[0] >> 10 & 0x3f, header[1] >> 16, header[0] >> 16, evts[evt], tcodes[tcode], specific); } } #else #define log_irqs(evt) #define log_selfids(node_id, generation, self_id_count, sid) #define log_ar_at_event(dir, speed, header, evt) #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */ static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data) { writel(data, ohci->registers + offset); } static inline u32 reg_read(const struct fw_ohci *ohci, int offset) { return readl(ohci->registers + offset); } static inline void flush_writes(const struct fw_ohci *ohci) { /* Do a dummy read to flush writes. */ reg_read(ohci, OHCI1394_Version); } static int ohci_update_phy_reg(struct fw_card *card, int addr, int clear_bits, int set_bits) { struct fw_ohci *ohci = fw_ohci(card); u32 val, old; reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr)); flush_writes(ohci); msleep(2); val = reg_read(ohci, OHCI1394_PhyControl); if ((val & OHCI1394_PhyControl_ReadDone) == 0) { fw_error("failed to set phy reg bits.\n"); return -EBUSY; } old = OHCI1394_PhyControl_ReadData(val); old = (old & ~clear_bits) | set_bits; reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Write(addr, old)); return 0; } static int ar_context_add_page(struct ar_context *ctx) { struct device *dev = ctx->ohci->card.device; struct ar_buffer *ab; dma_addr_t uninitialized_var(ab_bus); size_t offset; ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC); if (ab == NULL) return -ENOMEM; memset(&ab->descriptor, 0, sizeof(ab->descriptor)); ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE | DESCRIPTOR_STATUS | DESCRIPTOR_BRANCH_ALWAYS); offset = offsetof(struct ar_buffer, data); ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset); ab->descriptor.data_address = cpu_to_le32(ab_bus + offset); ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset); ab->descriptor.branch_address = 0; ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1); ctx->last_buffer->next = ab; ctx->last_buffer = ab; reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); flush_writes(ctx->ohci); return 0; } #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32) #define cond_le32_to_cpu(v) \ (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v)) #else #define cond_le32_to_cpu(v) le32_to_cpu(v) #endif static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer) { struct fw_ohci *ohci = ctx->ohci; struct fw_packet p; u32 status, length, tcode; int evt; p.header[0] = cond_le32_to_cpu(buffer[0]); p.header[1] = cond_le32_to_cpu(buffer[1]); p.header[2] = cond_le32_to_cpu(buffer[2]); tcode = (p.header[0] >> 4) & 0x0f; switch (tcode) { case TCODE_WRITE_QUADLET_REQUEST: case TCODE_READ_QUADLET_RESPONSE: p.header[3] = (__force __u32) buffer[3]; p.header_length = 16; p.payload_length = 0; break; case TCODE_READ_BLOCK_REQUEST : p.header[3] = cond_le32_to_cpu(buffer[3]); p.header_length = 16; p.payload_length = 0; break; case TCODE_WRITE_BLOCK_REQUEST: case TCODE_READ_BLOCK_RESPONSE: case TCODE_LOCK_REQUEST: case TCODE_LOCK_RESPONSE: p.header[3] = cond_le32_to_cpu(buffer[3]); p.header_length = 16; p.payload_length = p.header[3] >> 16; break; case TCODE_WRITE_RESPONSE: case TCODE_READ_QUADLET_REQUEST: case OHCI_TCODE_PHY_PACKET: p.header_length = 12; p.payload_length = 0; break; default: /* FIXME: Stop context, discard everything, and restart? */ p.header_length = 0; p.payload_length = 0; } p.payload = (void *) buffer + p.header_length; /* FIXME: What to do about evt_* errors? */ length = (p.header_length + p.payload_length + 3) / 4; status = cond_le32_to_cpu(buffer[length]); evt = (status >> 16) & 0x1f; p.ack = evt - 16; p.speed = (status >> 21) & 0x7; p.timestamp = status & 0xffff; p.generation = ohci->request_generation; log_ar_at_event('R', p.speed, p.header, evt); /* * The OHCI bus reset handler synthesizes a phy packet with * the new generation number when a bus reset happens (see * section 8.4.2.3). This helps us determine when a request * was received and make sure we send the response in the same * generation. We only need this for requests; for responses * we use the unique tlabel for finding the matching * request. * * Alas some chips sometimes emit bus reset packets with a * wrong generation. We set the correct generation for these * at a slightly incorrect time (in bus_reset_tasklet). */ if (evt == OHCI1394_evt_bus_reset) { if (!ohci->bus_reset_packet_quirk) ohci->request_generation = (p.header[2] >> 16) & 0xff; } else if (ctx == &ohci->ar_request_ctx) { fw_core_handle_request(&ohci->card, &p); } else { fw_core_handle_response(&ohci->card, &p); } return buffer + length + 1; } static void ar_context_tasklet(unsigned long data) { struct ar_context *ctx = (struct ar_context *)data; struct fw_ohci *ohci = ctx->ohci; struct ar_buffer *ab; struct descriptor *d; void *buffer, *end; ab = ctx->current_buffer; d = &ab->descriptor; if (d->res_count == 0) { size_t size, rest, offset; dma_addr_t start_bus; void *start; /* * This descriptor is finished and we may have a * packet split across this and the next buffer. We * reuse the page for reassembling the split packet. */ offset = offsetof(struct ar_buffer, data); start = buffer = ab; start_bus = le32_to_cpu(ab->descriptor.data_address) - offset; ab = ab->next; d = &ab->descriptor; size = buffer + PAGE_SIZE - ctx->pointer; rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count); memmove(buffer, ctx->pointer, size); memcpy(buffer + size, ab->data, rest); ctx->current_buffer = ab; ctx->pointer = (void *) ab->data + rest; end = buffer + size + rest; while (buffer < end) buffer = handle_ar_packet(ctx, buffer); dma_free_coherent(ohci->card.device, PAGE_SIZE, start, start_bus); ar_context_add_page(ctx); } else { buffer = ctx->pointer; ctx->pointer = end = (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count); while (buffer < end) buffer = handle_ar_packet(ctx, buffer); } } static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs) { struct ar_buffer ab; ctx->regs = regs; ctx->ohci = ohci; ctx->last_buffer = &ab; tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx); ar_context_add_page(ctx); ar_context_add_page(ctx); ctx->current_buffer = ab.next; ctx->pointer = ctx->current_buffer->data; return 0; } static void ar_context_run(struct ar_context *ctx) { struct ar_buffer *ab = ctx->current_buffer; dma_addr_t ab_bus; size_t offset; offset = offsetof(struct ar_buffer, data); ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset; reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1); reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN); flush_writes(ctx->ohci); } static struct descriptor * find_branch_descriptor(struct descriptor *d, int z) { int b, key; b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2; key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8; /* figure out which descriptor the branch address goes in */ if (z == 2 && (b == 3 || key == 2)) return d; else return d + z - 1; } static void context_tasklet(unsigned long data) { struct context *ctx = (struct context *) data; struct descriptor *d, *last; u32 address; int z; struct descriptor_buffer *desc; desc = list_entry(ctx->buffer_list.next, struct descriptor_buffer, list); last = ctx->last; while (last->branch_address != 0) { struct descriptor_buffer *old_desc = desc; address = le32_to_cpu(last->branch_address); z = address & 0xf; address &= ~0xf; /* If the branch address points to a buffer outside of the * current buffer, advance to the next buffer. */ if (address < desc->buffer_bus || address >= desc->buffer_bus + desc->used) desc = list_entry(desc->list.next, struct descriptor_buffer, list); d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d); last = find_branch_descriptor(d, z); if (!ctx->callback(ctx, d, last)) break; if (old_desc != desc) { /* If we've advanced to the next buffer, move the * previous buffer to the free list. */ unsigned long flags; old_desc->used = 0; spin_lock_irqsave(&ctx->ohci->lock, flags); list_move_tail(&old_desc->list, &ctx->buffer_list); spin_unlock_irqrestore(&ctx->ohci->lock, flags); } ctx->last = last; } } /* * Allocate a new buffer and add it to the list of free buffers for this * context. Must be called with ohci->lock held. */ static int context_add_buffer(struct context *ctx) { struct descriptor_buffer *desc; dma_addr_t uninitialized_var(bus_addr); int offset; /* * 16MB of descriptors should be far more than enough for any DMA * program. This will catch run-away userspace or DoS attacks. */ if (ctx->total_allocation >= 16*1024*1024) return -ENOMEM; desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC); if (!desc) return -ENOMEM; offset = (void *)&desc->buffer - (void *)desc; desc->buffer_size = PAGE_SIZE - offset; desc->buffer_bus = bus_addr + offset; desc->used = 0; list_add_tail(&desc->list, &ctx->buffer_list); ctx->total_allocation += PAGE_SIZE; return 0; } static int context_init(struct context *ctx, struct fw_ohci *ohci, u32 regs, descriptor_callback_t callback) { ctx->ohci = ohci; ctx->regs = regs; ctx->total_allocation = 0; INIT_LIST_HEAD(&ctx->buffer_list); if (context_add_buffer(ctx) < 0) return -ENOMEM; ctx->buffer_tail = list_entry(ctx->buffer_list.next, struct descriptor_buffer, list); tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx); ctx->callback = callback; /* * We put a dummy descriptor in the buffer that has a NULL * branch address and looks like it's been sent. That way we * have a descriptor to append DMA programs to. */ memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer)); ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST); ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011); ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer); ctx->last = ctx->buffer_tail->buffer; ctx->prev = ctx->buffer_tail->buffer; return 0; } static void context_release(struct context *ctx) { struct fw_card *card = &ctx->ohci->card; struct descriptor_buffer *desc, *tmp; list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) dma_free_coherent(card->device, PAGE_SIZE, desc, desc->buffer_bus - ((void *)&desc->buffer - (void *)desc)); } /* Must be called with ohci->lock held */ static struct descriptor * context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus) { struct descriptor *d = NULL; struct descriptor_buffer *desc = ctx->buffer_tail; if (z * sizeof(*d) > desc->buffer_size) return NULL; if (z * sizeof(*d) > desc->buffer_size - desc->used) { /* No room for the descriptor in this buffer, so advance to the * next one. */ if (desc->list.next == &ctx->buffer_list) { /* If there is no free buffer next in the list, * allocate one. */ if (context_add_buffer(ctx) < 0) return NULL; } desc = list_entry(desc->list.next, struct descriptor_buffer, list); ctx->buffer_tail = desc; } d = desc->buffer + desc->used / sizeof(*d); memset(d, 0, z * sizeof(*d)); *d_bus = desc->buffer_bus + desc->used; return d; } static void context_run(struct context *ctx, u32 extra) { struct fw_ohci *ohci = ctx->ohci; reg_write(ohci, COMMAND_PTR(ctx->regs), le32_to_cpu(ctx->last->branch_address)); reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0); reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra); flush_writes(ohci); } static void context_append(struct context *ctx, struct descriptor *d, int z, int extra) { dma_addr_t d_bus; struct descriptor_buffer *desc = ctx->buffer_tail; d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d); desc->used += (z + extra) * sizeof(*d); ctx->prev->branch_address = cpu_to_le32(d_bus | z); ctx->prev = find_branch_descriptor(d, z); reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); flush_writes(ctx->ohci); } static void context_stop(struct context *ctx) { u32 reg; int i; reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN); flush_writes(ctx->ohci); for (i = 0; i < 10; i++) { reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs)); if ((reg & CONTEXT_ACTIVE) == 0) break; fw_notify("context_stop: still active (0x%08x)\n", reg); mdelay(1); } } struct driver_data { struct fw_packet *packet; }; /* * This function apppends a packet to the DMA queue for transmission. * Must always be called with the ochi->lock held to ensure proper * generation handling and locking around packet queue manipulation. */ static int at_context_queue_packet(struct context *ctx, struct fw_packet *packet) { struct fw_ohci *ohci = ctx->ohci; dma_addr_t d_bus, uninitialized_var(payload_bus); struct driver_data *driver_data; struct descriptor *d, *last; __le32 *header; int z, tcode; u32 reg; d = context_get_descriptors(ctx, 4, &d_bus); if (d == NULL) { packet->ack = RCODE_SEND_ERROR; return -1; } d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); d[0].res_count = cpu_to_le16(packet->timestamp); /* * The DMA format for asyncronous link packets is different * from the IEEE1394 layout, so shift the fields around * accordingly. If header_length is 8, it's a PHY packet, to * which we need to prepend an extra quadlet. */ header = (__le32 *) &d[1]; if (packet->header_length > 8) { header[0] = cpu_to_le32((packet->header[0] & 0xffff) | (packet->speed << 16)); header[1] = cpu_to_le32((packet->header[1] & 0xffff) | (packet->header[0] & 0xffff0000)); header[2] = cpu_to_le32(packet->header[2]); tcode = (packet->header[0] >> 4) & 0x0f; if (TCODE_IS_BLOCK_PACKET(tcode)) header[3] = cpu_to_le32(packet->header[3]); else header[3] = (__force __le32) packet->header[3]; d[0].req_count = cpu_to_le16(packet->header_length); } else { header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) | (packet->speed << 16)); header[1] = cpu_to_le32(packet->header[0]); header[2] = cpu_to_le32(packet->header[1]); d[0].req_count = cpu_to_le16(12); } driver_data = (struct driver_data *) &d[3]; driver_data->packet = packet; packet->driver_data = driver_data; if (packet->payload_length > 0) { payload_bus = dma_map_single(ohci->card.device, packet->payload, packet->payload_length, DMA_TO_DEVICE); if (dma_mapping_error(ohci->card.device, payload_bus)) { packet->ack = RCODE_SEND_ERROR; return -1; } d[2].req_count = cpu_to_le16(packet->payload_length); d[2].data_address = cpu_to_le32(payload_bus); last = &d[2]; z = 3; } else { last = &d[0]; z = 2; } last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | DESCRIPTOR_IRQ_ALWAYS | DESCRIPTOR_BRANCH_ALWAYS); /* * If the controller and packet generations don't match, we need to * bail out and try again. If IntEvent.busReset is set, the AT context * is halted, so appending to the context and trying to run it is * futile. Most controllers do the right thing and just flush the AT * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind * up stalling out. So we just bail out in software and try again * later, and everyone is happy. * FIXME: Document how the locking works. */ if (ohci->generation != packet->generation || reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) { if (packet->payload_length > 0) dma_unmap_single(ohci->card.device, payload_bus, packet->payload_length, DMA_TO_DEVICE); packet->ack = RCODE_GENERATION; return -1; } context_append(ctx, d, z, 4 - z); /* If the context isn't already running, start it up. */ reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs)); if ((reg & CONTEXT_RUN) == 0) context_run(ctx, 0); return 0; } static int handle_at_packet(struct context *context, struct descriptor *d, struct descriptor *last) { struct driver_data *driver_data; struct fw_packet *packet; struct fw_ohci *ohci = context->ohci; dma_addr_t payload_bus; int evt; if (last->transfer_status == 0) /* This descriptor isn't done yet, stop iteration. */ return 0; driver_data = (struct driver_data *) &d[3]; packet = driver_data->packet; if (packet == NULL) /* This packet was cancelled, just continue. */ return 1; payload_bus = le32_to_cpu(last->data_address); if (payload_bus != 0) dma_unmap_single(ohci->card.device, payload_bus, packet->payload_length, DMA_TO_DEVICE); evt = le16_to_cpu(last->transfer_status) & 0x1f; packet->timestamp = le16_to_cpu(last->res_count); log_ar_at_event('T', packet->speed, packet->header, evt); switch (evt) { case OHCI1394_evt_timeout: /* Async response transmit timed out. */ packet->ack = RCODE_CANCELLED; break; case OHCI1394_evt_flushed: /* * The packet was flushed should give same error as * when we try to use a stale generation count. */ packet->ack = RCODE_GENERATION; break; case OHCI1394_evt_missing_ack: /* * Using a valid (current) generation count, but the * node is not on the bus or not sending acks. */ packet->ack = RCODE_NO_ACK; break; case ACK_COMPLETE + 0x10: case ACK_PENDING + 0x10: case ACK_BUSY_X + 0x10: case ACK_BUSY_A + 0x10: case ACK_BUSY_B + 0x10: case ACK_DATA_ERROR + 0x10: case ACK_TYPE_ERROR + 0x10: packet->ack = evt - 0x10; break; default: packet->ack = RCODE_SEND_ERROR; break; } packet->callback(packet, &ohci->card, packet->ack); return 1; } #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff) #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f) #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff) #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff) #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff) static void handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr) { struct fw_packet response; int tcode, length, i; tcode = HEADER_GET_TCODE(packet->header[0]); if (TCODE_IS_BLOCK_PACKET(tcode)) length = HEADER_GET_DATA_LENGTH(packet->header[3]); else length = 4; i = csr - CSR_CONFIG_ROM; if (i + length > CONFIG_ROM_SIZE) { fw_fill_response(&response, packet->header, RCODE_ADDRESS_ERROR, NULL, 0); } else if (!TCODE_IS_READ_REQUEST(tcode)) { fw_fill_response(&response, packet->header, RCODE_TYPE_ERROR, NULL, 0); } else { fw_fill_response(&response, packet->header, RCODE_COMPLETE, (void *) ohci->config_rom + i, length); } fw_core_handle_response(&ohci->card, &response); } static void handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr) { struct fw_packet response; int tcode, length, ext_tcode, sel; __be32 *payload, lock_old; u32 lock_arg, lock_data; tcode = HEADER_GET_TCODE(packet->header[0]); length = HEADER_GET_DATA_LENGTH(packet->header[3]); payload = packet->payload; ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]); if (tcode == TCODE_LOCK_REQUEST && ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) { lock_arg = be32_to_cpu(payload[0]); lock_data = be32_to_cpu(payload[1]); } else if (tcode == TCODE_READ_QUADLET_REQUEST) { lock_arg = 0; lock_data = 0; } else { fw_fill_response(&response, packet->header, RCODE_TYPE_ERROR, NULL, 0); goto out; } sel = (csr - CSR_BUS_MANAGER_ID) / 4; reg_write(ohci, OHCI1394_CSRData, lock_data); reg_write(ohci, OHCI1394_CSRCompareData, lock_arg); reg_write(ohci, OHCI1394_CSRControl, sel); if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData)); else fw_notify("swap not done yet\n"); fw_fill_response(&response, packet->header, RCODE_COMPLETE, &lock_old, sizeof(lock_old)); out: fw_core_handle_response(&ohci->card, &response); } static void handle_local_request(struct context *ctx, struct fw_packet *packet) { u64 offset; u32 csr; if (ctx == &ctx->ohci->at_request_ctx) { packet->ack = ACK_PENDING; packet->callback(packet, &ctx->ohci->card, packet->ack); } offset = ((unsigned long long) HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) | packet->header[2]; csr = offset - CSR_REGISTER_BASE; /* Handle config rom reads. */ if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END) handle_local_rom(ctx->ohci, packet, csr); else switch (csr) { case CSR_BUS_MANAGER_ID: case CSR_BANDWIDTH_AVAILABLE: case CSR_CHANNELS_AVAILABLE_HI: case CSR_CHANNELS_AVAILABLE_LO: handle_local_lock(ctx->ohci, packet, csr); break; default: if (ctx == &ctx->ohci->at_request_ctx) fw_core_handle_request(&ctx->ohci->card, packet); else fw_core_handle_response(&ctx->ohci->card, packet); break; } if (ctx == &ctx->ohci->at_response_ctx) { packet->ack = ACK_COMPLETE; packet->callback(packet, &ctx->ohci->card, packet->ack); } } static void at_context_transmit(struct context *ctx, struct fw_packet *packet) { unsigned long flags; int retval; spin_lock_irqsave(&ctx->ohci->lock, flags); if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id && ctx->ohci->generation == packet->generation) { spin_unlock_irqrestore(&ctx->ohci->lock, flags); handle_local_request(ctx, packet); return; } retval = at_context_queue_packet(ctx, packet); spin_unlock_irqrestore(&ctx->ohci->lock, flags); if (retval < 0) packet->callback(packet, &ctx->ohci->card, packet->ack); } static void bus_reset_tasklet(unsigned long data) { struct fw_ohci *ohci = (struct fw_ohci *)data; int self_id_count, i, j, reg; int generation, new_generation; unsigned long flags; void *free_rom = NULL; dma_addr_t free_rom_bus = 0; reg = reg_read(ohci, OHCI1394_NodeID); if (!(reg & OHCI1394_NodeID_idValid)) { fw_notify("node ID not valid, new bus reset in progress\n"); return; } if ((reg & OHCI1394_NodeID_nodeNumber) == 63) { fw_notify("malconfigured bus\n"); return; } ohci->node_id = reg & (OHCI1394_NodeID_busNumber | OHCI1394_NodeID_nodeNumber); reg = reg_read(ohci, OHCI1394_SelfIDCount); if (reg & OHCI1394_SelfIDCount_selfIDError) { fw_notify("inconsistent self IDs\n"); return; } /* * The count in the SelfIDCount register is the number of * bytes in the self ID receive buffer. Since we also receive * the inverted quadlets and a header quadlet, we shift one * bit extra to get the actual number of self IDs. */ self_id_count = (reg >> 3) & 0x3ff; if (self_id_count == 0) { fw_notify("inconsistent self IDs\n"); return; } generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff; rmb(); for (i = 1, j = 0; j < self_id_count; i += 2, j++) { if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) { fw_notify("inconsistent self IDs\n"); return; } ohci->self_id_buffer[j] = cond_le32_to_cpu(ohci->self_id_cpu[i]); } rmb(); /* * Check the consistency of the self IDs we just read. The * problem we face is that a new bus reset can start while we * read out the self IDs from the DMA buffer. If this happens, * the DMA buffer will be overwritten with new self IDs and we * will read out inconsistent data. The OHCI specification * (section 11.2) recommends a technique similar to * linux/seqlock.h, where we remember the generation of the * self IDs in the buffer before reading them out and compare * it to the current generation after reading them out. If * the two generations match we know we have a consistent set * of self IDs. */ new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff; if (new_generation != generation) { fw_notify("recursive bus reset detected, " "discarding self ids\n"); return; } /* FIXME: Document how the locking works. */ spin_lock_irqsave(&ohci->lock, flags); ohci->generation = generation; context_stop(&ohci->at_request_ctx); context_stop(&ohci->at_response_ctx); reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset); if (ohci->bus_reset_packet_quirk) ohci->request_generation = generation; /* * This next bit is unrelated to the AT context stuff but we * have to do it under the spinlock also. If a new config rom * was set up before this reset, the old one is now no longer * in use and we can free it. Update the config rom pointers * to point to the current config rom and clear the * next_config_rom pointer so a new udpate can take place. */ if (ohci->next_config_rom != NULL) { if (ohci->next_config_rom != ohci->config_rom) { free_rom = ohci->config_rom; free_rom_bus = ohci->config_rom_bus; } ohci->config_rom = ohci->next_config_rom; ohci->config_rom_bus = ohci->next_config_rom_bus; ohci->next_config_rom = NULL; /* * Restore config_rom image and manually update * config_rom registers. Writing the header quadlet * will indicate that the config rom is ready, so we * do that last. */ reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2])); ohci->config_rom[0] = cpu_to_be32(ohci->next_header); reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header); } #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0); reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0); #endif spin_unlock_irqrestore(&ohci->lock, flags); if (free_rom) dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus); log_selfids(ohci->node_id, generation, self_id_count, ohci->self_id_buffer); fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation, self_id_count, ohci->self_id_buffer); } static irqreturn_t irq_handler(int irq, void *data) { struct fw_ohci *ohci = data; u32 event, iso_event, cycle_time; int i; event = reg_read(ohci, OHCI1394_IntEventClear); if (!event || !~event) return IRQ_NONE; /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */ reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset); log_irqs(event); if (event & OHCI1394_selfIDComplete) tasklet_schedule(&ohci->bus_reset_tasklet); if (event & OHCI1394_RQPkt) tasklet_schedule(&ohci->ar_request_ctx.tasklet); if (event & OHCI1394_RSPkt) tasklet_schedule(&ohci->ar_response_ctx.tasklet); if (event & OHCI1394_reqTxComplete) tasklet_schedule(&ohci->at_request_ctx.tasklet); if (event & OHCI1394_respTxComplete) tasklet_schedule(&ohci->at_response_ctx.tasklet); iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear); reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event); while (iso_event) { i = ffs(iso_event) - 1; tasklet_schedule(&ohci->ir_context_list[i].context.tasklet); iso_event &= ~(1 << i); } iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear); reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event); while (iso_event) { i = ffs(iso_event) - 1; tasklet_schedule(&ohci->it_context_list[i].context.tasklet); iso_event &= ~(1 << i); } if (unlikely(event & OHCI1394_regAccessFail)) fw_error("Register access failure - " "please notify linux1394-devel@lists.sf.net\n"); if (unlikely(event & OHCI1394_postedWriteErr)) fw_error("PCI posted write error\n"); if (unlikely(event & OHCI1394_cycleTooLong)) { if (printk_ratelimit()) fw_notify("isochronous cycle too long\n"); reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_cycleMaster); } if (event & OHCI1394_cycle64Seconds) { cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer); if ((cycle_time & 0x80000000) == 0) ohci->bus_seconds++; } return IRQ_HANDLED; } static int software_reset(struct fw_ohci *ohci) { int i; reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset); for (i = 0; i < OHCI_LOOP_COUNT; i++) { if ((reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_softReset) == 0) return 0; msleep(1); } return -EBUSY; } static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length) { struct fw_ohci *ohci = fw_ohci(card); struct pci_dev *dev = to_pci_dev(card->device); u32 lps; int i; if (software_reset(ohci)) { fw_error("Failed to reset ohci card.\n"); return -EBUSY; } /* * Now enable LPS, which we need in order to start accessing * most of the registers. In fact, on some cards (ALI M5251), * accessing registers in the SClk domain without LPS enabled * will lock up the machine. Wait 50msec to make sure we have * full link enabled. However, with some cards (well, at least * a JMicron PCIe card), we have to try again sometimes. */ reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS | OHCI1394_HCControl_postedWriteEnable); flush_writes(ohci); for (lps = 0, i = 0; !lps && i < 3; i++) { msleep(50); lps = reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS; } if (!lps) { fw_error("Failed to set Link Power Status\n"); return -EIO; } reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwapData); reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus); reg_write(ohci, OHCI1394_LinkControlClear, OHCI1394_LinkControl_rcvPhyPkt); reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_rcvSelfID | OHCI1394_LinkControl_cycleTimerEnable | OHCI1394_LinkControl_cycleMaster); reg_write(ohci, OHCI1394_ATRetries, OHCI1394_MAX_AT_REQ_RETRIES | (OHCI1394_MAX_AT_RESP_RETRIES << 4) | (OHCI1394_MAX_PHYS_RESP_RETRIES << 8)); ar_context_run(&ohci->ar_request_ctx); ar_context_run(&ohci->ar_response_ctx); reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000); reg_write(ohci, OHCI1394_IntEventClear, ~0); reg_write(ohci, OHCI1394_IntMaskClear, ~0); reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_selfIDComplete | OHCI1394_RQPkt | OHCI1394_RSPkt | OHCI1394_reqTxComplete | OHCI1394_respTxComplete | OHCI1394_isochRx | OHCI1394_isochTx | OHCI1394_postedWriteErr | OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds | OHCI1394_regAccessFail | OHCI1394_masterIntEnable); if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS) reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset); /* Activate link_on bit and contender bit in our self ID packets.*/ if (ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER) < 0) return -EIO; /* * When the link is not yet enabled, the atomic config rom * update mechanism described below in ohci_set_config_rom() * is not active. We have to update ConfigRomHeader and * BusOptions manually, and the write to ConfigROMmap takes * effect immediately. We tie this to the enabling of the * link, so we have a valid config rom before enabling - the * OHCI requires that ConfigROMhdr and BusOptions have valid * values before enabling. * * However, when the ConfigROMmap is written, some controllers * always read back quadlets 0 and 2 from the config rom to * the ConfigRomHeader and BusOptions registers on bus reset. * They shouldn't do that in this initial case where the link * isn't enabled. This means we have to use the same * workaround here, setting the bus header to 0 and then write * the right values in the bus reset tasklet. */ if (config_rom) { ohci->next_config_rom = dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, &ohci->next_config_rom_bus, GFP_KERNEL); if (ohci->next_config_rom == NULL) return -ENOMEM; memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE); fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4); } else { /* * In the suspend case, config_rom is NULL, which * means that we just reuse the old config rom. */ ohci->next_config_rom = ohci->config_rom; ohci->next_config_rom_bus = ohci->config_rom_bus; } ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]); ohci->next_config_rom[0] = 0; reg_write(ohci, OHCI1394_ConfigROMhdr, 0); reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->next_config_rom[2])); reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000); if (request_irq(dev->irq, irq_handler, IRQF_SHARED, ohci_driver_name, ohci)) { fw_error("Failed to allocate shared interrupt %d.\n", dev->irq); dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, ohci->config_rom, ohci->config_rom_bus); return -EIO; } reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable | OHCI1394_HCControl_BIBimageValid); flush_writes(ohci); /* * We are ready to go, initiate bus reset to finish the * initialization. */ fw_core_initiate_bus_reset(&ohci->card, 1); return 0; } static int ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length) { struct fw_ohci *ohci; unsigned long flags; int retval = -EBUSY; __be32 *next_config_rom; dma_addr_t uninitialized_var(next_config_rom_bus); ohci = fw_ohci(card); /* * When the OHCI controller is enabled, the config rom update * mechanism is a bit tricky, but easy enough to use. See * section 5.5.6 in the OHCI specification. * * The OHCI controller caches the new config rom address in a * shadow register (ConfigROMmapNext) and needs a bus reset * for the changes to take place. When the bus reset is * detected, the controller loads the new values for the * ConfigRomHeader and BusOptions registers from the specified * config rom and loads ConfigROMmap from the ConfigROMmapNext * shadow register. All automatically and atomically. * * Now, there's a twist to this story. The automatic load of * ConfigRomHeader and BusOptions doesn't honor the * noByteSwapData bit, so with a be32 config rom, the * controller will load be32 values in to these registers * during the atomic update, even on litte endian * architectures. The workaround we use is to put a 0 in the * header quadlet; 0 is endian agnostic and means that the * config rom isn't ready yet. In the bus reset tasklet we * then set up the real values for the two registers. * * We use ohci->lock to avoid racing with the code that sets * ohci->next_config_rom to NULL (see bus_reset_tasklet). */ next_config_rom = dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, &next_config_rom_bus, GFP_KERNEL); if (next_config_rom == NULL) return -ENOMEM; spin_lock_irqsave(&ohci->lock, flags); if (ohci->next_config_rom == NULL) { ohci->next_config_rom = next_config_rom; ohci->next_config_rom_bus = next_config_rom_bus; memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE); fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4); ohci->next_header = config_rom[0]; ohci->next_config_rom[0] = 0; reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); retval = 0; } spin_unlock_irqrestore(&ohci->lock, flags); /* * Now initiate a bus reset to have the changes take * effect. We clean up the old config rom memory and DMA * mappings in the bus reset tasklet, since the OHCI * controller could need to access it before the bus reset * takes effect. */ if (retval == 0) fw_core_initiate_bus_reset(&ohci->card, 1); else dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom, next_config_rom_bus); return retval; } static void ohci_send_request(struct fw_card *card, struct fw_packet *packet) { struct fw_ohci *ohci = fw_ohci(card); at_context_transmit(&ohci->at_request_ctx, packet); } static void ohci_send_response(struct fw_card *card, struct fw_packet *packet) { struct fw_ohci *ohci = fw_ohci(card); at_context_transmit(&ohci->at_response_ctx, packet); } static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet) { struct fw_ohci *ohci = fw_ohci(card); struct context *ctx = &ohci->at_request_ctx; struct driver_data *driver_data = packet->driver_data; int retval = -ENOENT; tasklet_disable(&ctx->tasklet); if (packet->ack != 0) goto out; log_ar_at_event('T', packet->speed, packet->header, 0x20); driver_data->packet = NULL; packet->ack = RCODE_CANCELLED; packet->callback(packet, &ohci->card, packet->ack); retval = 0; out: tasklet_enable(&ctx->tasklet); return retval; } static int ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation) { #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA return 0; #else struct fw_ohci *ohci = fw_ohci(card); unsigned long flags; int n, retval = 0; /* * FIXME: Make sure this bitmask is cleared when we clear the busReset * interrupt bit. Clear physReqResourceAllBuses on bus reset. */ spin_lock_irqsave(&ohci->lock, flags); if (ohci->generation != generation) { retval = -ESTALE; goto out; } /* * Note, if the node ID contains a non-local bus ID, physical DMA is * enabled for _all_ nodes on remote buses. */ n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63; if (n < 32) reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n); else reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32)); flush_writes(ohci); out: spin_unlock_irqrestore(&ohci->lock, flags); return retval; #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */ } static u64 ohci_get_bus_time(struct fw_card *card) { struct fw_ohci *ohci = fw_ohci(card); u32 cycle_time; u64 bus_time; cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer); bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time; return bus_time; } static int handle_ir_dualbuffer_packet(struct context *context, struct descriptor *d, struct descriptor *last) { struct iso_context *ctx = container_of(context, struct iso_context, context); struct db_descriptor *db = (struct db_descriptor *) d; __le32 *ir_header; size_t header_length; void *p, *end; int i; if (db->first_res_count != 0 && db->second_res_count != 0) { if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) { /* This descriptor isn't done yet, stop iteration. */ return 0; } ctx->excess_bytes -= le16_to_cpu(db->second_req_count); } header_length = le16_to_cpu(db->first_req_count) - le16_to_cpu(db->first_res_count); i = ctx->header_length; p = db + 1; end = p + header_length; while (p < end && i + ctx->base.header_size <= PAGE_SIZE) { /* * The iso header is byteswapped to little endian by * the controller, but the remaining header quadlets * are big endian. We want to present all the headers * as big endian, so we have to swap the first * quadlet. */ *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4)); memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4); i += ctx->base.header_size; ctx->excess_bytes += (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff; p += ctx->base.header_size + 4; } ctx->header_length = i; ctx->excess_bytes -= le16_to_cpu(db->second_req_count) - le16_to_cpu(db->second_res_count); if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) { ir_header = (__le32 *) (db + 1); ctx->base.callback(&ctx->base, le32_to_cpu(ir_header[0]) & 0xffff, ctx->header_length, ctx->header, ctx->base.callback_data); ctx->header_length = 0; } return 1; } static int handle_ir_packet_per_buffer(struct context *context, struct descriptor *d, struct descriptor *last) { struct iso_context *ctx = container_of(context, struct iso_context, context); struct descriptor *pd; __le32 *ir_header; void *p; int i; for (pd = d; pd <= last; pd++) { if (pd->transfer_status) break; } if (pd > last) /* Descriptor(s) not done yet, stop iteration */ return 0; i = ctx->header_length; p = last + 1; if (ctx->base.header_size > 0 && i + ctx->base.header_size <= PAGE_SIZE) { /* * The iso header is byteswapped to little endian by * the controller, but the remaining header quadlets * are big endian. We want to present all the headers * as big endian, so we have to swap the first quadlet. */ *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4)); memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4); ctx->header_length += ctx->base.header_size; } if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) { ir_header = (__le32 *) p; ctx->base.callback(&ctx->base, le32_to_cpu(ir_header[0]) & 0xffff, ctx->header_length, ctx->header, ctx->base.callback_data); ctx->header_length = 0; } return 1; } static int handle_it_packet(struct context *context, struct descriptor *d, struct descriptor *last) { struct iso_context *ctx = container_of(context, struct iso_context, context); if (last->transfer_status == 0) /* This descriptor isn't done yet, stop iteration. */ return 0; if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count), 0, NULL, ctx->base.callback_data); return 1; } static struct fw_iso_context * ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size) { struct fw_ohci *ohci = fw_ohci(card); struct iso_context *ctx, *list; descriptor_callback_t callback; u32 *mask, regs; unsigned long flags; int index, retval = -ENOMEM; if (type == FW_ISO_CONTEXT_TRANSMIT) { mask = &ohci->it_context_mask; list = ohci->it_context_list; callback = handle_it_packet; } else { mask = &ohci->ir_context_mask; list = ohci->ir_context_list; if (ohci->version >= OHCI_VERSION_1_1) callback = handle_ir_dualbuffer_packet; else callback = handle_ir_packet_per_buffer; } spin_lock_irqsave(&ohci->lock, flags); index = ffs(*mask) - 1; if (index >= 0) *mask &= ~(1 << index); spin_unlock_irqrestore(&ohci->lock, flags); if (index < 0) return ERR_PTR(-EBUSY); if (type == FW_ISO_CONTEXT_TRANSMIT) regs = OHCI1394_IsoXmitContextBase(index); else regs = OHCI1394_IsoRcvContextBase(index); ctx = &list[index]; memset(ctx, 0, sizeof(*ctx)); ctx->header_length = 0; ctx->header = (void *) __get_free_page(GFP_KERNEL); if (ctx->header == NULL) goto out; retval = context_init(&ctx->context, ohci, regs, callback); if (retval < 0) goto out_with_header; return &ctx->base; out_with_header: free_page((unsigned long)ctx->header); out: spin_lock_irqsave(&ohci->lock, flags); *mask |= 1 << index; spin_unlock_irqrestore(&ohci->lock, flags); return ERR_PTR(retval); } static int ohci_start_iso(struct fw_iso_context *base, s32 cycle, u32 sync, u32 tags) { struct iso_context *ctx = container_of(base, struct iso_context, base); struct fw_ohci *ohci = ctx->context.ohci; u32 control, match; int index; if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) { index = ctx - ohci->it_context_list; match = 0; if (cycle >= 0) match = IT_CONTEXT_CYCLE_MATCH_ENABLE | (cycle & 0x7fff) << 16; reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index); reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index); context_run(&ctx->context, match); } else { index = ctx - ohci->ir_context_list; control = IR_CONTEXT_ISOCH_HEADER; if (ohci->version >= OHCI_VERSION_1_1) control |= IR_CONTEXT_DUAL_BUFFER_MODE; match = (tags << 28) | (sync << 8) | ctx->base.channel; if (cycle >= 0) { match |= (cycle & 0x07fff) << 12; control |= IR_CONTEXT_CYCLE_MATCH_ENABLE; } reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index); reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index); reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match); context_run(&ctx->context, control); } return 0; } static int ohci_stop_iso(struct fw_iso_context *base) { struct fw_ohci *ohci = fw_ohci(base->card); struct iso_context *ctx = container_of(base, struct iso_context, base); int index; if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) { index = ctx - ohci->it_context_list; reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index); } else { index = ctx - ohci->ir_context_list; reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index); } flush_writes(ohci); context_stop(&ctx->context); return 0; } static void ohci_free_iso_context(struct fw_iso_context *base) { struct fw_ohci *ohci = fw_ohci(base->card); struct iso_context *ctx = container_of(base, struct iso_context, base); unsigned long flags; int index; ohci_stop_iso(base); context_release(&ctx->context); free_page((unsigned long)ctx->header); spin_lock_irqsave(&ohci->lock, flags); if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) { index = ctx - ohci->it_context_list; ohci->it_context_mask |= 1 << index; } else { index = ctx - ohci->ir_context_list; ohci->ir_context_mask |= 1 << index; } spin_unlock_irqrestore(&ohci->lock, flags); } static int ohci_queue_iso_transmit(struct fw_iso_context *base, struct fw_iso_packet *packet, struct fw_iso_buffer *buffer, unsigned long payload) { struct iso_context *ctx = container_of(base, struct iso_context, base); struct descriptor *d, *last, *pd; struct fw_iso_packet *p; __le32 *header; dma_addr_t d_bus, page_bus; u32 z, header_z, payload_z, irq; u32 payload_index, payload_end_index, next_page_index; int page, end_page, i, length, offset; /* * FIXME: Cycle lost behavior should be configurable: lose * packet, retransmit or terminate.. */ p = packet; payload_index = payload; if (p->skip) z = 1; else z = 2; if (p->header_length > 0) z++; /* Determine the first page the payload isn't contained in. */ end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT; if (p->payload_length > 0) payload_z = end_page - (payload_index >> PAGE_SHIFT); else payload_z = 0; z += payload_z; /* Get header size in number of descriptors. */ header_z = DIV_ROUND_UP(p->header_length, sizeof(*d)); d = context_get_descriptors(&ctx->context, z + header_z, &d_bus); if (d == NULL) return -ENOMEM; if (!p->skip) { d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); d[0].req_count = cpu_to_le16(8); header = (__le32 *) &d[1]; header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) | IT_HEADER_TAG(p->tag) | IT_HEADER_TCODE(TCODE_STREAM_DATA) | IT_HEADER_CHANNEL(ctx->base.channel) | IT_HEADER_SPEED(ctx->base.speed)); header[1] = cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length + p->payload_length)); } if (p->header_length > 0) { d[2].req_count = cpu_to_le16(p->header_length); d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d)); memcpy(&d[z], p->header, p->header_length); } pd = d + z - payload_z; payload_end_index = payload_index + p->payload_length; for (i = 0; i < payload_z; i++) { page = payload_index >> PAGE_SHIFT; offset = payload_index & ~PAGE_MASK; next_page_index = (page + 1) << PAGE_SHIFT; length = min(next_page_index, payload_end_index) - payload_index; pd[i].req_count = cpu_to_le16(length); page_bus = page_private(buffer->pages[page]); pd[i].data_address = cpu_to_le32(page_bus + offset); payload_index += length; } if (p->interrupt) irq = DESCRIPTOR_IRQ_ALWAYS; else irq = DESCRIPTOR_NO_IRQ; last = z == 2 ? d : d + z - 1; last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | DESCRIPTOR_STATUS | DESCRIPTOR_BRANCH_ALWAYS | irq); context_append(&ctx->context, d, z, header_z); return 0; } static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base, struct fw_iso_packet *packet, struct fw_iso_buffer *buffer, unsigned long payload) { struct iso_context *ctx = container_of(base, struct iso_context, base); struct db_descriptor *db = NULL; struct descriptor *d; struct fw_iso_packet *p; dma_addr_t d_bus, page_bus; u32 z, header_z, length, rest; int page, offset, packet_count, header_size; /* * FIXME: Cycle lost behavior should be configurable: lose * packet, retransmit or terminate.. */ p = packet; z = 2; /* * The OHCI controller puts the status word in the header * buffer too, so we need 4 extra bytes per packet. */ packet_count = p->header_length / ctx->base.header_size; header_size = packet_count * (ctx->base.header_size + 4); /* Get header size in number of descriptors. */ header_z = DIV_ROUND_UP(header_size, sizeof(*d)); page = payload >> PAGE_SHIFT; offset = payload & ~PAGE_MASK; rest = p->payload_length; /* FIXME: make packet-per-buffer/dual-buffer a context option */ while (rest > 0) { d = context_get_descriptors(&ctx->context, z + header_z, &d_bus); if (d == NULL) return -ENOMEM; db = (struct db_descriptor *) d; db->control = cpu_to_le16(DESCRIPTOR_STATUS | DESCRIPTOR_BRANCH_ALWAYS); db->first_size = cpu_to_le16(ctx->base.header_size + 4); if (p->skip && rest == p->payload_length) { db->control |= cpu_to_le16(DESCRIPTOR_WAIT); db->first_req_count = db->first_size; } else { db->first_req_count = cpu_to_le16(header_size); } db->first_res_count = db->first_req_count; db->first_buffer = cpu_to_le32(d_bus + sizeof(*db)); if (p->skip && rest == p->payload_length) length = 4; else if (offset + rest < PAGE_SIZE) length = rest; else length = PAGE_SIZE - offset; db->second_req_count = cpu_to_le16(length); db->second_res_count = db->second_req_count; page_bus = page_private(buffer->pages[page]); db->second_buffer = cpu_to_le32(page_bus + offset); if (p->interrupt && length == rest) db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); context_append(&ctx->context, d, z, header_z); offset = (offset + length) & ~PAGE_MASK; rest -= length; if (offset == 0) page++; } return 0; } static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base, struct fw_iso_packet *packet, struct fw_iso_buffer *buffer, unsigned long payload) { struct iso_context *ctx = container_of(base, struct iso_context, base); struct descriptor *d = NULL, *pd = NULL; struct fw_iso_packet *p = packet; dma_addr_t d_bus, page_bus; u32 z, header_z, rest; int i, j, length; int page, offset, packet_count, header_size, payload_per_buffer; /* * The OHCI controller puts the status word in the * buffer too, so we need 4 extra bytes per packet. */ packet_count = p->header_length / ctx->base.header_size; header_size = ctx->base.header_size + 4; /* Get header size in number of descriptors. */ header_z = DIV_ROUND_UP(header_size, sizeof(*d)); page = payload >> PAGE_SHIFT; offset = payload & ~PAGE_MASK; payload_per_buffer = p->payload_length / packet_count; for (i = 0; i < packet_count; i++) { /* d points to the header descriptor */ z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1; d = context_get_descriptors(&ctx->context, z + header_z, &d_bus); if (d == NULL) return -ENOMEM; d->control = cpu_to_le16(DESCRIPTOR_STATUS | DESCRIPTOR_INPUT_MORE); if (p->skip && i == 0) d->control |= cpu_to_le16(DESCRIPTOR_WAIT); d->req_count = cpu_to_le16(header_size); d->res_count = d->req_count; d->transfer_status = 0; d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d))); rest = payload_per_buffer; for (j = 1; j < z; j++) { pd = d + j; pd->control = cpu_to_le16(DESCRIPTOR_STATUS | DESCRIPTOR_INPUT_MORE); if (offset + rest < PAGE_SIZE) length = rest; else length = PAGE_SIZE - offset; pd->req_count = cpu_to_le16(length); pd->res_count = pd->req_count; pd->transfer_status = 0; page_bus = page_private(buffer->pages[page]); pd->data_address = cpu_to_le32(page_bus + offset); offset = (offset + length) & ~PAGE_MASK; rest -= length; if (offset == 0) page++; } pd->control = cpu_to_le16(DESCRIPTOR_STATUS | DESCRIPTOR_INPUT_LAST | DESCRIPTOR_BRANCH_ALWAYS); if (p->interrupt && i == packet_count - 1) pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); context_append(&ctx->context, d, z, header_z); } return 0; } static int ohci_queue_iso(struct fw_iso_context *base, struct fw_iso_packet *packet, struct fw_iso_buffer *buffer, unsigned long payload) { struct iso_context *ctx = container_of(base, struct iso_context, base); unsigned long flags; int retval; spin_lock_irqsave(&ctx->context.ohci->lock, flags); if (base->type == FW_ISO_CONTEXT_TRANSMIT) retval = ohci_queue_iso_transmit(base, packet, buffer, payload); else if (ctx->context.ohci->version >= OHCI_VERSION_1_1) retval = ohci_queue_iso_receive_dualbuffer(base, packet, buffer, payload); else retval = ohci_queue_iso_receive_packet_per_buffer(base, packet, buffer, payload); spin_unlock_irqrestore(&ctx->context.ohci->lock, flags); return retval; } static const struct fw_card_driver ohci_driver = { .enable = ohci_enable, .update_phy_reg = ohci_update_phy_reg, .set_config_rom = ohci_set_config_rom, .send_request = ohci_send_request, .send_response = ohci_send_response, .cancel_packet = ohci_cancel_packet, .enable_phys_dma = ohci_enable_phys_dma, .get_bus_time = ohci_get_bus_time, .allocate_iso_context = ohci_allocate_iso_context, .free_iso_context = ohci_free_iso_context, .queue_iso = ohci_queue_iso, .start_iso = ohci_start_iso, .stop_iso = ohci_stop_iso, }; #ifdef CONFIG_PPC_PMAC static void ohci_pmac_on(struct pci_dev *dev) { if (machine_is(powermac)) { struct device_node *ofn = pci_device_to_OF_node(dev); if (ofn) { pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1); pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1); } } } static void ohci_pmac_off(struct pci_dev *dev) { if (machine_is(powermac)) { struct device_node *ofn = pci_device_to_OF_node(dev); if (ofn) { pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0); pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0); } } } #else #define ohci_pmac_on(dev) #define ohci_pmac_off(dev) #endif /* CONFIG_PPC_PMAC */ static int __devinit pci_probe(struct pci_dev *dev, const struct pci_device_id *ent) { struct fw_ohci *ohci; u32 bus_options, max_receive, link_speed; u64 guid; int err; size_t size; ohci = kzalloc(sizeof(*ohci), GFP_KERNEL); if (ohci == NULL) { fw_error("Could not malloc fw_ohci data.\n"); return -ENOMEM; } fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev); ohci_pmac_on(dev); err = pci_enable_device(dev); if (err) { fw_error("Failed to enable OHCI hardware.\n"); goto fail_free; } pci_set_master(dev); pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0); pci_set_drvdata(dev, ohci); #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32) ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE && dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW; #endif ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI; spin_lock_init(&ohci->lock); tasklet_init(&ohci->bus_reset_tasklet, bus_reset_tasklet, (unsigned long)ohci); err = pci_request_region(dev, 0, ohci_driver_name); if (err) { fw_error("MMIO resource unavailable\n"); goto fail_disable; } ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE); if (ohci->registers == NULL) { fw_error("Failed to remap registers\n"); err = -ENXIO; goto fail_iomem; } ar_context_init(&ohci->ar_request_ctx, ohci, OHCI1394_AsReqRcvContextControlSet); ar_context_init(&ohci->ar_response_ctx, ohci, OHCI1394_AsRspRcvContextControlSet); context_init(&ohci->at_request_ctx, ohci, OHCI1394_AsReqTrContextControlSet, handle_at_packet); context_init(&ohci->at_response_ctx, ohci, OHCI1394_AsRspTrContextControlSet, handle_at_packet); reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0); ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet); reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0); size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask); ohci->it_context_list = kzalloc(size, GFP_KERNEL); reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0); ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet); reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0); size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask); ohci->ir_context_list = kzalloc(size, GFP_KERNEL); if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) { fw_error("Out of memory for it/ir contexts.\n"); err = -ENOMEM; goto fail_registers; } /* self-id dma buffer allocation */ ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device, SELF_ID_BUF_SIZE, &ohci->self_id_bus, GFP_KERNEL); if (ohci->self_id_cpu == NULL) { fw_error("Out of memory for self ID buffer.\n"); err = -ENOMEM; goto fail_registers; } bus_options = reg_read(ohci, OHCI1394_BusOptions); max_receive = (bus_options >> 12) & 0xf; link_speed = bus_options & 0x7; guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) | reg_read(ohci, OHCI1394_GUIDLo); err = fw_card_add(&ohci->card, max_receive, link_speed, guid); if (err < 0) goto fail_self_id; ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff; fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n", dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff); return 0; fail_self_id: dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE, ohci->self_id_cpu, ohci->self_id_bus); fail_registers: kfree(ohci->it_context_list); kfree(ohci->ir_context_list); pci_iounmap(dev, ohci->registers); fail_iomem: pci_release_region(dev, 0); fail_disable: pci_disable_device(dev); fail_free: kfree(&ohci->card); ohci_pmac_off(dev); return err; } static void pci_remove(struct pci_dev *dev) { struct fw_ohci *ohci; ohci = pci_get_drvdata(dev); reg_write(ohci, OHCI1394_IntMaskClear, ~0); flush_writes(ohci); fw_core_remove_card(&ohci->card); /* * FIXME: Fail all pending packets here, now that the upper * layers can't queue any more. */ software_reset(ohci); free_irq(dev->irq, ohci); dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE, ohci->self_id_cpu, ohci->self_id_bus); kfree(ohci->it_context_list); kfree(ohci->ir_context_list); pci_iounmap(dev, ohci->registers); pci_release_region(dev, 0); pci_disable_device(dev); kfree(&ohci->card); ohci_pmac_off(dev); fw_notify("Removed fw-ohci device.\n"); } #ifdef CONFIG_PM static int pci_suspend(struct pci_dev *dev, pm_message_t state) { struct fw_ohci *ohci = pci_get_drvdata(dev); int err; software_reset(ohci); free_irq(dev->irq, ohci); err = pci_save_state(dev); if (err) { fw_error("pci_save_state failed\n"); return err; } err = pci_set_power_state(dev, pci_choose_state(dev, state)); if (err) fw_error("pci_set_power_state failed with %d\n", err); ohci_pmac_off(dev); return 0; } static int pci_resume(struct pci_dev *dev) { struct fw_ohci *ohci = pci_get_drvdata(dev); int err; ohci_pmac_on(dev); pci_set_power_state(dev, PCI_D0); pci_restore_state(dev); err = pci_enable_device(dev); if (err) { fw_error("pci_enable_device failed\n"); return err; } return ohci_enable(&ohci->card, NULL, 0); } #endif static struct pci_device_id pci_table[] = { { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) }, { } }; MODULE_DEVICE_TABLE(pci, pci_table); static struct pci_driver fw_ohci_pci_driver = { .name = ohci_driver_name, .id_table = pci_table, .probe = pci_probe, .remove = pci_remove, #ifdef CONFIG_PM .resume = pci_resume, .suspend = pci_suspend, #endif }; MODULE_AUTHOR("Kristian Hoegsberg "); MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers"); MODULE_LICENSE("GPL"); /* Provide a module alias so root-on-sbp2 initrds don't break. */ #ifndef CONFIG_IEEE1394_OHCI1394_MODULE MODULE_ALIAS("ohci1394"); #endif static int __init fw_ohci_init(void) { return pci_register_driver(&fw_ohci_pci_driver); } static void __exit fw_ohci_cleanup(void) { pci_unregister_driver(&fw_ohci_pci_driver); } module_init(fw_ohci_init); module_exit(fw_ohci_cleanup);